The Equivalence Between The T-Stabilities Of Picard-Banach And Mann-Ishikawa Iterations^{*}

Ştefan M. Şoltuz[†]

Received 5 February 2007

Abstract

We show that T-stability of Picard-Banach and Mann-Ishikawa iterations are equivalent.

1 Introduction

Let X be a normed space and T a selfmap of X. Let x_0 be a point of X, and assume that $x_{n+1} = f(T, x_n)$ is an iteration procedure, involving T, which yields a sequence $\{x_n\}$ of point from X. Suppose $\{x_n\}$ converges to a fixed point x^* of T. Let $\{\xi_n\}$ be an arbitrary sequence in X, and set $\epsilon_n = ||\xi_{n+1} - f(T, \xi_n)||$ for all $n \in \mathbb{N}$.

DEFINITION 1. [2] If $((\lim_{n\to\infty} \epsilon_n = 0) \Rightarrow (\lim_{n\to\infty} \xi_n = p))$, then the iteration procedure $x_{n+1} = f(T, x_n)$ is said to be *T*-stable with respect to *T*.

REMARK 1. [2] In practice, such a sequence $\{\xi_n\}$ could arise in the following way. Let x_0 be a point in X. Set $x_{n+1} = f(T, x_n)$. Let $\xi_0 = x_0$. Now $x_1 = f(T, x_0)$. Because of rounding or discretization in the function T, a new value ξ_1 approximately equal to x_1 might be obtained instead of the true value of $f(T, x_0)$. Then to approximate ξ_2 , the value $f(T, \xi_1)$ is computed to yields ξ_2 , an approximation of $f(T, \xi_1)$. This computation is continued to obtain $\{\xi_n\}$ an approximate sequence of $\{x_n\}$.

Consider $e_0 = s_0 = t_0 = g_0 = h_0$. The Picard-Banach iteration is given by

$$b_{n+1} = Tb_n. (1)$$

The two most popular iteration procedures for obtaining fixed points of T, when the Banach principle fails, are Mann iteration [3], defined by

$$e_{n+1} = (1 - \alpha_n)e_n + \alpha_n T e_n, \tag{2}$$

and Ishikawa iteration [1], defined by

$$s_{n+1} = (1 - \alpha_n)s_n + \alpha_n T t_n,$$

$$t_n = (1 - \beta_n)s_n + \beta_n T s_n.$$
(3)

^{*}Mathematics Subject Classifications: 47H10

[†]Institute of Numerical Analysis of Romanian Academy, P.O. Box 68-1, Cluj-Napoca, Romania, and Departamento de Matematicas, Universidad de los Andes, Carrera 1 No. 18A-10, Bogota, Colombia.

We have $\{\alpha_n\} \subset (0,1), \{\beta_n\} \subset [0,1)$ and $\{\alpha_n\}$ usually satisfies

$$\lim_{n \to \infty} \alpha_n = 0, \sum_{n=1}^{\infty} \alpha_n = \infty.$$
(4)

Recently, the equivalence between the T-stabilities of Mann and Ishikawa iterations was shown in [6]. In this note we shall prove the equivalence between T-stabilities of (1), (2) and (3).

2 The Equivalence between *T*-Stabilities

Let X be a normed space and $T: X \to X$ a map. Let $\{u_n\}, \{p_n\}, \{x_n\}, \{y_n\} \subset X$ be such that $u_0 = p_0 = x_0 = y_0$, and consider

$$\varepsilon_n := \|u_{n+1} - (1 - \alpha_n)u_n - \alpha_n T u_n\|,$$

$$\delta_n := \|p_{n+1} - T p_n\|.$$

For $\{\beta_n\} \subset [0, 1)$, we consider $y_n = (1 - \beta_n)x_n + \beta_n T x_n$, and

$$\xi_n := \|x_{n+1} - (1 - \alpha_n)x_n - \alpha_n T y_n\|.$$

DEFINITION 2. Definition 1 gives:

(i) The Ishikawa iteration (3), is said to be *T*-stable if and only if for all $\{\alpha_n\} \subset (0, 1), \{\beta_n\} \subset [0, 1), \forall \{x_n\} \subset X$ given, we have

$$\lim_{n \to \infty} \xi_n = \lim_{n \to \infty} \|x_{n+1} - (1 - \alpha_n)x_n - \alpha_n T y_n\| = 0 \Rightarrow \lim_{n \to \infty} x_n = x^*.$$

The Mann iteration is said to be T-stable if and only if for all $\{\alpha_n\} \subset (0, 1), \forall \{u_n\} \subset X$ given, we have

$$\lim_{n \to \infty} \varepsilon_n = \lim_{n \to \infty} \|u_{n+1} - (1 - \alpha_n)u_n - \alpha_n T u_n\| = 0 \Rightarrow \lim_{n \to \infty} u_n = x^*.$$

(*ii*) The Picard iteration is said to be *T*-stable if and only if for all $\{p_n\} \subset X$ given, we have

$$\lim_{n \to \infty} \delta_n = \lim_{n \to \infty} \|p_{n+1} - Tp_n\| = 0 \Rightarrow \lim_{n \to \infty} p_n = x^*$$

It is obvious that for $\alpha_n := 0, \forall n \in \mathbb{N}, \beta_n := 0, \forall n \in \mathbb{N}$, one obtains $\xi_n = \varepsilon_n = \delta_n$. THEOREM 1. Let X be a normed space and $T: X \to X$ a map. If

$$\lim_{n \to \infty} \|p_n - Tp_n\| = 0 \text{ and } \lim_{n \to \infty} \|u_n - Tu_n\| = 0,$$
 (5)

then the following are equivalent:

(i) for all $\{\alpha_n\} \subset (0, 1)$, the Mann iteration is T-stable,

(ii) the Picard iteration is T-stable.

PROOF. $(i) \Rightarrow (ii)$. Take $\lim_{n\to\infty} \delta_n = 0$. Observe that

$$\begin{split} \varepsilon_n &= \|u_{n+1} - (1 - \alpha_n)u_n - \alpha_n T u_n\| \\ &\leq \|u_{n+1} - T u_n\| + (1 - \alpha_n) \|u_{n+1} - u_n\| + (1 - \alpha_n) \|u_{n+1} - T u_n\| \\ &\leq (2 - \alpha_n) \|u_{n+1} - T u_n\| + (1 - \alpha_n) \|u_{n+1} - u_n\| \\ &\leq (2 - \alpha_n) \|u_{n+1} - T u_n\| + (1 - \alpha_n) (\|u_{n+1} - T u_n\| + \|u_n - T u_n\|) \\ &= (3 - 2\alpha_n) \|u_{n+1} - T u_n\| + (1 - \alpha_n) \|u_n - T u_n\| \\ &= (3 - 2\alpha_n) \delta_n + (1 - \alpha_n) \|u_n - T u_n\| \\ &\rightarrow 0 \end{split}$$

as $n \to \infty$. We know from (i) that if $\lim_{n\to\infty} \varepsilon_n = 0$, then $\lim_{n\to\infty} u_n = x^*$, thus we have shown that if $\lim_{n\to\infty} \delta_n = \lim_{n\to\infty} ||u_{n+1} - Tu_n|| = 0$, then $\lim_{n\to\infty} u_n = x^*$.

For $(ii) \Rightarrow (i)$, take $\lim_{n\to\infty} \varepsilon_n = 0$. Observe that

$$\delta_{n} = \|p_{n+1} - Tp_{n}\| \\ \leq \|p_{n+1} - (1 - \alpha_{n})p_{n} - \alpha_{n}Tp_{n}\| + (1 - \alpha_{n})\|p_{n} - Tp_{n}\| \\ \leq \varepsilon_{n} + (1 - \alpha_{n})\|p_{n} - Tp_{n}\| \\ \to 0$$

as $n \to \infty$. We know from (*ii*) that if $\lim_{n\to\infty} \delta_n = 0$, then $\lim_{n\to\infty} p_n = x^*$, thus we have shown that if $\lim_{n\to\infty} \varepsilon_n = \lim_{n\to\infty} \|p_{n+1} - (1 - \alpha_n)p_n - \alpha_n T p_n\| = 0$, then $\lim_{n\to\infty} p_n = x^*$.

REMARK 2. Note that no boundedness condition is needed in the above result. Note that $\lim_{n\to\infty} ||u_n - Tu_n|| = 0$ is used in order to prove that $\lim_{n\to\infty} \varepsilon_n = 0$, hence can not be avoided. Analogously, $\lim_{n\to\infty} ||p_n - Tp_n|| = 0$ is used in order to prove that $\lim_{n\to\infty} \delta_n = 0$, hence can not be avoided.

THEOREM 2. Let X be a normed space and $T: X \to X$ a map with bounded range. If

$$\lim_{n \to \infty} \|p_n - Tp_n\| = 0 \text{ and } \lim_{n \to \infty} \|x_n - Tx_n\| = 0,$$

then the following are equivalent:

(i) for all $\{\alpha_n\} \subset (0,1)$ and $\{\beta_n\} \subset [0,1)$, satisfying (4), the Ishikawa iteration is T-stable,

(ii) the Picard iteration is T-stable.

PROOF. Let

$$M := \max\left\{\sup_{x \in X} \{\|T(x)\|\}, \|x_0\|\right\}.$$

Since T has bounded range, we have $M < \infty$.

We shall prove that $(i) \Rightarrow (ii)$. Take $\lim_{n\to\infty} \delta_n = 0$. Observe that

$$\begin{aligned} \xi_n &= \|x_{n+1} - (1 - \alpha_n)x_n - \alpha_n T y_n\| \\ &\leq \|x_{n+1} - T x_n\| + \|(1 - \alpha_n)x_n - \alpha_n T y_n + T x_n\| \\ &= \|x_{n+1} - T x_n\| + \|(1 - \alpha_n)x_n - \alpha_n T y_n + T x_n - \alpha_n T x_n + \alpha_n T x_n\| \\ &\leq \|x_{n+1} - T x_n\| + (1 - \alpha_n) \|x_n - T x_n\| + \alpha_n \|T x_n - T y_n\| \\ &= \delta_n + (1 - \alpha_n) \|x_n - T x_n\| + 2\alpha_n M \\ &\to 0 \end{aligned}$$

as $n \to \infty$. Condition (i) assures that $\lim_{n\to\infty} \xi_n = 0 \Rightarrow \lim_{n\to\infty} x_n = x^*$. Thus, for a $\{x_n\}$ satisfying

$$\lim_{n \to \infty} \delta_n = \lim_{n \to \infty} \|x_{n+1} - Tx_n\| = 0,$$

we have shown that $\lim_{n\to\infty} x_n = x^*$.

Conversely, we prove $(ii) \Rightarrow (i)$. Take $\lim_{n\to\infty} \xi_n = 0$. Observe that

$$\begin{split} \delta_n &= \|p_{n+1} - Tp_n\| \\ &\leq \|p_{n+1} - (1 - \alpha_n)p_n - \alpha_n Ty_n\| + \|(1 - \alpha_n)p_n + \alpha_n Ty_n - Tp_n\| \\ &\leq \|p_{n+1} - (1 - \alpha_n)p_n - \alpha_n Ty_n\| + \alpha_n \left(\|p_n\| + \|Ty_n\|\right) + \|p_n - Tp_n\| \\ &\leq \varepsilon_n + \alpha_n \left(\|p_n\| + M\right) + \|p_n - Tp_n\| \\ &\to 0 \end{split}$$

as $n \to \infty$. Note that $\lim_{n\to\infty} ||p_n - Tp_n|| = 0$ and using the boundedness of $\{Tp_n\}$ we obtain the boundedness of $\{p_n\}$. Condition (*ii*) assures that

$$\lim_{n \to \infty} \delta_n = 0 \Rightarrow \lim_{n \to \infty} x_n = x^*.$$

Thus, for a $\{p_n\}$ satisfying $\lim_{n\to\infty} \xi_n = \lim_{n\to\infty} \|p_{n+1} - (1-\alpha_n)p_n - \alpha_n T y_n\| = 0$, we have shown that $\lim_{n\to\infty} p_n = x^*$.

Theorems 1 and 2 lead to the following result.

COROLLARY 1. Let X be a normed space and $T:X\to X$ a map with bounded range. If

$$\lim_{n \to \infty} \|p_n - Tp_n\| = 0, \ \lim_{n \to \infty} \|x_n - Tx_n\| = 0 \text{ and } \lim_{n \to \infty} \|u_n - Tu_n\| = 0,$$

then the following are equivalent:

(i) for all $\{\alpha_n\} \subset (0,1)$ and $\{\beta_n\} \subset [0,1)$, satisfying (4), the Ishikawa iteration is *T*-stable,

(*ii*) for all $\{\alpha_n\} \subset (0, 1)$, satisfying (4), the Mann iteration is T-stable,

(iii) the Picard iteration is T-stable.

3 Applications

The following example is from [2] and [4]. For sake of completeness we give here the whole proof.

EXAMPLE 1. Let $T : [0, 1] \rightarrow [0, 1], Tx = x$.

Ş. M. Şoltuz

• [2] Picard iteration converges but is not T-stable. Then every point in (0, 1] is a fixed point of T. Let b_0 be a point in (0, 1], then $b_{n+1} = Tb_n = T^n b_0 = b_0$. Thus $\lim_{n\to\infty} b_n = b_0$. Take $p_0 = 0$ and $p_n = \frac{1}{n}$. Thus

$$\delta_n = |p_{n+1} - Tp_n| = \frac{1}{n(n+1)} \to 0,$$

but $\lim_{n\to\infty} p_n = 0 \neq b_0$.

• [4] Mann iteration converges but is not *T*-stable. Let e_0 be a point in (0, 1], then $e_{n+1} = (1 - \alpha_n) e_n + \alpha_n e_n = e_n = \dots = e_0$. Take $u_0 = e_0$, $u_n = \frac{1}{n+1}$ to obtain

$$\varepsilon_n = |u_{n+1} - (1 - \alpha_n) u_n - \alpha_n T u_n| = \left| \frac{1}{n+2} - (1 - \alpha_n) \frac{1}{n+1} - \alpha_n \frac{1}{n+1} \right|$$
$$= \left| \frac{1}{n+2} - \frac{1}{n+1} \right| = \frac{1}{(n+1)(n+2)} \to 0,$$

but $\lim_{n\to\infty} u_n = 0 \neq e_0$.

EXAMPLE 2. Let $T : [0, \infty) \to [0, \infty)$ be given by $Tx = \frac{x}{3}$. Then the Mann iteration converges to the fixed point of $x^* = 0$ but is not T-stable, and applying Theorem 1, the Picard iteration is not T-stable while it converges.

(i) Mann iteration converges because the sequence $e_n \to 0$ as we can see:

$$e_{n+1} = (1 - \alpha_n) e_n + \alpha_n \frac{e_n}{3} = \left(1 - \frac{2\alpha_n}{3}\right) e_n$$
$$= \prod_{k=1}^n \left(1 - \frac{2\alpha_k}{3}\right) e_0 \le \exp\left(-\frac{2}{3}\sum_{k=1}^n \alpha_k\right) \to 0,$$

the last inequality is true because $1 - x \leq \exp(-x)$, $\forall x \geq 0$, and $\sum \alpha_n = +\infty$ supplied by (4).

(ii) Mann iteration is not T-stable. Take $u_n = \frac{n}{n+1}$, note that $u_n \to 1 \neq x^* = 0$, and $\varepsilon_n = ||u_{n+1} - (1 - \alpha_n)u_n - \alpha_n T u_n|| \to 0$ because

$$\varepsilon_n = \left| \frac{n+1}{n+2} - (1 - \alpha_n) \frac{n}{n+1} - \alpha_n \frac{n}{3(n+1)} \right| \\ = \frac{3 + 2\alpha_n n^2 + 4\alpha_n n}{3(n+1)(n+2)}.$$

(iii) Picard iteration converges to fixed point $x^* = 0$, because $b_{n+1} = Tb_n = T^n b_0 = \frac{b_0}{3^n} \to 0$.

REMARK. Take again $T : [0, \infty) \to [0, \infty)$, $Tx = \frac{x}{3}$, and $x_n = \frac{n}{n+1}$ to note that $\lim_{n\to\infty} \xi_n = 0$ and $\lim_{n\to\infty} x_n = 1 \neq x^* = 0$, and to conclude that Ishikawa iteration is not T-stable. Remark (analogously to Mann iteration, see also [5]) that it converges while T is a contraction.

References

- S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44(1974), 147–150.
- [2] A. M. Harder and T. Hicks, Stability results for fixed point iteration procedures, Math. Japonica, 33 (1988), 693–706.
- [3] W. R. Mann, Mean value in iteration, Proc. Amer. Math. Soc., 4 (1953), 506–510.
- [4] M. O. Osilike, Stability of the Mann and Ishikawa iteration procedures for ϕ -strong pseudocontractions and nonlinear equations of the ϕ -strongly accretive type, J. Math. Anal. Appl., 227 (1998), 319–334.
- [5] B. E. Rhoades and Ş. M. Şoltuz, On the equivalence of Mann and Ishikawa iteration methods, Int. J. Math. Math. Sci., 2003(2003), 451–459.
- [6] B. E. Rhoades and Ş. M. Şoltuz, The equivalence between the *T*-stabilities of Mann and Ishikawa iterations, J. Math. Anal. Appl., 318(2006), 472-475.