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Abstract

In this paper, a further improved tanh function method is used to construct
exact solutions of the (2+1)-dimensional dispersive long wave equations. As a
result, many new and more general solutions are obtained including soliton-like
solutions, periodic formal solutions and rational function solutions. Compared
with most existing tanh function methods, the proposed method gives new and
more general exact solutions. More importantly, with the aid of symbolic com-
putation, this method provides a powerful mathematical tool for solving a great
many nonlinear partial differential equations in mathematical physics.

1 Introduction

It is well known that nonlinear complex physics phenomena are related to nonlinear
partial differential equations (NLPDEs) which are involved in many fields from physics
to biology, chemistry, mechanics, etc. As mathematical models of the phenomena, the
investigation of exact solutions of NLPDEs will help us to understand these phenom-
ena better. Many effective methods for obtaining exact solutions of NLPDEs have
been presented, such as Bäcklund transformation [1], hyperbolic function method [2],
sine-cosine method [3], Jacobi elliptic function expansion method [4], homotopy per-
turbation method [5], F-expansion method [6] and so on.

One of the most effective direct methods to construct exact solutions of NLPDEs
is tanh function method [7–9], the method was later extended in different manners
[10–16]. Recently, Xie et al. [17] generalized the work made in [10–16]. Very recently,
by using a more general transformation we improved the method [17] and proposed
a further improved tanh function method [18] to seek more general exact solutions of
NLPDEs. The present paper is motivated by the desire to extend the further improved
tanh function method to the (2+1)-dimensional dispersive long wave (DLW) equations:

uyt + Hxx +
1
2
(u2)xy = 0, (1)
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Ht + (uH + u + uxy)x = 0. (2)

Soliton-like solutions, Jacobi elliptic function solutions and other exact solutions can
be found in [19–21].

2 A Further Improved Tanh Function Method

Given a system of NLPDEs with independent variables x = (t, x1, x2, . . . , xm) and
dependent variables u, v:

F (u, v, ut, vt, ux1, vx1 , . . . , ux1t, vx1t . . . , utt, vtt, . . . , uxmxm , vxmxm , . . .) = 0, (3)

G(u, v, ut, vt, ux1, vx1 , . . . , ux1t, vx1t . . . , utt, vtt, . . . , uxmxm , vxmxm , . . .) = 0, (4)

we seek its solutions in the more general forms:

u = a0(x) +
N1∑

i=1

{
a−i(x)φ−i(ξ) + ai(x)φi(ξ)

}
, (5)

v = b0(x) +
N2∑

j=1

{
b−j(x)φ−j(ξ) + bj(x)φj(ξ)

}
, (6)

with
φ′(ξ) = r + pφ(ξ) + qφ2(ξ), (7)

where the prime denotes d/dξ, r, p and q are all real constants, while a0(x), a−i(x),
ai(x), b0(x), b−j(x), bj(x) (i = 1, 2, . . ., N1; j = 1, 2, . . ., N2) and ξ = ξ(x) are all
differentiable functions to be determined later. Given different values of r, p and q,
equation (7) has twenty seven special solutions which are listed in [18]. To determine
u explicitly, we take the following four steps:

Step 1. Determine the integers N1 and N2 by balancing the highest order nonlinear
term(s) and the highest order partial derivative term(s) in equations (3) and (4).

Step 2. Substitute (5) and (6) along with (7) into equations (3) and (4), then collect
coefficients of the same order of φl(ξ) (l = ±1,±2, . . .) and set each coefficient to zero
to derive a set of over-determined partial differential equations for a0(x), a−i(x), ai(x),
b0(x), b−j(x), bj(x) and ξ.

Step 3. Solve the over-determined partial differential equations obtained in Step 2
by use of Mathematica and using Wu elimination method.

Step 4. Substitute a0(x), a−i(x), ai(x), b0(x), b−j(x), bj(x) and ξ along with one
solution φ(ξ) of equation (7) into (5) and (6), we then obtain soliton-like solutions,
periodic formal solutions and rational function solutions of equations (3) and (4).

3 Exact Solutions of the DLW Equations

According to Step 1, we get N1 = 2 for H and N2 = 1 for u. In order to search
for explicit solutions of equations (1) and (2), we set a0 = a0(y, t), a−2 = a−2(y, t),
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a−1 = a−1(y, t), a1 = a1(y, t), a2 = a2(y, t), b0 = b0(y, t), b−1 = b−1(y, t), b1 = b1(y, t),
ξ = kx + η, η = η(y, t), k is a nonzero constant. Thus we have

H = a0 + a−2φ
−2(ξ) + a−1φ

−1(ξ) + a1φ(ξ) + a2φ
2(ξ), (8)

u = b0 + b−1φ
−1(ξ) + b1φ(ξ). (9)

Substituting (8) and (9) along with (7) into equations (1) and (2), then collecting
coefficients of the same order of φ(ξ)l (l = ±1,±2, . . .) and setting each coefficient to
zero, we derive a set of over-determined partial differential equations for a0, a−2, a−1,
a1, a2, b0, b−1, b1 and η as follows:

2k2r2a−1 + 10k2pra−2 − 2krb−1b−1,y + 2kr2b0b−1ηy + 5kprb2
−1ηy

+2r2b−1ηtηy = 0, 6k2r2a−2 + 3kr2b2
−1ηy = 0,

3k2pra−1 + 4k2p2a−2 + 8k2qra−2 − krb−1b0,y − krb0b−1,y − 2kpb−1b−1,y

−rηtb−1,y + 3kprb0b−1ηy + 2kp2b2
−1ηy + 4kqrb2

−1ηy − rb−1,tηy + 3prb−1ηtηy

−rb−1ηt,y = 0, 3kqa2b1 + 6k2q3b1ηy = 0,

k2p2a−1 + 2k2qra−1 + 6k2pqa−2 − kpb−1b0,y − kpb0b−1,y − 2kqb−1b−1,y

−pηtb−1,y + kp2b0b−1ηy + 2kqrb0b−1ηy + 3kpqb2
−1ηy − pb−1,tηy + p2b−1ηtηy

+2qrb−1ηtηy + b−1,t,y − pb−1ηt,y = 0, −3kra−2b−1 − 6k2r3b−1ηy = 0,

k2pra1 + k2pqa−1 + 2k2q2a−2 + 2k2r2a2 + krb1b0,y − kqb−1b0,y + krb0b1,y

+rηtb1,y − kqb0b−1,y − qηtb−1,y + kprb0b1ηy + kr2b2
1ηy + kpqb0b−1ηy + rb1ηt,y

+rb1,tηy − qb−1,tηy + prb1ηtηy − qb−1ηt,y + pqb−1ηtηy + b0,t,y + kq2b2
−1ηy = 0,

k2p2a1 + 2k2qra1 + 6k2pra2 + kpb1b0,y + kpb0b1,y + 2krb1b1,y + pηtb1,y

+kp2b0b1ηy + 2kqrb0b1ηy + 3kprb2
1ηy + pb1,tηy + p2b1ηtηy + 2qrb1ηtηy

+b1,t,y + pb1ηt,y = 0, 6k2q2a2 + 3kq2b2
1ηy = 0,

3k2pqa1 + 4k2p2a2 + 8k2qra2 + kqb1b0,y + kqb0b1,y + 2kpb1b1,y + qηtb1,y

+3kpqb0b1ηy + 2kp2b2
1ηy + 4kqrb2

1ηy + qb1,tηy + 3pqb1ηtηy + qb1ηt,y = 0,

2k2q2a1 + 10k2pqa2 + 2kqb1b1,y + 2kq2b0b1ηy + 5kpqb2
1ηy + 2q2b1ηtηy = 0,

2k2r2b−1,y − 2kra−2b0 − 2kra−1b−1 − 3kpa−2b−1 − 2ra−2ηt − 12k2pr2b−1ηy = 0,

−kra−1b0 − 2kpa−2b0 − kra−2b1 − krb−1 − kra0b−1 − 2kpa−1b−1 − 3kqa−2b−1

+a−2,t − ra−1ηt − 2pa−2ηt + 3k2prb−1,y − 7k2p2rb−1ηy − 8k2qr2b−1ηy = 0,

−kpa−1b0 − 2kqa−2b0 − kpa−2b1 − kpb−1 − kpa0b−1 − 2kqa−1b−1 + a−1,t

−pa−1ηt − 2qa−2ηt + k2p2b−1,y + 2k2qrb−1,y − k2p3b−1ηy − 8k2pqrb−1ηy = 0,

kra1b0 − kqa−1b0 + krb1 + kra0b1 − kqa−2b1 − kqb−1 − kqa0b−1 + kra2b−1 + a0,t

+ra1ηt − qa−1ηt + k2prb1,y + k2pqb−1,y + k2p2rb1ηy + 2k2qr2b1ηy



S. Zhang and T. C. Xia 61

−k2p2qb−1ηy − 2k2q2rb−1ηy = 0,

kpa1b0 + 2kra2b0 + kpa2b1 + kpb1 + kpa0b1 + 2kra1b1 + kpa2b−1 + a1,t + pa1ηt

+2ra2ηt + k2p2b1,y + 2k2qrb1,y + k2p3b1ηy + 8k2pqrb1ηy = 0,

kqa1b0 + 2kpa2b0 + kqb1 + kqa0b1 + 2kpa1b1 + 3kra2b1 + kqa2b−1 + a2,t

+qa1ηt + 2pa2ηt + 3k2pqb1,y + 7k2p2qb1ηy + 8k2q2rb1ηy = 0,

2kqa2b0 + 2kqa1b1 + 3kpa2b1 + 2qa2ηt + 2k2q2b1,y + 12k2pq2b1ηy = 0.

Solving above over-determined partial differential equations by use of Mathematica, we
get the following nontrivial results:

Case 1:

a0 = −1 − 2kqr(f ′
1(y)t + f ′

2(y)) ± f ′
1(y)
k

, a−2 = 0, a−1 = 0,

a1 = −2kpq(f ′
1(y)t + f ′

2(y)), a2 = −2kq2(f ′
1(y)t + f ′

2(y)), b−1 = 0,

b0 = ±kp − f1(y) + f ′
3(t)

k
, b1 = ±2kq, η = f1(y)t + f2(y) + f3(t),

where f1(y), f2(y) and f3(t) are arbitrary functions, f ′
1(y) = df1(y)/dy, f ′

3(t) =
df3(t)/dt. The sign “±” means that the same sign must be used in a0, b0 and b1.

Case 2:

a0 = −1 − 2kqr(f ′
1(y)t + f ′

2(y)) ± f ′
1(y)
k

, a1 = 0, a2 = 0,

a−1 = −2kpr(f ′
1(y)t + f ′

2(y)), a−2 = −2kr2(f ′
1(y)t + f ′

2(y)), b1 = 0,

b0 = ∓kp − f1(y) + f ′
3(t)

k
, b−1 = ∓2kr, η = f1(y)t + f2(y) + f3(t),

where the signs “±” and “∓” mean that different signs must be used in a0 and b−1,
furthermore the same sign must be used in b0 and b−1.

Case 3:
a0 = −1, a−2 = −2kr2f ′

1(y), a−1 = −2kprf ′
1(y),

a1 = −2kpqf ′
1(y), a2 = −2kq2f ′

1(y), b0 = ±kp − f ′
3(t)
k

,

b−1 = ±2kr, b1 = ±2kq, η = f1(y) + f3(t),

where the sign “±” means that the same sign must be used in b0, b1 and b−1.
For simplification, in the rest of this paper, we introduce the notations:

M =

√
p2 − 4qr

2
, N =

√
4qr − p2

2
. (10)

From Cases 1–3, Appendix 1 in [18] and (8)–(10), we can obtain many more general
exact solutions of equations (1) and (2):

Family 1. When p2 − 4qr > 0 and pq 6= 0 (or qr 6= 0)
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For example, if we select φ8(ξ) = 2rcosh(
√

p2−4qrξ/2)√
p2−4qrsinh(

√
p2−4qrξ/2)−pcosh(

√
p2−4qrξ/2)

from

Appendix 1 in [18], and use Case 1 and (8)–(10), we then obtain soliton-like solutions

H1.1 = −1 − 2kqrΞ ± f ′
1(y)
k

− 2kpqΞφ8(ξ) − 2kq2Ξφ2
8(ξ)

= −1 − 2kqrΞ ±
f ′
1(y)
k

−
2kqrΞcosh(Mξ)[4pM sinh(Mξ) − (p2 + 4M2)cosh(Mξ)]

[2M sinh(Mξ) − pcosh(Mξ)]2
,

u1.1 = ±kp − f1(y) + f ′
3(t)

k
± 2kqφ8(ξ)

= ±kp − f1(y) + f ′
3(t)

k
± 4kqrcosh(Mξ)

2M sinh(Mξ) − pcosh(Mξ)
,

where ξ = kx + f1(y)t + f2(y) + f3(t), Ξ = f ′
1(y)t + f ′

2(y).
Family 2. When p2 − 4qr < 0 and pq 6= 0 (or qr 6= 0)
For example, if we select φ22(ξ), from Case 1 we obtain periodic formal solutions

H2.1 = −1−2kqrΞ±f ′
1(y)
k

+
2kqrΞcos(2Nξ)[4pN sin(2Nξ) + (p2 − 4N2)cos(2Nξ) ± 4pN ]

[2N sin(2Nξ) + pcos(2Nξ) ± 2N ]2
,

u2.1 = ±kp − f1(y) + f ′
3(t)

k
∓ 4kqrcos(2Nξ)

2N sin(2Nξ) + pcos(2Nξ) ± 2N
,

where ξ = kx + f1(y)t + f2(y) + f3(t), Ξ = f ′
1(y)t + f ′

2(y).
Family 3. When r = 0 and pq 6= 0
For example, if we select φ25(ξ), from Case 1 we obtain soliton-like solutions

H3.1 = −1 ± f ′
1(y)
k

+
2kp2dΞ[cosh(pξ) − sinh(pξ)]
[d + cosh(pξ) − sinh(pξ)]2

,

u3.1 = ±kp − f1(y) + f ′
3(t)

k
∓ 2kpd

d + cosh(pξ) − sinh(pξ)
,

where ξ = kx + f1(y)t + f2(y) + f3(t), Ξ = f ′
1(y)t + f ′

2(y), d is an arbitrary constant.
Family 4. When q 6= 0 and r = p = 0
If we select φ27(ξ), from Case 1 we obtain rational function solutions

H4.1 = −1 ± f ′
1(y)
k

− 2kq2Ξ
(qξ + c)2

, u4.1 = −f1(y) + f ′
3(t)

k
∓ 2kq

(qξ + c)
,

where ξ = kx + f1(y)t + f2(y) + f3(t), Ξ = f ′
1(y)t + f ′

2(y), c is an arbitrary constant.
Family 5. When p2 − 4qr > 0 and pq 6= 0 (or qr 6= 0)
For example, if we select φ1(ξ), from Case 2 we obtain soliton-like solutions

H5.1 = −1 − 2kqrΞ± f ′
1(y)
k

− 2kqrΞ[4pM tanh(Mξ) + p2 + 4M2]
[p + 2M tanh(Mξ)]2

,

u5.1 = ∓kp − f1(y) + f ′
3(t)

k
± 4kqr

p + 2M tanh(Mξ)
,
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where ξ = kx + f1(y)t + f2(y) + f3(t), Ξ = f ′
1(y)t + f ′

2(y).
Family 6. When p2 − 4qr < 0 and pq 6= 0 (or qr 6= 0)
For example, if we select φ15(ξ), from Case 2 we obtain periodic formal solutions

H6.1 = −1 − 2kqrΞ± f ′
1(y)
k

− 2kqrΞ[4pN (tan(2Nξ) ± sec(2Nξ)) − p2 + 4N2]
[−p + 2N (tan(2Nξ) ± sec(2Nξ))]2

,

u6.1 = ∓kp − f1(y) + f ′
3(t)

k
∓ 4kqr

−p + 2N [tan(2Nξ) ± sec(2Nξ)]
,

where ξ = kx + f1(y)t + f2(y) + f3(t), Ξ = f ′
1(y)t + f ′

2(y).
Family 7. When r = 0 and pq 6= 0
From Case 2 we obtain rational function solutions

H7.1 = −1 ± f ′
1(y)
k

, u7.1 = ∓kp − f1(y) + f ′
3(t)

k
.

Family 8. When q 6= 0 and r = p = 0
From Case 2 we obtain rational function solutions

H8.1 = −1 ± f ′
1(y)
k

, u8.1 = −f1(y) + f ′
3(t)

k
.

Family 9. When p2 − 4qr > 0 and pq 6= 0 (or qr 6= 0)
For example, if we select φ2(ξ), from Case 3 we get soliton-like solutions

H9.1 = −1− 8kq2r2f ′
1(y)

[p + 2Mcoth(Mξ)]2
+

4kpqrf ′
1(y)

p + 2Mcoth(Mξ)
+

1
2
kf ′

1(y)[p2 − 4M2coth2(Mξ)],

u9.1 = −f ′
3(t)
k

∓ 4kqr

p + 2Mcoth(Mξ)
∓ 2kMcoth(Mξ),

where ξ = kx + f1(y) + f3(t)
Family 10. When p2 − 4qr < 0 and pq 6= 0 (or qr 6= 0)
For example, if we select φ13(ξ), from Case 3 we get periodic formal solutions

H10.1 = −1− 8kq2r2f ′
1(y)

[−p + 2N tan(Nξ)]2
− 4kpqrf ′

1(y)
−p + 2N tan(Nξ)

− 1
2
kf ′

1(y)[−p2 +4N2tan2(Nξ)],

u10.1 = −f ′
3(t)
k

± 4kqr

−p + 2N tan(Nξ)
± 2kN tan(Nξ),

where ξ = kx + f1(y) + f3(t).
Family 11. When r = 0 and pq 6= 0
For example, if we select φ25(ξ), from Case 3 we get soliton-like solutions

H11.1 = −1 +
2kp2df ′

1(y)[cosh(pξ) − sinh(pξ)]
[d + cosh(pξ) − sinh(pξ)]2

,

u11.1 = ±kp − f ′
3(t)
k

∓ 2kpd

d + cosh(pξ) − sinh(pξ)
,
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where ξ = kx + f1(y) + f3(t), d is an arbitrary constant.
Family 12. When q 6= 0 and r = p = 0
If we select φ27(ξ), from Case 3 we get rational function solutions

H12.1 = −1 − 2kq2f ′
1(y)

(qξ + c)2
, u12.1 = −f ′

3(t)
k

∓ 2kq

(qξ + c)
,

where ξ = kx + f1(y) + f3(t), c is an arbitrary constant.
From Cases 1–3, Appendix 1 in [18] and (8)–(10), we can also obtain other more

general exact solutions of equations (1) and (2), we omit them here for simplicity.
These solutions obtained contain some arbitrary functions, which can make us discuss
the behaviors of solutions and also provide us enough freedom to construct solutions
that may be related to real physical problem. As an illustrative example, one plot of
H1.1 is shown in Figure 1, from which we can see that H1.1 possesses solitonic features.
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Figure 1. Plot of H1.1 is shown at f1(y) = sn(y|0.5), f2(y) = cn(y|0.5), f3(t) = sin(t),
k = q = r = 1, p = 3, t = π/2, and the sign “±” selected by “+”.

REMARK 1. These solutions presented above have not been obtained in [19–21].
Case 1 can be obtained by using the method [17]. However, Cases 2 and 3 can not
be obtained by the methods [10–17]. It shows that our method is more powerful in
constructing exact solutions of NLPDEs. All solutions reported in this paper have been
checked with Mathematica by putting them back into equations (1) and (2).

4 Conclusion

By using a further improved tanh function method, we have constructed many more
general exact solutions of the (2+1)-dimensional DLW equations. The arbitrary func-
tions in the solutions imply that these solutions have rich local structures. It may be
important to explain some physical phenomena.
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