On A System Of Equations Related To Bicentric Polygons*

Mirko Radić ${ }^{\dagger}$, Nenad I. Trinajstić \ddagger

Received 19 September 2006

Abstract

We deal with bicentric n-gons where instead of incircle there is excircle. We also consider system of equations involving the different quantities associated with the n-gons, the circumcircles and the excirles.

1 Introduction

A bicentric polygon is a circumscribed polygon which also has an inscribed circle (a circle that is tangent to each side of the polygon). In [3], the following theorem is announced.

THEOREM A ([3, Theorem 1]). Let $A_{1} \ldots A_{n}$ be any given bicentric n-gon. Let

$$
\begin{aligned}
R_{0} & =\text { radius of circumcircle of } A_{1} \ldots A_{n} \\
r_{0} & =\text { radius of incircle of } A_{1} \ldots A_{n}, \text { and } \\
d_{0} & =\text { distance between centers of circumcircle and incircle. }
\end{aligned}
$$

Then there are lengths R_{2}, d_{2}, r_{2} such that

$$
\begin{align*}
& R_{2}^{2}+d_{2}^{2}-r_{2}^{2}=R_{0}^{2}+d_{0}^{2}-r_{0}^{2} \tag{1}\\
& R_{2} d_{2}=R_{0} d_{0} \tag{2}\\
& R_{2}^{2}-d_{2}^{2}=2 R_{0} r_{2} \tag{3}
\end{align*}
$$

It is not difficult to see that the positive solutions $R_{2 \ell}, d_{2 \ell}, r_{2 \ell}, \ell=1,2$ in R_{2}, d_{2}, r_{2} of the above system of equations satisfy

$$
\begin{align*}
R_{21}^{2} & =R_{0}\left(R_{0}+r_{0}+\sqrt{\left(R_{0}+r_{0}\right)^{2}-d_{0}^{2}}\right) \\
R_{22}^{2} & =R_{0}\left(R_{0}-r_{0}+\sqrt{\left(R_{0}-r_{0}\right)^{2}-d_{0}^{2}}\right) \tag{4}
\end{align*}
$$

[^0]\[

$$
\begin{gather*}
d_{21}^{2}=R_{0}\left(R_{0}+r_{0}-\sqrt{\left(R_{0}+r_{0}\right)^{2}-d_{0}^{2}}\right), \\
d_{22}^{2}=R_{0}\left(R_{0}-r_{0}-\sqrt{\left(R_{0}-r_{0}\right)^{2}-d_{0}^{2}}\right), \tag{5}\\
r_{21}^{2}=\left(R_{0}+r_{0}\right)^{2}-d_{0}^{2} \\
r_{22}^{2}=\left(R_{0}-r_{0}\right)^{2}-d_{0}^{2} . \tag{6}
\end{gather*}
$$
\]

Also, it is easy to check that

$$
\begin{equation*}
R_{21}^{2} d_{21}^{2}=R_{22}^{2} d_{22}^{2}=R_{0}^{2} d_{0}^{2}, R_{21}^{2}-d_{21}^{2}=2 R_{0} r_{21}, R_{22}^{2}-d_{22}^{2}=2 R_{0} r_{22} \tag{7}
\end{equation*}
$$

By some straightforward calculations we conclude from (1)-(3) that

$$
\begin{align*}
& R_{0}=\frac{R_{2}^{2}-d_{2}^{2}}{2 r_{2}}, \quad d_{0}=\frac{2 R_{2} r_{2} d_{2}}{R_{2}^{2}-d_{2}^{2}} \tag{8}\\
& r_{0}^{2}=-\left(R_{2}^{2}+d_{2}^{2}-r_{2}^{2}\right)+\left(\frac{R_{2}^{2}-d_{2}^{2}}{2 r_{2}}\right)^{2}+\left(\frac{2 R_{2} d_{2} r_{2}}{R_{2}^{2}-d_{2}^{2}}\right)^{2}:=\varphi\left(R_{2}, d_{2}, r_{2}\right) \tag{9}
\end{align*}
$$

We will need these important formulæ frequently in the sequel.
Moreover, replace R_{0}, d_{0}, r_{0} in (1), (2) and (3) respectively by R_{21}, d_{21}, r_{21}. Then the solution in R_{2}, d_{2}, r_{2} of the transformed system is given by

$$
\begin{aligned}
& R_{211}^{2}=R_{21}\left(R_{21}+r_{21}+\sqrt{\left(R_{21}+r_{21}\right)^{2}-d_{21}^{2}}\right) \\
& R_{212}^{2}=R_{21}\left(R_{21}-r_{21}+\sqrt{\left(R_{21}-r_{21}\right)^{2}-d_{21}^{2}}\right) \\
& d_{211}^{2}=R_{21}\left(R_{21}+r_{21}-\sqrt{\left(R_{21}+r_{21}\right)^{2}-d_{21}^{2}}\right) \\
& d_{212}^{2}=R_{21}\left(R_{21}-r_{21}-\sqrt{\left(R_{21}-r_{21}\right)^{2}-d_{21}^{2}}\right) \\
& r_{211}^{2}=\left(R_{21}+r_{21}\right)^{2}-d_{21}^{2} \\
& r_{212}^{2}=\left(R_{21}-r_{21}\right)^{2}-d_{21}^{2}
\end{aligned}
$$

By repeating the above procedure we can take, e.g. the lengths $R_{211}, d_{211}, r_{211}$ instead of the lengths R_{0}, d_{0}, r_{0} in the system (1)-(3).

Let us remark here that in what follows, only R_{21}, d_{21}, r_{21} and $R_{211}, d_{211}, r_{211}$, will be considered throughout this article.

In [3] two conjectures are posed, which are equivalent to the following conjecture.
CONJECTURE. Let $F_{n}\left(R_{0}, d_{0}, r_{0}\right)=0$ be the Fuss' relation for a bicentric n-gon, where one circle is inside the other. Then Fuss' relation $F_{2 n}\left(R_{2}, d_{2}, r_{2}\right)=0$ for the depending bicentric $2 n$-gon can be obtained by taking

$$
F_{n}\left(\frac{R_{2}^{2}-d_{2}^{2}}{2 r_{2}} ; \frac{2 R_{2} r_{2} d_{2}}{R_{2}^{2}-d_{2}^{2}} ; \varphi\left(R_{2}, d_{2}, r_{2}\right)\right)=0
$$

compare (8)-(9). Conversely, starting with the Fuss' relation $F_{2 n}\left(R_{2}, d_{2}, r_{2}\right)=0$ one obtains $F_{n}\left(R_{0}, d_{0}, r_{0}\right)=0$ by taking (4)-(6) into account.

We have to point out that testing the validity of this conjecture for different positive integers $n \geq 3$, we prove it for numerous values of n.

In this article it is shown that the achievements of Theorem A remain valid when one circle is not inside the other, that is, when instead of incircle there is the excircle. In this respect let us remark that Richolet [5], using some results which originate back to Jacobi [2], showed how certain relations valid for bicentric $2 n$-gons can be obtained from depending relations for bicentric n-gons. Richolet's mathematical tools involve elliptic functions. However, here we expose a method (rather elementary one) using Theorem A, to deduce some equations for bicentric $2 n$-gon by adequate relations for bicentric n-gon.

2 Bicentric n-gons and $2 n$-gons with Excircle

Generally speaking in the case when the bicentric n-gon has excircle (instead of incircle), very difficult calculations could appear. Therefore we shall restrict ourselves to the case when n is not large and use the following four well known facts concerning bicentric n-gons.
(i) If R_{0}, d_{0}, r_{0} are lengths (in fact positive numbers) such that

$$
\begin{equation*}
d_{0}^{2}-R_{0}^{2}=2 r_{0} R_{0}, \quad d_{0}+r_{0}>R_{0}, \quad d_{0}+R_{0}>r_{0} \tag{10}
\end{equation*}
$$

then there is triangle $A_{0} B_{0} C_{0}$ such that

$$
\begin{aligned}
& R_{0}=\text { radius of circumcircle of } \Delta A_{0} B_{0} C_{0} \\
& r_{0}=\text { radius of excircle of } \Delta A_{0} B_{0} C_{0} \\
& d_{0}=\text { distance between centers of circumcircle and excircle. }
\end{aligned}
$$

(ii) If R_{0}, d_{0}, r_{0} are lengths such that

$$
\begin{equation*}
R_{0}^{2}-d_{0}^{2}=2 d_{0} r_{0}, \quad d_{0}+r_{0}>R_{0}, \quad d_{0}+R_{0}>r_{0} \tag{11}
\end{equation*}
$$

then there is bicentric hexagon $A_{0} B_{0} C_{0} D_{0} E_{0} F_{0}$ such that

$$
\begin{aligned}
& R_{0}=\text { radius of circumcircle of } A_{0} B_{0} C_{0} D_{0} E_{0} F_{0} \\
& r_{0}=\text { radius of excircle of } A_{0} B_{0} C_{0} D_{0} E_{0} F_{0} \\
& d_{0}=\text { distance between centers of circumcircle and excircle. }
\end{aligned}
$$

(iii) If R_{0}, d_{0}, r_{0} are lengths such that

$$
\begin{equation*}
R_{0}=d_{0}, \quad 2 R_{0}>r_{0} \tag{12}
\end{equation*}
$$

then there is bicentric quadrilateral $A_{0} B_{0} C_{0} D_{0}$ such that

$$
\begin{aligned}
& R_{0}=\text { radius of circumcircle of } A_{0} B_{0} C_{0} D_{0} \\
& r_{0}=\text { radius of excircle of } A_{0} B_{0} C_{0} D_{0} \\
& d_{0}=\text { distance between centers of circumcircle and excircle. }
\end{aligned}
$$

(iv) If R_{0}, d_{0}, r_{0} are lengths such that

$$
\begin{equation*}
R_{0}^{4}-2 d_{0}^{2} R_{0}^{2}-4 d_{0} r_{0}^{2} R_{0}+d_{0}^{4}=0, \quad d_{0}+r_{0}>R_{0}, \quad d_{0}+R_{0}>r_{0} \tag{13}
\end{equation*}
$$

then there is bicentric octagon $A_{0} B_{0} C_{0} D_{0} E_{0} F_{0} G_{0} H_{0}$ such that

$$
\begin{aligned}
& R_{0}=\text { radius of circumcircle of } A_{0} B_{0} C_{0} D_{0} E_{0} F_{0} G_{0} H_{0} \\
& r_{0}=\text { radius of excircle of } A_{0} B_{0} C_{0} D_{0} E_{0} F_{0} G_{0} H_{0} \\
& d_{0}=\text { distance between centers of circumcircle and excircle. }
\end{aligned}
$$

Now we are ready to formulate our first main result.
THEOREM 1. Let R_{0}, d_{0}, r_{0} be lengths such that

$$
\begin{equation*}
d_{0}+R_{0}>r_{0} \text { or } d_{0}+r_{0}>R_{0} \tag{14}
\end{equation*}
$$

Then respectively

$$
\begin{equation*}
d_{21}+R_{21}>r_{21} \text { or } d_{21}+r_{21}>R_{21} . \tag{15}
\end{equation*}
$$

PROOF. By direct calculation, using the relations (4)-(6) in Theorem A and by

$$
\begin{equation*}
R_{21} d_{21}=R_{0} d_{0} \tag{16}
\end{equation*}
$$

which follows from (7), we can write

$$
\begin{align*}
& R_{0}+d_{0}>r_{0} \Rightarrow\left(R_{0}+d_{0}\right)^{2}>r_{0}^{2} \\
& \Leftrightarrow R_{0}^{2}+2 R_{0} d_{0}+d_{0}^{2}>r_{0}^{2} \\
& \Leftrightarrow 2 R_{0}\left(R_{0}+r_{0}\right)+2 R_{0} d_{0}>R_{0}^{2}+2 R_{0} r_{0}+r_{0}^{2}-d_{0}^{2} \\
& \Leftrightarrow d_{21}^{2}+2 d_{21} R_{21}+R_{21}^{2}>r_{21}^{2} \\
& \Leftrightarrow d_{21}+R_{21}> \pm r_{21} . \tag{17}
\end{align*}
$$

Now, bearing in mind that our model contains the excircle, we easily drop the negative sign on the last inequality, completing the proof of the first statement in (15).

Next, assuming $d_{0}+r_{0}>R_{0}$, once more with the aid of (4)-(6), (16) and the excircle properties, we easily find that

$$
\begin{align*}
& d_{0}+r_{0}>R_{0} \quad \text { or } \quad r_{0}>R_{0}-d_{0} \Rightarrow r_{0}^{2}>\left(R_{0}-d_{0}\right)^{2} \\
& \Leftrightarrow R_{0}^{2}+2 R_{0} r_{0}+r_{0}^{2}-d_{0}^{2}>2 R_{0}\left(R_{0}+r_{0}\right)-2 R_{0} d_{0} \\
& \Leftrightarrow r_{21}^{2}>2 R_{0}\left(R_{0}+r_{0}\right)-2 R_{0} d_{0} \\
& \Leftrightarrow r_{21}^{2}>R_{21}^{2}+d_{21}^{2}-2 R_{21} d_{21} \\
& \Rightarrow d_{21}+r_{21}> \pm R_{21} . \tag{18}
\end{align*}
$$

Cancelling the negative sign on the last inequality, we obtain the proof.
THEOREM 2. Let R_{0}, d_{0}, r_{0} be the lengths such that (10) holds, that is,

$$
d_{0}^{2}-R_{0}^{2}=2 r_{0} R_{0}, \quad d_{0}+r_{0}>R_{0}, \quad d_{0}+R_{0}>r_{0}
$$

Then there is bicentric hexagon $A_{0} B_{0} C_{0} D_{0} E_{0} F_{0}$ such that

$$
\begin{aligned}
& R_{21}=\text { radius of circumcircle of } A_{0} B_{0} C_{0} D_{0} E_{0} F_{0} \\
& r_{21}=\text { radius of excircle of } A_{0} B_{0} C_{0} D_{0} E_{0} F_{0} \\
& d_{21}=\text { distance between centers of circumcircle and excircle. }
\end{aligned}
$$

PROOF. According to (11), we have to prove

$$
\begin{equation*}
R_{21}^{2}-d_{21}^{2}=2 d_{21} r_{21} \tag{19}
\end{equation*}
$$

To do this, we bear in mind the first relations in (4)-(6). Then

$$
\begin{align*}
& d_{0}^{2}-R_{0}^{2}=2 r_{0} R_{0} \\
& \Leftrightarrow r_{0}^{2}=\left(R_{0}+r_{0}\right)^{2}-d_{0}^{2} \\
& \Rightarrow R_{0}=R_{0}+r_{0}-\sqrt{\left(R_{0}+r_{0}\right)^{2}-d_{0}^{2}} \\
& \Leftrightarrow R_{0}^{2}=d_{21}^{2} \\
& \Leftrightarrow R_{0}^{2}\left[\left(R_{0}+r_{0}\right)^{2}-d_{0}^{2}\right]=d_{21}^{2} r_{21}^{2} \\
& \Leftrightarrow 2 R_{0} \sqrt{\left(R_{0}+r_{0}\right)^{2}-d_{0}^{2}}= \pm 2 d_{21} r_{21} \\
& \Rightarrow R_{21}^{2}-d_{21}^{2}=2 d_{21} r_{21} \tag{20}
\end{align*}
$$

Here $R_{0}^{2}=d_{21}^{2}$ can be concluded by the fact that only the lengths $(\cdot)_{1}$ is considered, and that there is the excircle case; while the last equality is obtained by rejecting the negative sign in the previous equality.

In the following examples, in calculating tangent lengths for $A_{1} \ldots A_{n}$, we will apply the well-known formula

$$
\begin{equation*}
\left(t_{2}\right)_{1,2}=\frac{\left(R^{2}-d^{2}\right) t_{1} \pm \sqrt{D}}{r^{2}+t_{1}^{2}} \tag{21}
\end{equation*}
$$

where

$$
D=t_{1}^{2}\left(R^{2}-d^{2}\right)^{2}+\left(r^{2}+t_{1}^{2}\right)\left[4 d^{2} R^{2}-r^{2} t_{1}^{2}-\left(R^{2}+d^{2}-r^{2}\right)^{2}\right]
$$

and R, r, d denote the radii of circumcircle, incircle and the distance between centers of these two circles respectively. If t_{1} is given, then the consequent t_{2} 's role will be played by t_{21} or t_{22}. The same relation is valid when instead of incircle the excircle appears.

Of course, if $A_{1} \ldots A_{n}$ is a bicentric n-gon, where instead of incircle there is excircle, then tangent-length t_{i} is given by $t_{i}=\left|A_{i} P_{i}\right|$, where P_{i} is tangent point of the line $\left|A_{i} A_{i+1}\right|$ and the excircle.

EXAMPLE 1. Let R_{0}, d_{0}, r_{0} be such that (10) holds, that is,

$$
R_{0}=2, \quad d_{0}=5, \quad r_{0}=5.25
$$

and $t_{1}=4$. Then for corresponding triangle $A_{0} B_{0} C_{0}$ we have

$$
t_{2}=-3.58041 \ldots, \quad t_{3}=-0.27611 \ldots, \quad t_{4}=t_{1}
$$

noting that $\sum_{i=1}^{3} \arctan \left(t_{i} / r_{0}\right)=0$. In the above exposed results negative t 's appear. To this respect consult [4, p. 98].

For corresponding bicentric hexagon $A_{0} B_{0} C_{0} D_{0} E_{0} F_{0}$, where

$$
R_{21}=5, \quad d_{21}=2, \quad r_{21}=5.25
$$

and $t_{1}=4$ we have

$$
\begin{aligned}
& t_{2}=0.27611 \ldots, t_{3}=-3.58041 \ldots, t_{4}=-t_{1}, t_{5}=-t_{2} \\
& t_{6}=-t_{3}, t_{7}=t_{1}, \sum_{i=1}^{6} \arctan \left(t_{i} / r_{21}\right)=0
\end{aligned}
$$

For corresponding bicentric 12-gon where

$$
R_{211}=10.07546 \ldots, \quad d_{211}=0.99251 \ldots, \quad r_{211}=10.05298 \ldots
$$

and $t_{1}=4$ we have

$$
\begin{aligned}
& t_{2}=2.25780 \ldots, t_{3}=0.27611 \ldots, t_{4}=-1.70889 \ldots, t_{5}=-3.58041 \ldots, \\
& t_{6}=-4.61236 \ldots, t_{7}=-t_{1}, t_{8}=-t_{2}, t_{9}=-t_{3} \\
& t_{10}=-t_{4}, t_{11}=-t_{5}, t_{12}=-t_{6}, t_{13}=t_{1} \\
& \qquad \sum_{i=1}^{12} \arctan \left(t_{i} / r_{211}\right)=0
\end{aligned}
$$

At this moment let us remark that the same t_{1} can be taken for bicentric n-gon and corresponding bicentric $2 n$-gon since there holds the relation

$$
\sqrt{\left(R_{21}+d_{21}\right)^{2}-r_{21}^{2}}=\sqrt{\left(R_{0}+d_{0}\right)^{2}-r_{0}^{2}}
$$

In this respect we point out that the largest tangent that can be drawn from circumcircle to excircle is given by $\sqrt{\left(R_{0}+d_{0}\right)^{2}-r_{0}^{2}}$. The least tangent does not exist because the intersection of circumcircles and excircles is nonempty.

THEOREM 3. Let R_{0}, d_{0}, r_{0} be such that (12) holds, that is,

$$
R_{0}=d_{0}, \quad r_{0}<2 R_{0}
$$

Then there is bicentric octagon $A_{0} B_{0} C_{0} D_{0} E_{0} F_{0} G_{0} H_{0}$ such that

$$
\begin{aligned}
& R_{21}=\text { radius of circumcircle of } A_{0} B_{0} C_{0} D_{0} E_{0} F_{0} G_{0} H_{0} \\
& r_{21}=\text { radius of excircle of } A_{0} B_{0} C_{0} D_{0} E_{0} F_{0} G_{0} H_{0} \\
& d_{21}=\text { distance between centers of circumcircle and excircle }
\end{aligned}
$$

where for calculating R_{21}, r_{21} and d_{21} we use relations given by (4), (5), (6) and $R_{0}=d_{0}$, $r_{0}<2 R_{0}$.

PROOF. According to (13), we have to prove that

$$
\begin{equation*}
R_{21}^{4}-2 d_{21}^{2} R_{21}^{2}-4 d_{21} r_{21}^{2} R_{21}+d_{21}^{4}=0 \tag{22}
\end{equation*}
$$

It is not difficult to find that

$$
\begin{aligned}
R_{21}^{4}+d_{21}^{4} & =4 R_{0}^{2}\left(R_{0}+r_{0}\right)^{2}-2 R_{0}^{2} d_{0}^{2} \\
-2 d_{21}^{2} R_{21}^{2} & =-2 R_{0}^{2} d_{0}^{2} \\
-4 d_{21} R_{21} r_{21}^{2} & =-4 R_{0} d_{0}\left[\left(R_{0}+r_{0}\right)^{2}-d_{0}^{2}\right]
\end{aligned}
$$

now, since $d_{0}=R_{0}$ we easily deduce (22).
EXAMPLE 2. Let R_{0}, d_{0}, r_{0} be such that (12) holds, that is,

$$
R_{0}=5, \quad d_{0}=5, \quad r_{0}=6
$$

and $t_{1}=4$. Then for corresponding bicentric quadrilateral $A_{0} B_{0} C_{0} D_{0}$ we have

$$
t_{2}=-5.76461 \ldots, t_{3}=-t_{1}, t_{4}=-t_{2}, t_{5}=t_{1}, \sum_{i=1}^{4} \arctan \left(t_{i} / r_{0}\right)=0
$$

For corresponding bicentric octagon $A_{0} B_{0} C_{0} D_{0} E_{0} F_{0} G_{0} H_{0}$ where

$$
R_{21}=10.19753 \ldots, d_{21}=2.45157 \ldots, r_{21}=9.79795 \ldots
$$

and $t_{1}=4$ we have

$$
\begin{gathered}
t_{2}=-0.87131 \ldots, t_{3}=-5.76461 \ldots, t_{4}=-7.86985 \ldots, t_{5}=-t_{1} \\
t_{6}=-t_{2}, t_{7}=-t_{3}, t_{8}=-t_{4}, t_{9}=t_{1} \\
\sum_{i=1}^{8} \arctan \left(t_{i} / r_{21}\right)=0
\end{gathered}
$$

For the corresponding bicentric 16-gon where

$$
R_{211}=20.15617 \ldots, d_{211}=1.24031 \ldots, r_{211}=19.84463 \ldots
$$

and $t_{1}=4$ we have

$$
\begin{aligned}
& t_{2}=1.53118 \ldots, t_{3}=-0.87131 \ldots, t_{4}=-3.31870 \ldots, t_{5}=-5.76461 \ldots, \\
& t_{6}=-7.60826 \ldots, t_{7}=-7.86985 \ldots, t_{8}=-6.36971 \ldots, t_{9}=-t_{1} \\
& t_{10}=-t_{2}, t_{11}=-t_{3}, t_{12}=-t_{4}, t_{13}=-t_{5} \\
& t_{14}=-t_{6}, t_{15}=-t_{7}, t_{16}=-t_{8}, t_{17}=t_{1} \\
& \qquad \sum_{i=1}^{16} \arctan \left(t_{i} / r_{211}\right)=0
\end{aligned}
$$

REMARK. Concerning the Conjecture posed previously, we can make the following remark. Let R_{0}, d_{0}, r_{0} be any given lengths such that there is a bicentric n-gon $A_{1} \ldots A_{n}$ where
$R_{0}=$ radius of circumcircle of $A_{1} \ldots A_{n}$,
$r_{0}=$ radius of excircle of $A_{1} \ldots A_{n}$,
$d_{0}=$ distance between centers of circumcircle and excircle,
and $d_{0}+r_{0}>R_{0}$ and $d_{0}+R_{0}<r_{0}$. Then there is a bicentric $2 n$-gon $B_{1} \ldots B_{2 n}$ such that

$$
\begin{aligned}
& R_{21}=\text { radius of circumcircle of } B_{1} \ldots B_{2 n} \\
& r_{21}=\text { radius of excircle of } B_{1} \ldots B_{2 n} \\
& d_{21}=\text { distance between centers of circumcircle and excircle; }
\end{aligned}
$$

to obtain R_{21}, r_{21} and d_{21} we apply (4)-(6) respectively.
The Conjecture is proved for $n=3$ and $n=4$, see Theorems 1,2 and 3 . For $n=5,6,7,8$ we test the Conjecture by many tricky examples; however, the Conjecture remains valid in all those cases. So, we are asking for the general proof, whether our Conjecture is true for every given n.

References

[1] N. I. Fuss, De polygonis simmetrice irregularibus calculo simul inscriptis et circumscriptis, NAASP 1792(Nova Acta) XIII(1802) 166-189 (19.IV 1798).
[2] C. G. J. Jacobi, Über die Anwendung der elliptischen Transcendenten auf ein bekanntes Problem der Elementargeometrie, Journal für die reine und angewandte Mathematik (Crelle's Journal) 3 (1828), 376-389; also in C.G.J. Jacobi's Gesammelte Werke, Erster Band, Berlin: Verlag von G. Reimer, 1881, 277-293.
[3] M. Radić, Connection between Fuss' relation for bicentric n-gons and Fuss' relations for bicentric $2 n$-gons, Math. Comm. (to appear).
[4] M. Radić, Some relations concerning triangles and bicentric quadrilaterals in connection with Poncelet's closure theorem when conics are circles not one inside of the other, Elem. Math. 59(2004), 96-116.
[5] F. J. Richolet, Anwendung der elliptischen Transzendenten auf die sphärischen Polygone, welche zugleich einem kleinen Kreise der Kugel eingeschrieben und einem anderen umschrieben sind., Journal für die reine und angewandte Mathematik (Crelle's Journal), 5(1830), 250-267.

[^0]: *Mathematics Subject Classifications: 51E12
 ${ }^{\dagger}$ Department of Mathematics, 51000 Rijeka, Omladinska 14, Croatia, e-mail: mradic@ffri.hr
 ${ }^{\ddagger}$ Department of Mathematics, 51000 Rijeka, Omladinska 14, Croatia, e-mail: nenad13@ffri.hr

