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Abstract

In this paper, a spline collocation method using spline interpolants is devel-
oped and analyzed for approximating solutions of some general linear boundary
value problems. It is observed that the method developed in this paper when
applied to some examples is better than other collocation and spline methods
given in the literature.

1 Introduction

Boundary value problems (BVPs) can be used to model several physical phenomena.
For example, when an infinite horizontal layer of fluid is heated from below and is
subject to the action of rotation, instability sets in. When this instability sets in
as ordinary convection, the ordinary differential equation is sixth order. When the
instability sets in as overstability, it is modeled by an eighth-order ordinary differential
equation [6]. If an infinite horizontal layer of fluid is heated from below, with the
supposition that a uniform magnetic field is also applied across the fluid in the same
direction as gravity and the fluid is subject to the action of rotation, instability sets in.
When instability sets in as ordinary convection, it is modeled by tenth-order boundary
value problem. When instability sets in as overstability, it is modeled by twelfth-order
boundary value problem [6].

In this paper, we study a spline collocation method allowing to compute the nu-
merical solution of BVPs described by a differential equation and boundary conditions
of the form

y(r)(x) + p(x)y(x) = g(x), ∀x ∈ [a, b], (1)

y(m)(a) = αm, m = 0, . . . , r2 − 1, y(m)(b) = βm, m = 0, . . . , r1 − 1, (2)
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172 Spline Solutions of Linear BVP

where p(x) and g(x) are given continuous functions defined in the bounded interval
[a, b], αi (i = 0, . . . , r2 − 1), and βi (i = 0, . . . , r1 − 1) are real finite constants, with

r2 = br
2
c = max

{
n ∈ N, n ≤ r

2

}
and r1 = dr

2
e = min{n ∈ N, n ≥ r

2
}.

Agarwal’s book [1] contains theorems which detail the conditions for the existence and
the uniqueness of solutions of such BVPs.

The spline collocation methods have been extensively applied in numerical ordinary
differential equations due to their easy implementation and high-order accuracy. How-
ever, in a series of papers by Siddiqi and Twizell [8, 9, 10] linear BVPs of orders 12, 10,
and 8 were solved using thirteen, eleventh and nonic degree splines respectively, where
some unexpected results were obtained near the boundaries of the interval. Therefore,
to remedy these drawbacks, we propose a new collocation method using a spline inter-
polant which satisies the same boundary conditions. It is to be noted that numerical
examples, given in Section 3, indicate that no such unexpected situation is observed
near the boundaries of the interval when we use our method.

The paper is organized as follows. Section 2 is devoted to the spline collocation
method, based on a spline interpolant, for BVPs using a spline interpolant. Next, the
error bound of the spline solution is analyzed. Finally, in order to compare this method
with the other ones developed in the literature, we give in Section 3 three numerical
examples.

2 Collocation Method using a Spline Interpolant

2.1 Spline Interpolant

Collocation method is often presented as a generalization of interpolation. More specif-
ically, if the differential operator is reduced to the identity operator, the collocation
method is reduced to interpolation. Moreover, the order of convergence of the collo-
cation method is often related to that of the interpolant in the same approximation
space.

In this section, we define a spline interpolant S of degree r+ 1 satisfying boundary
conditions (2) with optimal approximation order. To do this we consider the uniform
grid partition

∆ = {a = x−r−1 = . . . = x0 < x1 < . . . < xn−1 < xn = . . . = xn+r+1 = b},

of the interval I = [a, b], where xi = a + ih, 0 ≤ i ≤ n, and h = (b − a)/n. Let
Bi, i = −r − 1, . . . , n − 1, be the B-splines of degree r + 1 associated with ∆. It
is well known that these B-splines form a basis of the space Sr

r+1(I,∆) = {s ∈ Cr :
s|[xi,xi+1 ] is a polynomial of degree ≤ r + 1}.

THEOREM 1. Let y be the exact solution of the problem (1) with boundary con-
ditions (2), then there exists a unique spline interpolant S ∈ Sr

r+1(I,∆) of y satisfying

S(m)(t0) = y(m)(t0) = αm, m = 0, . . . , r2 − 1, (3)
S(ti) = y(ti), i = 1, . . . , n+ 1 (4)

S(m)(tn+2) = y(m)(tn+2) = βm, m = 0, . . . , r1 − 1, (5)
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where t0 = x0, ti = (xi+xi−1)/2, i = 1, . . . , n, tn+1 = xn−1, tn+2 = xn if r is odd, and
t0 = x0, t1 = (x0 + x1)/2, ti+1 = xi, i = 1, . . . , n− 1, tn+1 = (xn−1 + xn)/2, tn+2 =
xn if r is even.

PROOF. Let S =
∑n−1

j=−r−1 cjBj be a spline in Sr
r+1([a, b], τ ) that satisfies the

conditions (3) and (5). Since

(· − ω)r+2−ν

(r + 2 − ν)!
=

n−1∑

j=−r−1

(−D)ν−1ψj(ω)
(r + 1)!

Bj , ν = 1, . . . , r + 2,

where ψj(ω) = (xj+1 − ω) · · · (xj+r+1 − ω), and D is the derivative operator, we have

cj =
j+r+2∑

ν=1

1
(r + 1)!

(−D)r+2−νψj(a) y(ν−1)(a), j = −r − 1, . . . ,−r − 2 + r2,

cj =
n−j∑

ν=1

1
(r + 1)!

(−D)r+2−νψj(b) y(ν−1)(b), j = n − r1, . . . , n− 1.

On the other hand, if we put

S(x) = µ(x) + S1(x), (6)

where µ(x) =
∑−r−2+r2

j=−r−1 cjBj(x) +
∑n−1

j=n−r1
cjBj(x), then the spline S satisfies (4) if

and only if

S1(ti) =
n−r1−1∑

−r+r2−1

cj Bj(ti) = y(ti) − µ(ti), i = 1, . . . , n+ 1. (7)

As Bj(tj+r−r2 ) > 0, −r + r2 − 1 ≤ j ≤ n − r1 − 1, we deduce, from Schoenberg-
Whitney theorem (see [5]), that there exists a unique vector (cj)

n−r1−1
−r+r2−1 satisfying (7).

This completes the proof.
It is well known, see [5], that the interpolation with splines of degree d gives O(hd+1)

uniform norm errors for the interpolant and O(hd+1−s) errors for the s-th derivative
of the interpolant. Thus, we have for any y ∈ Cr+2([a, b])

‖Ds(y − S)‖∞ = O(hr+2−s), for s = 0, . . . , r. (8)

2.2 Spline Collocation Method

We suppose that the exact solution of the BVPs (1) and (2) is of class Cr+2([a, b]).
Since the interpolatory spline S satisfies (8), it follows from (1) that

S(r)(τi) + p(ti)S(τi) = g(τi) +O(h2), i = 1, . . . , n+ 1, (9)

where τi+1 = (xi +xi+1)/2, i = 0, . . . , n−1, τn+1 = xn−1. Then, the spline collocation
method presented in this section consists in finding a spline

S̃(x) = µ(x) +
n−1−r1∑

j=−r+r2−1

c̃jBj(x), (10)
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which satisfies
S̃(r)(τi) + p(τi)S̃(τi) = g(τi), i = 1, . . . , n+ 1. (11)

Taking C = [c−r+r2−1, . . . , cn−r1−1]T and C̃ = [c̃−r+r2−1, . . . , c̃n−r1−1]T , and using
equations (9) and (11), we get

(Ah +BhP )C = G+ e, (12)

(Ah +BhP )C̃ = G, (13)

where G = [g1 . . . , gn+1], e = [e1 . . . , en+1] with gi = g(τi) − µ(r)(τi) − p(τi)µ(τi), ei =
O(h2), i = 1, . . . , n+1, and P , Ah and Bh are the following (n+1)×(n+1) matrices:

Ah =
(
a
(h)
i,j

)
1≤i,j≤n+1

,

Bh =
(
b
(h)
i,j

)
1≤i,j≤n+1

and P = (diag(p(τi))1≤i≤n+1,

with a(h)
i,j = B

(r)
−r+r2−2+j(τi) and b(h)

i,j = B−r+r2−2+j(τi).
Let Mj , j = −r− 1, . . . , n− 1, be the B-splines of degree r+ 1 associated with the

uniform partition

Xn = {0 = x−r−1 = . . . = x0 < x1 = 1 < . . . < xn−1 = n−1 < xn = . . . = xn+r+1 = n},

then

Bj(x) = Mj

(
x− a

h

)
, ∀x ∈ [a, b], and therefore B(r)

j (τi) =
1
hr
M

(r)
j

(
τi − a

h

)
.

Taking

A = (ai,j)1≤i,j≤n+1 , where ai,j = M
(r)
−r+r2−2+j

(
τi − a

h

)
, we get Ah =

1
hr
A,

we deduce that (12) and (13) can be written in the following form

(A+ hrBhP )C = hr(G+ e), (14)

(A+ hrBhP )C̃ = hrG. (15)

In order to determine the bound of ‖C − C̃‖∞, we need the following lemma.

LEMMA 1. The matrix A is invertible.

PROOF. It suffices to prove that for all D = [d1, . . . , dn+1]T ∈ Rn+1 such that
AD = 0, we have D = 0. Indeed, If we put

z(x) =
n−1−r1∑

j=−r+r2−1

dj+r−r2+2 Bj(x),
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then, z(r)(τi) = 0, ∀ i = 1, . . . , n + 1. On the other hand, using the fact that z(r)

is a continuous spline function of degree 1, we deduce that z(r)(x) = αx + β, ∀ x ∈
[xn−1, xn]. As

z(r)(τn) = z(r)

(
xn−1 + xn

2

)
= 0 and z(r)(τn+1) = z(r)(xn−1) = 0,

we have z(r)(x) = 0, ∀ x ∈ [xn−1, xn]. In a similar manner, we can easily prove that
z(r)(x) = 0 in all the other subintervals of [a, b]. Then, we conclude that

{
z(r)(x) = 0, if x ∈ [a, b]
z(m)(a) = 0, m = 0, . . . , r1 − 1, z(m)(b) = 0, m = 0, . . . , r2 − 1,

which has 0 as unique solution. Consequently z(x) = 0 for all x ∈ [a, b], which in turn
gives D = 0.

PROPOSITION 1. If hr‖A−1‖∞‖P‖∞ < 1, then there exists a unique spline S̃
that approximates the exact solution y of problem (1) with boundary conditions (2).

PROOF. Assume that hr‖A−1‖∞‖P‖∞ < 1. As ‖Bh‖∞ ≤ 1, we have

hr‖A−1‖∞‖Bh‖∞‖P‖∞ < 1.

Consequently, (I + hrA−1BhP )−1 exists and

‖(I + hrA−1BhP )−1‖∞ <
1

1 − hr‖A−1‖∞‖P‖∞
·

From (15), we get
C̃ = hr(I + hrA−1BhP )−1A−1G.

PROPOSITION 2. If hr‖A−1‖∞‖P‖∞ ≤ 1
2 , then there exists a constant K which

depends only on the functions p and g such that

‖C − C̃‖∞ ≤ Kh2. (16)

PROOF. Assume that hr‖A−1‖∞‖P‖∞ ≤ 1
2 , from (14) and (15), we have C − C̃ =

hr(I+hrA−1BP )−1A−1e. Thus, ‖C−C̃‖∞ < hr‖A−1‖∞
1−hr‖A−1‖∞‖P‖∞

‖e‖∞. Since e = O(h2),
there exists a constant K1 such that ‖e‖∞ ≤ K1h

2. On the other hand,

hr‖A−1‖∞
1 − hr‖A−1‖∞‖P‖∞

≤ 1
‖P‖∞

, we deduce that ‖C − C̃‖∞ ≤ K1

‖P‖∞
h2.

Now, we are in position to prove the main theorem of this section.

THEOREM 2. The spline approximation S̃ converges quadratically to the exact
solution y of the BVP defined by (1) and (2), i.e., ‖y − S̃‖∞ = O(h2).
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PROOF. According to (8), there exists a constant K3 such that ‖y−S‖∞ ≤ K3h
r+2.

On the other hand we have S(x)− S̃(x) =
n−1−r1∑

j=−r+r2−1

(cj − c̃j)Bj (x). Therefore, by using

(16), we get

|S(x) − S̃(x)| ≤ ‖C − C̃‖∞
n−1−r1∑

j=−r+r2−1

Bj(x) ≤ ‖C − C̃‖∞ ≤ Kh2.

As ‖y − S̃‖∞ ≤ ‖y − S‖∞ + ‖S − S̃‖∞, we deduce the stated result.

3 Numerical results

The nonic, eleventh and thirteen spline methods for the solutions of linear BVPs of
orders 8, 10 and 12, respectively along with the corresponding errors in absolute value,
are illustrated in the following numerical examples.

3.1 Eighth order boundary value problems

For r = 8, we have

µ(x) =
−6∑

j=−9

cjBj(x) +
n−1∑

j=n−4

cjBj(x).

where the coefficients cj , −9 ≤ j ≤ −6 and cj , n − 4 ≤ j ≤ n − 1, are computed
explicitly.

EXAMPLE 1. Consider the boundary-value problem:




y(8)(x) − y(x) = −8(2x cos(x) + 7 sin(x)), x ∈ [−1, 1],

y(−1) = 0, y
′
(−1) = 2 sin(1), y

′′
(−1) = −4 cos(1) − 2 sin(1), y(3)(−1) = 6 cos(1) − 6 sin(1)

y(1) = 0, y
′
(1) = 2 sin(1), y

′′
(1) = 4 cos(1) + 2 sin(1), y(3)(1) = 6 cos(1) − 6 sin(1),

(17)
for which the theoretical solution is y(x) = (x2 − 1) sin(x).

The comparison of the errors in absolute values between the method developed in
this paper with those developed by Siddiqi and Twizell [10] and Akram and Siddiqi [2]
for h = 1

32 is shown in Table 1.

Table 1: Comparison of numerical results for the problem 17.

Siddiqi and Twizell [10] Siddiqi and Twizell Akram and Siddiqi [2] Our method
x ∈ [x4, xn−4] Otherwise
1.20e− 005 1.61e+ 004 1.02e− 008 5.0103e− 009
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3.2 Tenth-order boundary value problems

For r = 10, we have µ(x) =
∑−7

j=−11 cjBj(x) +
∑n−1

j=n−5 cjBj(x), where the coefficients
cj, −11 ≤ j ≤ −7 and cj , n− 5 ≤ j ≤ n− 1 are computed explicitly.

EXAMPLE 2. Consider the following boundary value problem:




y(10)(x) − xy(x) = −(89 + 21x+ x2 − x3)ex, x ∈ [−1, 1],

y(−1) = 0, y
′
(−1) = 2

e , y
′′
(−1) = 2

e , y
(3)(−1) = 0, y(4)(−1) = −4

e

y(1) = 0, y
′
(1) = −2e, y(3)(1) = −12e, y(4)(1) = −20e,

(18)

for which the theoretical solution is y(x) = (1 − x2)ex. The errors in absolute values
compared with those considered by Siddiqi and Twizell [9] and Akram and Siddiqi [3],
corresponding to the developed method for h = 1

9 are shown in Table 2.

Table 2: Comparison of numerical results for the problem 18.

Siddiqi and Twizell [9] Siddiqi and Twizell Akram and Siddiqi [3] Our method
x ∈ [x4, xn−4] Otherwise
2.07e− 003 1.06e+ 013 3.28e− 006 1.8558e− 008

3.3 Twelfth order boundary value problems

For r = 12, we have µ(x) =
∑−8

j=−13 cjBj(x) +
∑n−1

j=n−6 cjBj(x), where the coefficients
cj, −13 ≤ j ≤ −8 and cj , n− 6 ≤ j ≤ n− 1, are computed explicitly.

EXAMPLE 3. Consider the following boundary value problem:




y(12)(x) + xy(x) = −(120 + 23x+ x3)ex, x ∈ [0, 1],
y(0) = 0, y

′
(0) = 1, y

′′
(0) = 0, y(3)(0) = −3, y(4)(0) = −8, y(5)(0) = −15,

y(1) = 0, y
′
(1) = −e, y′′

(1) = −4e, y(3)(1) = −9e, y(4)(1) = −16e, y(5)(1) = −25e,
(19)

The exact solution of the above system is y(x) = x(1 − x)ex. A comparison of the
maximum errors (in absolute values) for the problem 19 is summarized in Table 3.

Table 3: Comparison of numerical results for the problem 18, with n = 22.

Siddiqi and Twizell [8] Siddiqi and Twizell Akram and Siddiqi [4] Our method
x ∈ [x6, xn−6] Otherwise
5.58e− 003 2.65e+ 024 7.38e− 009 3.7961e− 014
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4 Conclusion

Spline collocation method based on spline interpolants is developed for the approximate
solution of some general linear BVPs. The method is also proved to be second order
convergent. It has been observed that the relative errors (in absolute values), are better
than those given by other collocation and spline methods. So, its extension to general
nonlinear boundary value problems is under progress.
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