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Abstract

This note is concerned with the following fourth order problem.

42uΩ = 1 in Ω, uΩ =
∂uΩ

∂ν
= 0 on ∂Ω, 4uΩ = c on ∂Ω. (1)

It is well-known [1] that if (1) admits a solution then Ω is a ball. The aim here
is to give an alternative proof of this result which does not use the maximum
principle.

To prove symmetry results for overdetermined value problems, three methods have
been used: Serrin’s method [7], Weinberger method [9] and Duality method [6]. In [1],
Bennett used the Weinberger method to show the following result.

THEOREM 1. Let Ω be an open, bounded and connected subset of RN . Suppose
Ω is of class C2. If (1) admits a solution, then Ω is a ball.

For that purpose, Bennett introduced the auxiliary function

φ(x) =
N − 4
N + 2

u +
N − 4

2(N + 2)
(4u)2 + u,iju,ij −∇u.∇(4u).

Then by using the strong maximum principle, he determined that Ω is a ball with
radius [|c|N (N + 2)]1/2 and the solution of (1) is given by

u(x) =
−1
2N

{
1
4
(N + 2)(Nc)2 +

Nc

2
r2 +

1
4(N + 2)

r4

}
.

Later, Dalmasso [5] used Serrin’s method of moving planes to show that Ω in (1) is a
ball and u is radial.

Our aim at present is to prove Theorem 1 without using the maximum principle
which is the classical ingredient in many proofs of the earlier results. All we need
here is to perform the derivative with respect to domain (also known as the shape
derivative), see e.g. [8]. To get similar symmetry results for other problems, this
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notion has been used for instance in [4], see also [2] where it was combined with the
Steiner symmetrization.

Before starting our proof, let us remark that (1) is equivalent to
{

4uΩ = c − vΩ in Ω, uΩ = ∂uΩ
∂ν

= 0 on ∂Ω,
4vΩ = −1 in Ω, vΩ = 0 on ∂Ω (2)

vΩ is called the torsion function relative to the domain Ω.

LEMMA 0. If uΩ solves (2), then c > 0.

PROOF. Since uΩ solves (2), the Green formula gives

0 =
∫

∂Ω

∂uΩ

∂ν
=

∫

Ω

4uΩ = cV (Ω) −
∫

Ω

vΩ

which implies ∫

Ω

vΩ = cV (Ω).

Then, by the maximum principle, vΩ > 0 in Ω, so

c =

∫
Ω

vΩ

V (Ω)
> 0.

Throughout the sequel, let ω be a bounded open connected domain of class C2 in
RN (N ≥ 2) and let ν be the outward normal to the boundary of ω. Denote by V (ω)
the volume of ω and let vω be the torsion function relative to the domain ω.

4vω = −1 in ω, vω = 0 on ∂ω. (3)

Let B be the class of the open, bounded and connected subsets of RN . Consider

O =
{

ω ∈ B, ω is of class C2 :
∫

ω

vω ≤ cV (ω)
}

and
J(ω) = c2V (ω) −

∫

ω

v2
ω +

∫

ω

uω

where vω is the solution of (3) and uω is the solution of the Dirichlet problem.

4uω = c − vω in ω, uω = 0 on ∂ω. (4)

LEMMA 1. J(ω) ≥ 0 for any ω ∈ O. Furthermore, if Ω is of class C2 and uΩ solves
(2) then J(Ω) = 0 and J(Ω) = min{J(ω), ω ∈ O}.

PROOF. Let ω ∈ O. According to (3) and (4), the Green formula gives

−
∫

ω

uω =
∫

ω

4vωuω = c

∫

ω

vω −
∫

ω

v2
ω. (5)
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But
∫

ω
vω ≤ cV (ω), so

−
∫

ω

uω ≤ c2V (ω) −
∫

ω

v2
ω.

Thus J(ω) ≥ 0. Now in the proof of Lemma 0, we got
∫

Ω

vΩ = cV (Ω). (6)

This together with the fact that Ω ∈ B and it is of class C2, implies Ω ∈ O.

Now replacing in (5) ω by Ω, we obtain

c

∫

Ω

vΩ −
∫

Ω

v2
Ω +

∫

Ω

uΩ = 0

and by (6),

J(Ω) = c2V (Ω) −
∫

Ω

v2
Ω +

∫

Ω

uΩ = 0.

It then follows that Ω minimizes J on O.
As it is mentioned above, the use of the shape derivative will allow us to prove

that Ω is a ball. Before doing this, let us recall the definition of the domain derivative,
see for instance [8]. Consider a deformation field V ∈ C2

(
RN ; RN

)
and set ωt =

{x + tV (x), x ∈ Ω}, t > 0. The application Id + tV is a perturbation of the identity
which is a Lipschitz diffeomorphism for t small enough. By definition, the derivative of
J at ω in the direction V is

dJ(ω, V ) = lim
t→0

J(ωt) − J(ω)
t

.

Since the functional J depends on the domain ω through the solution of the Dirichlet
problems (3) and (4) we need to define also the domain derivative of uω (resp. vω). If
u′ (resp. v′) denotes the domain derivative of uω (resp. vω) then

u′ = lim
t→0

uωt − uω

t
.

and
v′ = lim

t→0

vωt − vω

t
.

Furthermore, we can prove ([8], [?]) the following lemma.

LEMMA 2. u′ satisfies

−∆u′ = 0 in ω and u′ = −∂uω

∂ν
V · ν on ∂ω. (7)

and v′ satisfies

−∆v′ = 0 in ω and v′ = −∂vω

∂ν
V · ν on ∂ω. (8)
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Now since J(ω) = c2V (ω) − j1(ω) + j2(ω) where j1(ω) =
∫
ω

v2
ω and j2(ω) =

∫
ω

uω, we
need to perform the derivative of a functional in the form F (ω) =

∫
ω

f(wω) where wω

is the solution of some Dirichlet problem on ω and w′ satisfies

−∆w′ = 0 in ω and w′ = −∂wω

∂ν
V · ν on ∂ω. (9)

dF (ω, V ) =
∫

ω

f ′ (wω) w′dx +
∫

∂ω

f(wω)V · ν dσ. (10)

LEMMA 3. Let ω ∈ O then for any direction V :

dJ(ω, V ) =
∫

∂ω

[c2 − 2c(
∂vω

∂ν
)2 − ∂uω

∂ν

∂vω

∂ν
]V · νdσ.

PROOF. In (10), one can take f ≡ 1 and obtain the derivative of the volume, i.e

dV (ω, V ) =
∫

∂ω

V · νdσ. (11)

By replacing in (10), wω by vω and putting f(t) = t2 we obtain

dj1(ω, V ) = 2
∫

ω

vωv′dx +
∫

∂ω

v2
ωV · ν dσ. (12)

Since vω vanishes on ∂ω,

dj1(ω, V ) = 2
∫

ω

vωv′dx. (13)

By (4)

dj1(ω, V ) = 2c

∫

ω

v′dx − 2
∫

ω

4uωv′dx. (14)

On one hand using (3) and (8), the Green formula gives
∫

ω

v′dx = −
∫

ω

4vωv′dx =
∫

∂ω

(
∂vω

∂ν
)2V · νdσ. (15)

On the other hand according to (4) and (8), the Green formula gives
∫

ω

4uωv′dx = −
∫

∂ω

∂vω

∂ν

∂uω

∂ν
V · νdσ. (16)

Combining (15) with (16), we get

dj1(ω, V ) =
∫

∂ω

[2c(
∂vω

∂ν
)2 − 2

∂vω

∂ν

∂uω

∂ν
]V · νdσ. (17)

Now if we replace in (10), wω by uω and put f(t) = t we obtain

dj2(ω, V ) =
∫

ω

u′dx = −
∫

ω

4vωu′dx. (18)
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Using (3) and (7), the Green formula gives

dj2(ω, V ) =
∫

∂ω

∂vω

∂ν

∂uω

∂ν
V · νdσ. (19)

The result follows then from (11) combined with (17) and (19).
Now we are ready to state and prove the following proposition.
PROPOSITION 1. If Ω is of class C2 and uΩ solves (1), then there exists a Lagrange

multiplier λ such that (
∂vΩ

∂ν

)2

=
c(c + λ)
2c + λ

on ∂Ω.

PROOF. Put j(ω) =
∫

ω
vω. Since Ω is the minimum of J on O then there exists a

Lagrange multiplier λ such that for any direction V

dJ(Ω, V ) = λ(dj(Ω, V ) − cdV (Ω, V )).

But ∂uΩ
∂ν = 0 on ∂Ω, so according to Lemma 3,

dJ(Ω, V ) =
∫

∂Ω

[c2 − 2c(
∂vΩ

∂ν
)2]V · νdσ.

Then by (15), we obtain: for any direction V
∫

∂Ω

[c2 + cλ − (2c + λ)(
∂vΩ

∂ν
)2]V · νdσ = 0.

Then using the density of the functions V · ν in L2(∂Ω), we get the result.
Now the previous proposition says that vΩ is a solution to the Serrin problem that

is to say that Ω is a ball with radius N [ c(c+λ)
2c+λ ]1/2, vΩ and uΩ are radially symmetric.

REMARK 1. Suppose c < 0. Let ω ∈ B. By the maximum principle, vω > 0 in
ω, so

∫
ω

vω > cV (ω). Therefore J(ω) > 0 for any ω ∈ B. Unfortunately, the value 0
cannot be reached by Ω the solution of (2), i.e. Ω cannot minimize J on B.

REMARK 2. Since we want to get the optimality condition, we need to perform
the shape derivative at the minimum Ω which requires only the C2 regularity of Ω. So,
we can consider O = {ω ∈ B :

∫
ω vω ≤ cV (ω)} and suppose ω of class C2 in Lemma

3.
REMARK 3. One can replace in O, the inequality by its converse and obtain a

maximization problem since the optimal shape Ω leads to an equality. Then using the
same arguments as above, we reach the same conclusion.

REMARK 4. Let vω and uω be respectively the solution of (3) and (4). Consider the
functional G(ω) = c

∫
ω vωdx − 1

2

∫
ω v2

ωdx. Denote by Oad some class of the admissible
domains, for example the class of the domains with the ε-cone property [3]. One can
show the existence of a minimum Ω of G on Oad. Then, if Ω is of class C2, the shape
derivative of G gives (for any admissible direction V )

∫

∂Ω

∂uΩ

∂ν

∂vΩ

∂ν
V · ν = 0.
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It then follows that ∂uΩ
∂ν = 0 on ∂Ω since ∂vΩ

∂ν < 0 on ∂Ω. This means that Ω is a
solution of (2).

REMARK 5. Consider the fourth order problem:

42wΩ = 1 in Ω, wΩ = 4wΩ = 0 on ∂Ω,
∂wΩ

∂ν
= c

∂vΩ

∂ν
on ∂Ω,

where vΩ is the torsion function relative to Ω. As above, this problem is equivalent to:

−4wΩ = vΩ in Ω, wΩ = 0 and
∂wΩ

∂ν
= c

∂vΩ

∂ν
on ∂Ω.

Now if we put uΩ = wΩ − cvΩ, it is simple to see that uΩ solves (1) and then Ω is a
ball.
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