
Applied Mathematics E-Notes, 8(2008), 115-123 c© ISSN 1607-2510
Available free at mirror sites of http://www.math.nthu.edu.tw/∼amen/

Generalization Of The Secant Method For Nonlinear

Equations∗

Avram Sidi†

Received 27 February 2007

Abstract

The secant method is a very effective numerical procedure used for solving
nonlinear equations of the form f(x) = 0. It is derived via a linear interpolation
procedure and employs only values of f(x) at the approximations to the root
of f(x) = 0, hence it computes f(x) only once per iteration. In this note, we
generalize it by replacing the relevant linear interpolant by a suitable (k + 1)-
point polynomial of interpolation, where k is an integer at least 2. Just as the
secant method, this generalization too enjoys the property that it computes f(x)
only once per iteration. We provide its error in closed form and analyze its order
of convergence. We show that this order of convergence is greater than that of
the secant method, and it increases as k increases. We also confirm the theory
via an illustrative example.

1 Introduction

Let α be the solution to the equation

f(x) = 0. (1)

An effective iterative method used for solving (1) that makes direct use of f(x) [but no
derivatives of f(x)] is the secant method that is discussed in many books on numerical
analysis. See, for example, Atkinson [1], Henrici [2], Ralston and Rabinowitz [3], and
Stoer and Bulirsch [5]. See alo the recent note [4] by the author, in which the treatment
of the secant method and those of the Newton–Raphson, regula falsi, and Steffensen
methods are presented in a unified manner.

This method is derived by a linear interpolation procedure as follows: Starting with
two initial approximations x0 and x1 to the solution α of (1), we compute a sequence of
approximations {xn}∞n=0, such that the approximation xn+1 is determined as the point
of intersection (in the x-y plane) of the straight line through the points (xn, f(xn)) and
(xn−1, f(xn−1)) with the x-axis. Since the equation of this straight line is

y = f(xn) +
f(xn) − f(xn−1)

xn − xn−1
(x − xn), (2)
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116 Generalized Secant Method

xn+1 is given as

xn+1 = xn − f(xn)
f(xn)−f(xn−1)

xn−xn−1

. (3)

In terms of divided differences, (3) can be written in the form

xn+1 = xn − f(xn)
f [xn, xn−1]

. (4)

We recall that, provided f ∈ C2(I), where I is an open interval containing α, and
f ′(α) 6= 0, and that x0 and x1 are sufficiently close to α, the sequence {xn}∞n=0 converges
to α of order at least (1 +

√
5)/2 = 1.618 · · · .

Another way of obtaining the secant method, of interest to us in the present work,
is via a variation of the Newton–Raphson method. Recall that in the Newton–Raphson
method, we start with an initial approximation x0 and generate a sequence of approx-
imations {xn}∞n=0 to α through

xn+1 = xn − f(xn)
f ′(xn)

, n = 0, 1, . . . . (5)

We also recall that, provided f ∈ C2(I), where I is an open interval containing α,
and f ′(α) 6= 0, and that x0 is sufficiently close to α, the sequence {xn}∞n=0 con-
verges to α of order at least 2. As such, the Newton–Raphson method is extremely
effective. To avoid computing f ′(x) [note that f ′(x) may not always be available
or may be costly to compute], and to preserve the excellent convergence proper-
ties of the Newton–Raphson method, we replace f ′(xn) in (5) by the approximation
f [xn, xn−1] = [f(xn)− f(xn−1)]/(xn −xn−1). This results in (4), that is, in the secant
method. The justification for this approach is as follows: When convergence takes
place, that is, when limn→∞ xn = α, the difference xn − xn−1 tends to zero, and this
implies that, as n increases, the accuracy of f [xn, xn−1] as an approximation to f ′(xn)
increases as well. Note that the Newton-Raphson iteration requires two function eval-
uations, one of f(x) and another of f ′(x), per iteration. The secant method, on the
other hand, requires only one function evaluation per iteration, namely, that of f(x).

In Section 2 of this note, we consider in detail a generalization of the second of the
two approaches described above using polynomial interpolation of degree k with k > 1.
The (k +1)-point iterative method that results from this generalization turns out to be
very effective. It is of order higher than that of the secant method and requires only one
function evaluation per iteration. In Section 3, we analyze this method and determine
its order as well. In Section 4, we confirm our theory via a numerical example.

2 Generalization of Secant Method

We start by discussing a known generalization of the secant method (see, for example,
Traub [6, Chapters 4, 6, and 10]). In this generalization, we approximate f(x) by the
polynomial of interpolation pn,k(x), where pn,k(xi) = f(xi), i = n, n − 1, . . . , n − k,
assuming that x0, x1, . . . , xn have all been computed. Following that, we determine
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xn+1 as a zero of pn,k(x), provided a real solution to pn,k(x) = 0 exists. Thus, xn+1 is
the solution to a polynomial equation of degree k. For k = 1, what we have is nothing
but the secant method. For k = 2, xn+1 is one of the solutions to a quadratic equation,
and the resulting method is known as the method of Müller. Clearly, for k ≥ 3, the
determination of xn+1 is not easy.

This difficulty prompts us to consider the second approach to the secant method
we discussed in Section 1, in which we replaced f ′(xn) by the slope of the straight line
through the points (xn, f(xn)) and (xn−1, f(xn−1)), that is, by the derivative (at xn)
of the (linear) interpolant to f(x) at xn and xn−1. We generalize this approach by re-
placing f ′(xn) by p′n,k(xn), the derivative at xn of the polynomial pn,k(x) interpolating
f(x) at the points xn−i, i = 0, 1, . . . , k, mentioned in the preceding paragraph, with
k ≥ 2. Because pn,k(x) is a better approximation to f(x) in the neighborhood of xn,
p′n,k(xn) is a better approximation to f ′(xn) when k ≥ 2 than f [xn, xn−1] used in the
secant method. In addition, just as the secant method, the new method computes the
function f(x) only once per iteration step, the computation being that of f(xn). Thus,
the new method is described by the following (k + 1)-point iteration:

xn+1 = xn − f(xn)
p′n,k(xn)

, n = k, k + 1, . . . , (6)

with x0, x1, . . . , xk as initial approximations to be provided by the user. Of course, with
k fixed, we can start with x0 and x1, compute x2 via the method we have described
(with k = 1, namely via the secant method), compute x3 via the method we have
described (with k = 2), and so on, until we have completed the list x0, x1, . . . , xk.

We now turn to the computational aspects of this method. What we need is a
fast method for computing p′n,k(xn). For this, we write pn,k(x) in Newtonian form as
follows:

pn,k(x) = f(xn) +
k∑

i=1

f [xn, xn−1, . . . , xn−i]
i−1∏

j=0

(x − xn−j). (7)

Here f [xi, xi+1, . . . , xm] are divided differences of f(x), and we recall that they can be
defined recursively via

f [xi] = f(xi); f [xi, xj] =
f [xi] − f [xj]

xi − xj
, xi 6= xj, (8)

and, for m > i + 1, via

f [xi, xi+1, . . . , xm] =
f [xi, xi+1, . . . , xm−1] − f [xi+1, xi+2, . . . , xm]

xi − xm
, xi 6= xm. (9)

We also recall that f [xi, xi+1, . . . , xm] is a symmetric function of its arguments, that
is, it has the same value under any permutation of {xi, xi+1, . . . , xm}. Thus, in (7),

f [xn, xn−1, . . . , xn−i] = f [xn−i, xn−i+1, . . . , xn].

In addition, when f ∈ Cm(I), where I is an open interval containing the points
z0, z1, . . . , zm, whether these are distinct or not, there holds

f [z0, z1, . . . , zm] =
f (m)(ξ)

m!
for some ξ ∈ (min{zi}, max{zi}).
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x0 f0

f01

x1 f1 f012

f12 f0123

x2 f2 f123

f23 f1234

x3 f3 f234

f34 f2345

x4 f4 f345

f45 f3456

x5 f5 f456

f56 f4567

x6 f6 f567

f67

x7 f7

Table 1: Table of divided differences over {x0, x1, . . . , x7} for use to compute x8 via p7,3(x)

in (6). Note that fi,i+1,...,m stands for f [xi, xi+1, . . . , xm] throughout.

Going back to (7), we note that pn,k(x) there is computed by ordering the xi

as xn, xn−1, . . . , xn−k. This ordering enables us to compute p′n,k(xn) easily. Indeed,
differentiating pn,k(x) in (7), and letting x = xn, we obtain

p′n,k(xn) = f [xn, xn−1] +
k∑

i=2

f [xn, xn−1, . . . , xn−i]
i−1∏

j=1

(xn − xn−j). (10)

In addition, note that the relevant divided difference table need not be computed
anew each iteration; what is needed is adding a new diagonal (from the south-west to
north-east) at the bottom of the existing table. To make this point clear, let us look at
the following example: Suppose k = 3 and and we have computed xi, i = 0, 1, . . ., 7.
To compute x8, we use the divided difference table in Table 1. Letting fi,i+1,...,m stand
for f [xi, xi+1, . . . , xm], we have

x8 = x7 −
f(x7)

p′7,3(x7)
= x7 −

f7

f67 + f567(x7 − x6) + f4567(x7 − x6)(x7 − x5)
.

To compute x9, we will need the divided differences f8, f78, f678, f5678. Computing first
f8 = f(x8) with the newly computed x8, the rest of these divided differences can be
computed from the bottom diagonal of Table 1 via the recursion relations

f78 =
f7 − f8

x7 − x8
, f678 =

f67 − f78

x6 − x8
, f5678 =

f567 − f678

x5 − x8
, in this order,

and appended to the bottom of Table 1. Actually, we can do even better: Since we need
only the bottom diagonal of Table 1 to compute x8, we need to save only this diagonal,
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namely, only the entries f7, f67, f567, f4567. Once we have computed x8 and f8 = f(x8),
we can overwrite f7, f67, f567, f4567 with f8, f78, f678, f5678. Thus, in general, to be able
to compute xn+1 via (6), after xn has been determined, we need to store only the
entries fn, fn−1,n, . . . , fn−k,n−k+1,...,n−1,n along with xn, xn−1, . . . , xn−k.

3 Convergence Analysis

We now turn to the analysis of the sequence {xn}∞n=0 that is generated via (6). Since
we already know everything concerning the case k = 1, namely, the secant method, we
treat the case k ≥ 2. The following theorem gives the main convergence result for the
generalized secant method.

THEOREM 3.1. Let α be the solution to the equation f(x) = 0. Assume f ∈
Ck+1(I), where I in an open interval containing α, and assume also that f ′(α) 6= 0, in
addition to f(α) = 0. Let x0, x1, . . . , xk be distinct initial approximations to α, and
generate xn, n = k + 1, k + 2, . . . , via

xn+1 = xn − f(xn)
p′n,k(xn)

, n = k, k + 1, . . . , (11)

where pn,k(x) is the polynomial of interpolation to f(x) at the points xn, xn−1, . . . , xn−k.
Then, provided x0, x1, . . . , xk are in I and sufficiently close to α, the sequence {xn}∞n=0

converges to α, and

lim
n→∞

εn+1∏k
i=0 εn−i

=
(−1)k+1

(k + 1)!
f (k+1)(α)

f ′(α)
≡ L; εn = xn − α ∀n. (12)

The order of convergence is sk, 1 < sk < 2, where sk is the only positive root of the
equation sk+1 =

∑k
i=0 si and satisfies

2 − 2−k−1e < sk < 2 − 2−k−1 for k ≥ 2; sk < sk+1; lim
k→∞

sk = 2, (13)

where e is the base of natural logarithms, and

lim
n→∞

|εn+1|
|εn|sk

= |L|(sk−1)/k. (14)

REMARK. Note that, in Theorem 3.1, s2=̇1.839, s3=̇1.928, s4=̇1.966, etc., rounded
to three significant figures. For the secant method, we have s1=̇1.618, rounded to three
significant figures.

PROOF. Below, we shall use the short-hand notation

int(a1, . . . , am) = (min{a1, . . . , am}, max{a1, . . . , am}).

We start by deriving a closed-form expression for the error in xn+1. Subtracting α
from both sides of (11), and noting that

f(xn) = f(xn) − f(α) = f [xn, α](xn − α),
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we have

xn+1 − α =
(

1 −
f [xn, α]
p′n,k(xn)

)
(xn − α) =

p′n,k(xn) − f [xn, α]
p′n,k(xn)

(xn − α). (15)

We now note that

p′n,k(xn) − f [xn, α] =
{
p′n,k(xn) − f ′(xn)

}
+

{
f ′(xn) − f [xn, α]

}
,

which, by

f ′(xn) − f [xn, α] = f [xn, xn] − f [xn, α] = f [xn, xn, α](xn − α) =
f (2)(ηn)

2!
(xn − α)

for some ηn ∈ int(xn, α), and by

f ′(xn) − p′n,k(xn) = f [xn, xn, xn−1, . . . , xn−k]
k∏

i=1

(xn − xn−i)

=
f (k+1)(ξn)
(k + 1)!

k∏

i=1

(xn − xn−i) (16)

for some ξn ∈ int(xn, xn−1, . . . , xn−k), becomes

p′n,k(xn) − f [xn, α] = −f (k+1)(ξn)
(k + 1)!

k∏

i=1

(εn − εn−i) +
f (2)(ηn)

2!
εn. (17)

Substituting (16) and (17) in (15), and letting

D̂n = −
f (k+1)(ξn)
(k + 1)!

and Ên =
f (2)(ηn)

2!
, (18)

we finally obtain

εn+1 = Cnεn; Cn ≡
p′n,k(xn) − f [xn, α]

p′n,k(xn)
=

D̂n

∏k
i=1(εn − εn−i) + Ênεn

f ′(xn) + D̂n

∏k
i=1(εn − εn−i)

. (19)

We now prove that convergence takes place. Without loss of generality, we can
assume that I = (α − T, α + T ) for some T > 0, and that m1 = minx∈I |f ′(x)| > 0.
This is possible since α ∈ I and f ′(α) 6= 0. Let Ms = maxx∈I |f (s)(x)|/s!, s = 1, 2, . . .,
and choose the interval J = (α − t/2, α + t/2) sufficiently small to ensure that m1 >
2Mk+1t

k + M2t/2. It can now be shown that, provided xn−i, i = 0, 1, . . ., k, are all in
J , there holds

|Cn| ≤
Mk+1

∏k
i=1 |εn − εn−i| + M2|εn|

m1 − Mk+1

∏k
i=1 |εn − εn−i|

≤
Mk+1

∏k
i=1(|εn| + |εn−i)| + M2|εn|

m1 − Mk+1

∏k
i=1(|εn| + |εn−i|)

≤ C,
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where

C ≡
Mk+1t

k + M2t/2
m1 − Mk+1tk

< 1.

Consequently, by (19), |εn+1| < |εn|, which implies that xn+1 ∈ J , just like xn−i,
i = 0, 1, . . . , k. Therefore, if x0, x1, . . . , xk are chosen in J , then |Cn| ≤ C < 1 and
hence xn+1 ∈ J , for all n ≥ k. Consequently, by (19), limn→∞ xn = α.

As for (12), we proceed as follows: By the fact that limn→∞ xn = α, we first
note that limn→∞ p′n,k(xn) = f ′(α) = limn→∞ f [xn, α], and thus limn→∞ Cn = 0.
This means that limn→∞(εn+1/εn) = 0 and, equivalently, that {xn}∞n=0 converges
of order greater than 1. As a result, limn→∞(εn/εn−i) = 0, for all i ≥ 1, and
εn/εn−i = o(εn/εn−j) as n → ∞, for j < i. Consequently, expanding in (19) the
product

∏k
i=1(εn − εn−i), we have

k∏

i=1

(εn − εn−i) =
k∏

i=1

(
− εn−i

[
1 − εn/εn−i

])

= (−1)k

( k∏

i=1

εn−i

)[
1 + O

(
εn/εn−1

)]
as n → ∞. (20)

Substituting (20) in (19), and defining

Dn =
D̂n

p′n,k(xn)
, En =

Ên

p′n,k(xn)
, (21)

we obtain

εn+1 = (−1)kDn

( k∏

i=0

εn−i

)[
1 + O

(
εn/εn−1

)]
+ Enε2n as n → ∞. (22)

Dividing both sides of (22) by
∏k

i=0 εn−i, and defining

σn =
εn+1∏k
i=0 εn−i

, (23)

we have

σn = (−1)kDn

[
1 + O

(
εn/εn−1

)]
+ Enσn−1εn−k−1 as n → ∞. (24)

Now,

lim
n→∞

Dn = − 1
(k + 1)!

f (k+1)(α)
f ′(α)

, lim
n→∞

En =
f (2)(α)
2f ′(α)

. (25)

Since limn→∞ Dn and limn→∞ En are finite, limn→∞ εn/εn−1 = 0 and limn→∞ εn−k−1 =
0, it follows that there exist a positive integer N and positive constants β < 1 and D,
with |Enεn−k−1| ≤ β when n ≥ N , for which (24) gives

|σn| ≤ D + β|σn−1| for all n ≥ N . (26)
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Using (26), it is easy to show that

|σN+s| ≤ D
1 − βs

1 − β
+ βs|σN |, s = 1, 2, . . .,

which, by the fact that β < 1, implies that {σn} is a bounded sequence. Making use of
this fact, we have limn→∞ Enσn−1εn−k−1 = 0. Substituting this in (24), and invoking
(25), we next obtain limn→∞ σn = (−1)k limn→∞ Dn = L, which is precisely (12).

That the order of the method is sk, as defined in the statement of the theorem,
follows from [6, Chapter 3]. A weaker version can be proved by letting σn = L for
all n and showing that |εn+1| = Q|εn|sk is possible for sk a solution to the equation
sk+1 =

∑k
i=0 si and Q = |L|(sk−1)/k. The proof of this is easy and is left to the reader.

This completes our proof.

4 A Numerical Example

We apply the method described in Sections 2 and 3 to the solution of the equation
f(x) = 0, where f(x) = x3 − 8, whose solution is α = 2. We take k = 2 in our method.
We also choose x0 = 5 and x1 = 4, and compute x2 via one step of the secant method,
namely,

x2 = x1 −
f(x1)

f [x0, x1]
. (27)

Following that, we compute x3, x4, . . . , via

xn+1 = xn − f(xn)
f [xn, xn−1] + f [xn, xn−1, xn−2](xn − xn−1)

, n = 2, 3, . . . . (28)

Our computations were done in quadruple-precision arithmetic (approximately 35-
decimal-digit accuracy), and they are given in Table 2. Note that in order to verify the
theoretical results concerning iterative methods of order greater that unity, we need to
use computer arithmetic of high precision (preferably, of variable precision, if available)
because the number of correct significant decimal digits increases dramatically from one
iteration to the next as we are approaching the solution.

From Theorem 3.1,

lim
n→∞

εn+1

εnεn−1εn−2
=

(−1)3

3!
f (3)(2)
f ′(2)

= − 1
12

= −0.08333 · · ·

and

lim
n→∞

log |εn+1/εn|
log |εn/εn−1|

= s2 = 1.83928 · · · ,

and these seem to be confirmed in Table 2. Also, x9 should have a little under 50
correct significant figures, even though we do not see this in Table 2 due to the fact
that the arithmetic we have used to generate Table 2 can provide an accuracy of at
most 35 digits approximately.
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n xn εn Ln Qn

0 5.00000000000000000000000000000000000 3.000× 100

1 4.00000000000000000000000000000000000 2.000× 100 1.515
2 3.08196721311475409836065573770491792 1.082× 100 0.0441 2.164
3 2.28621882971781130732266803773062580 2.862× 10−1 0.1670 2.497
4 2.01034420943787831264152973172014271 1.034× 10−2 −0.6370 1.182
5 1.99979593345266992578358353656798415 −2.041× 10−4 −0.1196 2.024
6 2.00000007223139333059960671366229837 7.223× 10−8 −0.1005 1.934
7 2.00000000000001531923884491258853168 1.532× 10−14 −0.0838 1.784
8 2.00000000000000000000000001893448134 1.893× 10−26 ∗ ∗
9 2.00000000000000000000000000000000000 ∗ ∗ ∗

Table 2: Results obtained by applying the generalized secant method with k = 2, as
shown in (27) and (28), to the equation x3 − 8 = 0. Here, Ln = εn+1/(εnεn−1εn−2)
and Qn =

(
log |εn+1/εn|

)
/
(
log |εn/εn−1|

)
.
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