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Abstract

In this short note, the convexity and concavity of two functions related to the
polygamma functions are discussed.

1 Introduction

It is well known that the psi or digamma function is defined for positive real numbers
x as the logarithmic derivative of Euler’s gamma function Γ, that is, ψ(x) = Γ′(x)

Γ(x)
, and

that ψ(i) for i ∈ N are called polygamma functions. It is also well known that the
following representations [1] are valid:

ψ(x) = −γ +
∫ ∞

0

e−t − e−xt

1 − e−t
dt = −γ − 1

x
+

∞∑

v=1

x

v(v + x)
, (1)

(−1)n+1ψ(n)(x) =
∫ ∞

0

e−xt
tn

1 − e−t
dt = n!

∞∑

v=0

1
(v + x)n+1

, (2)

where n ∈ N and γ = 0.57721 . . . is Euler-Mascheroni’s constant.
The psi and polygamma functions play a central role in the theory of special func-

tions, they have many important applications in different branches such as mathemat-
ical physics and statistics. For more information on the psi and polygamma functions,
please refer to [3, 4, 5, 6, 7, 9] and the references therein.

In 2004, it was proved in [6] that the function ψ(ex) is strictly concave on R and
the function ψ(xc) is strictly concave (convex, respectively) on (0,∞) if and only if
c > 0 (c ∈ [−1, 0), respectively).

Now it is natural to ask for the convexity or concavity of two more general functions
F (k, x) = ψ(k)(ex) for x ∈ R and G(k, x) = ψ(k)(xc) for x > 0. The aim of this short
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paper is to study these properties of F (k, x) and G(k, x). The main results are as
follows.

THEOREM 1. The function F (k, x) = ψ(k)(ex) is concave (convex, respectively)
on R if k = 2n− 2 (k = 2n− 1, respectively), where n ∈ N.

REMARK 1. By (1), it is easy to see that F (2n−2, x) is increasing and F (2n−1, x)
is decreasing for n ∈ N.

THEOREM 2. Let c 6= 0 be a real number and n ∈ N. Then the function
G(k, x) = ψ(k)(xc) is convex in (0,∞) if either k = 2n−1 and c ∈

(
−∞,− 1

2n−1

]
∪(0,∞)

or k = 2n−2 and c ∈ [− 1
2n−1, 0), and it is concave if either k = 2n−1 and c ∈ [− 1

2n , 0),
or k = 2n− 2 for n ≥ 2 and c ∈

(
−∞,− 1

2n−2

]
∪ (0,∞), or n = 1 and c ∈ (0,∞).

REMARK 2. Letting k = 0 in Theorem 1 and Theorem 2 leads to the corresponding
results obtained in [3].

2 Lemmas

To prove our main results, the following lemmas are necessary.

LEMMA 1. The following formulas [1, p. 255] are valid:

ψ(n)(x+ 1) = ψ(n)(x) + (−1)n
n!
xn+1

for x > 0 and n = 0, 1, 2, ..., (3)

ψ(x) ∼ lnx− 1
2x

− 1
12x2

+
1

120x4
− · · · as x→ ∞, (4)

∣∣∣ψ(n)(x)
∣∣∣ ∼ (n− 1)!

xn
+

n!
2xn+1

+
(n + 1)!
12xn+2

− · · · as x→ ∞ for n = 1, 2, ... . (5)

LEMMA 2. Let n ∈ N. Then the function xψ(n+1)(x)
ψ(n)(x)

is strictly increasing from
[0,∞) onto [−(n+ 1),−n).

PROOF. A proof for the monotonicity of f(x) = xψ(n+1)(x)/ψ(n)(x) has given
in [4]. Using (3) and (5), it is easy to conclude that limx→0+ f(x) = −(n + 1) and
limx→∞ f(x) = −n.

3 Proofs of Theorems

PROOF OF THEOREM 1. Let x ∈ R. Differentiation gives:

e−2xF ′′(k, x) =
1
z
ψ(k+1)(z) + ψ(k+2)(z), (6)

where z = ex. Applying the integral representations in (1) and

k!
xk+1

=
∫ ∞

0

e−xttkdt (7)
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for x > 0 and k = 0, 1, 2, ... and making use of the convolution theorem for Laplace
transforms (see [11]) leads to

e−2xF ′′(k, x) =
∫ ∞

0

e−zt∆(k, t)dt, (8)

where

∆(k, t) =





∫ t

0

s2n−1

1 − e−s
ds− t2n

1 − e−t
, for k = 2n− 2;

−
∫ t

0

s2n

1 − e−s
ds +

t2n+1

1 − e−t
, for k = 2n− 1.

(9)

If k = 2n− 2, n ∈ N, direct calculation yields

(1 − e−t)2t1−2net∆′(k, t) = et − 1 + t− 2net + 2n , f(t),

f ′(t) = et + 1 − 2net < 0.
(10)

Since limt→0+ f(t) = 0 and limt→0+ ∆(k, t) = 0, thus F ′′(k, x) < 0.
If k = 2n− 1, straightforward computation shows

(1 − e−t)2t−2net∆′(k, t) = 2net − 2n− t , g(t),

g′(t) = 2net − 1 > 0.
(11)

Because of limt→0+ g(t) = 0 and limt→0+ ∆(k, t) = 0, therefore F ′′(k, x) > 0. The
proof of Theorem 1 is complete.

PROOF OF THEOREM 2. Let x > 0 and z = xc > 0. Then

∂2G(k, x)
∂x2

= (−1)kc2xc−2ψ(k+1)(z)
[
(−1)kz

ψ(k+2)(z)
ψ(k+1)(z)

+ (−1)k
c− 1
c

]

, (−1)kc2xc−2ψ(k+1)(z)h(k, z).
(12)

From (1), we can see that G(k, x) is concave (convex, respectively) if h(k, z) < 0
(h(k, z) > 0, respectively).

Utilizing Lemma 2 yields for z > 0 the following conclusions: For k = 2n− 2,

−2n+ 1 − 1
c
< h(k, z) = z

ψ(2n)(z)
ψ(2n−1)(z)

+
c− 1
c

< −2n+ 2 − 1
c
. (13)

Thus, if c ∈
[
− 1

2n−1, 0
)
, then ∂2G(k,x)

∂x2 > 0; if either n ≥ 2 and c ∈
(
−∞,− 1

2n−2

]
∪(0,∞)

or n = 1 and c ∈ (0,∞), then ∂2G(k,x)
∂x2 < 0. For k = 2n− 1,

2n− 1 +
1
c
< h(k, z) = −z ψ

(2n+1)(z)
ψ(2n)(z)

− c− 1
c

< 2n+
1
c
. (14)

As a result, if c ∈
(
−∞,− 1

2n−1

]
∪ (0,∞), then ∂2G(k,x)

∂x2 > 0; if c ∈
[
− 1

2n , 0
)
, then

∂2G(k,x)
∂x2 < 0. The proof of Theorem 2 is complete.
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4 Remarks

It is well-known that some inequalities for the beta and gamma functions can be ob-
tained from classical inequalities, see [10] and [2, 8]. In [8], it was proved that the
digamma or psi function is nondecreasing and concave on (0,∞) and

ψ(ax+ by) ≥ aψ(x) + bψ(y), x, y > 0, a, b ≥ 0, a+ b = 1. (15)

Theorem 1 implies for k = 2n− 2, x1, x2 ∈ R and a + b = 1 with a > 0 and b > 0
that

aψ(2n−2)(ex1) + bψ(2n−2)(ex2 ) ≤ ψ(2n−2)(eax1+bx2). (16)

Since the function ex is convex, thus

eax1+bx2 ≤ aex1 + bex2 . (17)

Let x1 = lnx and x2 = ln y. Then inequality (16) can be rewritten as

aψ(2n−2)(x) + bψ(2n−2)(y) ≤ ψ(2n−2)(xayb) ≤ ψ(2n−2)(ax+ by). (18)

If k = 2n− 1, the double inequality (18) reverses.
If taking n = 1 in the double inequality (18), then inequality (15) can be deduced.
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University, China.
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