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Abstract

We discuss the unique solvability of an inverse problem for parabolic equation

with an integral overdetermination condition.

1 Introduction

In this paper we study the unique solvability of the inverse problem of determining a
pair of functions {u, f} satisfying the equation

ut − ∆u+

n
∑

i=1

bi(x)uxi
+ αu = f(t)g(x, t), (x, t) ∈ QT ≡ Ω × (0, T ), (1)

the initial condition
u(x, 0) = u0(x), x ∈ Ω, (2)

the boundary condition

u(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T ) (3)

and the overdetermination condition
∫

Ω

u(x, t)w(x)dx = ξ(t), t ∈ (0, T ), (4)

where Ω is a bounded domain in Rn with smooth boundary ∂Ω. The functions g,
w, u0, ξ and the positive constant α are given while {u, f} is unknown. Additional
information about the solution to the inverse problem is given in the form of integral
overdetermination condition (4).

There are some papers devoted to the study of existence and uniquessness of so-
lutions of inverse problems for various parabolic equations with unknown source func-
tions. Inverse problems of determining the right-hand side of a parabolic equation
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224 Unique Solvability of an Inverse Problem

under a final overdetermination condition were studied in papers [1, 2, 3, 4]. The exis-
tence of smooth solutions of the corresponding inverse problem for parabolic equations
with smooth coefficients was studied in [3, 4, 7]. Properties of increased smoothness for
the inverse problem for parabolic equation with variable coefficients, under a condition
on differentiability with respect to time of the source function are investigated in [10].
The generalized solutions and asymptotic stability of the inverse problem for parabolic
equations were considered in [2, 3, 5, 8, 9, 10].

Let us introduce certain notations used below. We set

g1(t) =

∫

Ω

g(x, t)w(x)dx,QT = Ω × (0, T ). (5)

The spaces W 1
2 (Ω), rW 1

2 (Ω), C(0, T ;L2(Ω)) and W 2,1
2 (QT ) with corresponding norms

are understood as follows: (see [6]) the Banach Space W 1
2 (Ω) consists of all functions

from L2(Ω) having all weak derivatives of the first order that are square integrable over
Ω with norm

‖u‖
(1)
2,Ω =

(

‖u‖2
2,Ω + ‖ux‖

2
2,Ω

)1/2
.

By rW 1
2 (Ω), we denote the Banach function spaces obtained by the closure of C∞

0 (Ω)
with respect to the norm of W 1

2 (Ω). The space C((0, T );L2(Ω)) comprises of all con-
tinuous functions on (0, T ) with values in L2(Ω). The corresponding norm is given
by

‖u‖C((0,T );L2(Ω)) = max
(0,T )

‖u(t)‖2,Ω <∞.

Let us also introduce the Sobolev space W 2,1
2 (QT ) of functions u(x, t) with finite

norm

‖u‖W2,1

2
(QT ) =



‖u‖2
L2(QT ) + ‖Dtu‖

2
L2(QT ) +

2
∑

j=1

‖Dj
xu‖

2
L2(QT )





1/2

where
‖u‖ ≡ ‖u‖L2(Ω)

for u(x) ∈ L2(Ω) and we denote by θ the constant from the Poincare’s inequality

‖u‖ ≤ θ‖∇u‖ (6)

which is valid for each u(x) ∈ rW 1
2 (Ω) and θ = θ(Ω, n) > 0. We note that the weighted

arithmetic-geometric mean inequality is:

2|ab| ≤ εa2 + ε−1b2 (7)

for ε > 0. Here

‖∇u‖ =

(

∫

Ω

n
∑

i=1

u2
xi
dx

)1/2

and ‖∆u‖ =





∫

Ω

n
∑

i,j=1

u2
xixj

dx





1/2

.
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We shall assume that the functions appearing in the data for the problem are
measurable and satisfy the following conditions;

g ∈ C((0, T );L2(Ω)), w ∈ W 2
2 (Ω) ∩ rW 1

2 (Ω), ϕ ∈W 1
2 (0, T ),

‖g(x, t)‖ ≤ Kg, |g1(t)| ≥ g0 ≡ constant > 0 for t ∈ (0, T ), (8)

u0 ∈W 2
2 (Ω) ∩ rW 1

2 (Ω), ξ ∈W 1
2 (0, T ),

∫

Ω

u0(x)w(x)dx = ξ(0),

where

Kg , g0, B0 = esssup

{

n
∑

i=1

b2i (x)

}1/2

are positive constants.
We multiply the equation (1) by w, integrate by parts over Ω and assume that

(∇u, w)Ω vanishes. Then, from (4) and (5) we obtain the relation

f(t) =
1

g1

{

ξ
′

(t) + αξ(t) +

∫

Ω

∇u∇wdx+

∫

Ω

n
∑

i=1

biuxi
wdx

}

(9)

where both sides are treated as elements of L2(0, T ).

2 Unique solvability of the inverse problem

We first state the following

DEFINITION 1. A pair of functions {u, f} is said to be a generalized solution
of the inverse problem (1)-(4) if u ∈ W 2,1

2,0 (QT ), f ∈ L2(0, T ) and all of the relations
(1)-(4) are satisfied.

We seek a solution of the original inverse problem as {u, f} = {z, f}+ {ν, 0} where
ν is the solution of the direct problem

νt − ∆ν +
n
∑

i=1

bi(x)νxi
+ αν = 0, (x, t) ∈ QT , (10)

ν(x, 0) = u0(x), x ∈ Ω, (11)

ν(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T ), (12)

while the pair {z, f} is the solution of the inverse problem

zt − ∆z +

n
∑

i=1

bi(x)zxi
+ αz = f(t)g(x, t), (x, t) ∈ QT , (13)

z(x, 0) = 0, x ∈ Ω, (14)

z(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T ), (15)
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∫

Ω

z(x, t)w(x)dx = ϕ(t), t ∈ (0, T ) (16)

where ϕ(t) = ξ(t) −
∫

Ω
ν(x, t)w(x)dx.

DEFINITION 2. By an energy solution of the problem (10)-(12) we mean a function
ν ∈W 2,1

2 (QT ) satisfying the corresponding integral identity (see [4]).

By Ref. [4], an energy solution of problem (10)-(12) exists and is unique. Let us
remark that the study of the unique solvability of problem (1)-(4) is equivalent to that
of the unique solvability of the inverse problem (13)-(16).

Now, our aim is to derive a linear second order equation of the Volterra type for the
coefficient f over the space L2(0, T ). The well-founded choice of a function f from the
space L2(0, T ) may be of help in achieving this aim. Substitution into (13) motivates
that the system (13)-(15) serves as a basis finding the function z ∈ W 2,1

2,0 (QT ) as a
unique solution of the direct problem (13)-(15). The correspondence between f and z
may be viewed as one possible way of specifying the linear operator

A : L2(0, T ) 7−→ L2(0, T ) (17)

with the values

(Af)(t) =
1

g1

{

∫

Ω

∇z∇wdx+

∫

Ω

n
∑

i=1

bizxi
wdx

}

(18)

where g1(t) =
∫

Ω
g(x, t)w(x)dx.

In this view, it is reasonable to refer to the linear equation of the second kind for
the function f over the space L2(0, T )

f = Af + ψ (19)

where ψ = ϕ
′

+αϕ
g1

.

THEOREM 1. Suppose the input data of the inverse problem (13)-(16 satisfies
(8). Then the following assertions are valid: (i) if the inverse problem (13)-(16) is
solvable, then so is equation (19), and (ii) if equation (19) possesses a solution and the
compatibility condition

ϕ(0) = 0 (20)

holds, then there exist a solution of the inverse problem (13)-(16).

PROOF. (i) Assume that the inverse problem (13)-(16) is solvable. We denote its
solution by {z, f}. Multiplying both sides of (13) by the function w scalarly in L2(Ω)
we obtain the relation

d

dt

∫

Ω

zwdx+

∫

Ω

∇z∇wdx+

∫

Ω

n
∑

i=1

bi(x)zxi
wdx+ α

∫

Ω

zwdx = f(t)g1(t). (21)

With (16) and (18), it follows from (21) that f = Af(ϕ
′

+ αϕ)/g1. This means that f
solves equation (19).
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(ii) By the assumption, equation (19) has a solution in the space L2(0, T ), say f .
When inserting this function in (13), the resulting relations (13)-(15) can be treated
as a direct problem having a unique solution z ∈W 2,1

2,0 (QT ).
Let us show that the function z satisfies also the integral overdetermination condi-

tion (16). Equation (12) yields

d

dt

∫

Ω

zwdx+

∫

Ω

∇z∇wdx+

∫

Ω

n
∑

i=1

bi(x)zxi
wdx+ α

∫

Ω

zwdx = f(t)g1(t). (22)

On the other hand, being a solution to equation (19), the function z is subject to
relation

ϕ′(t) + αϕ(t) +

∫

Ω

∇z∇wdx+

∫

Ω

n
∑

i=1

bi(x)zxi
wdx = f(t)g1(t). (23)

Subtracting equation (22) from equation (23), we get

d

dt

∫

Ω

zwdx+ α

∫

Ω

zwdx = ϕ′(t) + αϕ(t).

Integrating the preceding differential equation and taking into account the compati-
bility condition (20), we find out that the function z satisfies the overdetermination
condition (16) and the pair of functions {z, f} is a solution of the inverse problem
(13)-(16). This completes the proof of the theorem.

Now, it will be sensible to touch upon the properties of the operator A. The symbol
As (s = 1, 2, ...) refers to the s-th degree of the operator A.

LEMMA 1. Let the condition (8) hold. Then there exist a positive integer s0 for
which As0 is a contracting operator in L2(0, T ).

PROOF. Obviously, (18) yields the estimate

‖Af‖2,(0,t) ≤
Kw

g0
(

∫ t

0

‖∇z(., τ)‖2
2,Ωdτ )

1/2, 0 ≤ t ≤ T (24)

where Kw = ‖∇w‖2,Ω + B0‖w‖2,Ω. Multiplying both sides of (13) by z scalarly in
L2(Ω) and integrating the resulting expressions by parts, we obtain the identity

1

2

d

dt
‖z(., t)‖2 + ‖∇z(., t)‖2 +

∫

Ω

n
∑

i=1

bi(x)zxi
zdx+ α‖z(., t)‖2 = f(t)

∫

Ω

gzdx,

and using Cauchy’s, Poincare’ and Young’s inequalities we get the relation

1

2

d

dt
‖z(., t)‖2 +

(

1 −
θ

2
(δ1 + δ2) −

B0

2δ1

)

‖∇z(., t)‖2 + α‖z(., t)‖2 ≤
K2

g

2δ2
|f(t)|2. (25)

Choosing δ1 , δ2 > 0 such that γ = (1− θ
2
(δ1 + δ2)−

µ1

2δ1

) > 0 and integrating (25) from
0 to t, with (14) we obtain

1

2
‖z(., t)‖2 + γ

∫ t

0

‖∇z(., τ)‖2dτ + α

∫ t

0

‖z(., τ)‖2dτ ≤ η

∫ t

0

|f(τ )|2dτ (26)
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where η = K2
g/δ2 > 0. Omitting some terms on the left-hand side (26) leads to

∫ t

0

‖∇z(., τ)‖2dτ ≤
η

γ

∫ t

0

|f(τ )|2dτ. (27)

It follows from (24) and (27), the estimate

‖Af‖2,(0,t) ≤
Kwη

1/2

g0γ1/2

(∫ t

0

|f(τ )|2dτ

)1/2

, 0 ≤ t ≤ T. (28)

It is evident that for any positive integer s the s-th degree of the operator A can be
defined in a natural way. By mathematical induction, (28) gives

‖Asf‖2,(0,T ) ≤
Ks

wη
s/2

gs
0γ

s/2
‖f‖2,(0,T ), s = 1, 2, .... (29)

It follows from the foregoing that there exists a positive integer s = s0 such that

Ks0

w ηs0/2

gs0

0 γ
s0/2

< 1. (30)

Inequality (30) provides support for the view that the linear operator As0 is a contract-
ing mapping on L2(0, T ) and completes the proof of the lemma.

Regarding the unique solvability of the inverse problem concerned, the following
result could be useful.

THEOREM 2. Let (8) and the compatibility condition (20) hold. Then the follow-
ing assertions are valid: (i) a solution {z, f} of the inverse problem (13)-(16) exist and
is unique, and (ii) with any initial iteration f0 ∈ L2(0, T ) the successive approximations

fn+1 = Ãfn (31)

converge to f in the L2(0, T )-norm (for Ãn see below).

PROOF. (ii) We have occasion to use the nonlinear operator

Ã : L2(0, T ) 7−→ L2(0, T )

acting in accordance with the rule

Ãf = Af +
ϕ

′

+ αϕ

g1
(32)

where the operator A and the function g1 arise from (18). From (32) it follows that
equation (19) can be written as

f = Ãf. (33)

This shows that equation (33) is sufficient to show that operator Ã has a fixed point
in the space L2(0, T ). By the relations

Ãsf1 − Ãsf2 = Asf1 − Asf2 = As(f1 − f2)
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we deduce from estimate (29) that

‖Ãs0f1 − Ãs0f2‖2,(0,T ) = ‖As0(f1 − f2)‖2,(0,T ) ≤
Ks0

w ηs0/2

gs0

0 γ
s0/2

‖(f1 − f2)‖2,(0,T ) (34)

where s0 has been fixed in (30). From (30) and (34), we find that Ãs0 is a contracting
mapping on L2(0, T ). Therefore Ãs0 has a unique fixed point f in L2(0, T ) and the
successive approximations (31) converge to f in the L2(0, T )-norm without concern on
how the initial iteration f0 ∈ L2(0, T ) are chosen.

(i) This shows that, equation (33) and, in turn, equation (19) have a unique solution
f in L2(0, T ). According to Theorem 1, this confirms the existence of solution to the
inverse problem (13)-(16). It remains to prove the uniqueness of this solution. Assume
to the contrary that there were two distinct solutions {z1, f1} and {z2, f2} of the inverse
problem under consideration. We claim that in that case f1 6= f2 almost everywhere on
(0, T ). If f1 = f2, then applying the uniqueness theorem to the corresponding direct
problem (12)-(14) we would have z1 = z2 almost everywhere in QT . Since both pairs
satisfy identity (21), the functions f1 and f2 give two distinct solutions to equation (33).
But this contradicts the uniqueness of the solution to equation (33) just established
and proves the theorem.

COROLLARY 1. Under the conditions of Theorem 2, a solution to equation (19)
can be expanded in a series

f = ψ +

∞
∑

s=1

Asψ (35)

and the estimate
‖f‖2,(0,T ) ≤ ρ‖ψ‖2,(0,T )

is valid with

ψ =
ϕ

′

+ αϕ

g1
and

ρ =

∞
∑

s=1

Ks
wη

s/2

gs
0γ

s/2
.

PROOF. The successive approximations (31) with f0 = ψ verify that

fn+1 = Ãfn = Ãnf0 = ψ +

∞
∑

s=1

Asψ. (36)

The passage to the limit as n→ ∞ in (36) leads to (35), since by Theorem 2,

‖f − fn‖2,(0,T ) → 0 as n→ ∞.

being concerned with As satisfying (29), we get the estimate

‖f‖2,(0,T ) ≤ ‖ψ‖2,(0,T )

∞
∑

s=0

(

K2s
w ηs

g2s
0 γ

s

)1/2

.

By D’Alembert ratio test the series on the right-hand side converges, thereby complet-
ing the proof of the theorem.
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