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Abstract

In this paper, we discuss the problem of meromorphic functions sharing one
value and obtain two theorems which improve a result of C.C.Yang and X.H.Hua.

1 Introduction

In this paper, a meromorphic function always mean a function which is meromorphic
in the whole complex plane.

DEFINITION 1. Let f(z) and g(z) be nonconstant meromorphic functions, a ∈
C ∪{∞}. We say that f and g share the value a CM if f − a and g − a have the same
zeros with the same multiplicities.

DEFINITION 2. Let k be a positive integer or infinity. We denote by Ek)(a, f) the
set of all a-points of f with multiplicities not exceeding k, where an a-point is counted
according to its multiplicity. Particularly if for some a ∈ C ∪ {∞}, E∞)(a, f) =
E∞)(a, g), it is obvious that f and g share a CM.

DEFINITION 3. We denote by Nk)(r, 1/(f − a)) the counting function for zeros of
f − a with multiplicity ≤ k, and by Nk)(r, 1/(f − a)) the corresponding one for which
multiplicity is not counted. Let N(k(r, 1/(f − a)) be the counting function for zeros
of f − a with multiplicity at least k and N (k(r, 1/(f − a)) the corresponding one for
which multiplicity is not counted. Set

Nk

(
r,

1
f − a

)
= N

(
r,

1
f − a

)
+ N (2

(
r,

1
f − a

)
+ ... + N (k

(
r,

1
f − a

)
(1)

It is assumed that the reader is familiar with the notations of the Nevanlinna theory
that can be found, for instance, in [1].

In the 1920’s, Nevanlinna [1] proved the following result.

THEOREM A. Let f and g be two nonconstant meromorphic functions. If f and
g share four distinct values CM, then f is a fractional transformation of g.
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In 1997, Yang and Hua [2] studied meromorphic functions sharing only one value
and proved the following result.

THEOREM B. Let f and g be two nonconstant meromorphic functions, n ≥ 11 an
integer and a ∈ C − {0}. If fnf ′ and gng′ share the value a CM, then either f = dg
for some (n + 1)th root of unity d or g(z) = c1e

cz and f(z) = c2e
−cz where c, c1 and

c2 are constants and satisfy (c1c2)n+1c2 = −a2.
Corresponding to entire functions, Xu and Qu [3] proved the following result.

THEOREM C. Let f and g be two nonconstant entire functions, n ≥ 12 an integer,
and a ∈ C − {0}. If fnf ′ and gng′ share the value a IM, then either f = dg for some
(n + 1)th root of unity d or g(z) = c1e

cz and f(z) = c2e
−cz where c, c1 and c2 are

constants and satisfy (c1c2)n+1c2 = −a2.

Recently Lahiri [4] and Banerjee [5] extended Theorem B with the notion of weight
sharing respectively. Here we extend Theorem B from a new way.

THEOREM 1. Let f and g be two nonconstant meromorphic functions, n ≥ 11 an
integer and a ∈ C − {0}. If E3)(a, fnf ′) = E3)(a, gng′), then either f = dg for some
(n + 1)th root of unity d or g(z) = c1e

cz and f(z) = c2e
−cz where c, c1 and c2 are

constants and satisfy (c1c2)n+1c2 = −a2.

THEOREM 2. Let f and g be two nonconstant meromorphic functions, n ≥ 13 an
integer and a ∈ C − {0}. If E2)(a, fnf ′) = E2)(a, gng′), then either f = dg for some
(n + 1)th root of unity d or g(z) = c1e

cz and f(z) = c2e
−cz where c, c1 and c2 are

constants and satisfy (c1c2)n+1c2 = −a2.

2 Some Lemmas

We need the following Lemmas in the proof of Theorem 1 and Theorem 2. The first
one is in [6].

LEMMA 1. If f , g are nonconstant meromorphic functions and E3)(1, f) = E3)(1, g),
then one of the following cases holds: (1)T (r, f) + T (r, g) ≤ 2{N2(r, 1

f ) + N2(r, f) +
N2(r, 1

g ) + N2(r, g)} + S(r, f) + S(r, g), (2)f ≡ g, or, (3)fg ≡ 1.

LEMMA 2. Let f be a nonconstant meromorphic function and P (f) = a0 + a1f +
a2f

2 + ... + anfn, where a0, a1, a2, ..., an are constant and an 6= 0. Then T (r, P (f)) =
nT (r, f) + S(r, f).

The proof of Lemma 2 can be found in [7].
LEMMA 3. Let f be a nonconstant meromorphic function and F = fn+1/a(n+1),

n being a positive integer. Then

T (r, F ) ≤ T (r, F ′) + N

(
r,

1
f

)
− N

(
r,

1
f ′

)
+ S(r, f) (2)

The proof of Lemma 3 can be found in [5].

LEMMA 4. Let f and g be two nonconstant meromorphic functions, n ≥ 6. If
fnf ′gng′ = 1, then g = c1e

cz, f = c2e
−cz , where (c1c2)n+1c2 = −1.
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The proof of Lemma 4 can be found in [2].
LEMMA 5. Let f and g be two nonconstant meromorphic functions and E2)(1, f) =

E2)(1, g). Set

h =
(

f ′′

f ′ − 2
f ′

f − 1

)
−

(
g′′

g′
− 2

g′

g − 1

)

If h 6 ≡0, then

T (r, f) + T (r, g) ≤ 2
(

N2

(
r,

1
f

)
+ N2(r, f) + N2

(
r,

1
g

)
+ N2(r, g)

)

+N (3

(
r,

1
f − 1

)
+ N (3

(
r,

1
g − 1

)
+ S(r, f) + S(r, g). (3)

The proof of Lemma 5 can be found in [8].
LEMMA 6. Let f be a nonconstant meromorphic function, k be a positive integer,

then

Np

(
r,

1
f (k)

)
≤ Np+k

(
r,

1
f

)
+ kN (r, f) + S(r, f), (4)

where Np

(
r, 1

f(k)

)
denotes the counting function of the zeros of f (k) where a zero of

multiplicity m is counted m times if m ≤ p and p times if m > p. Clearly N
(
r, 1

f(k)

)
=

N1

(
r, 1

f(k)

)
.

The proof of Lemma 6 can be found in [9].
LEMMA 7. Let h be defined as in Lemma 5, if h ≡ 0 and

lim sup
r→∞

N
(
r, 1

f

)
+ N (r, f) + N

(
r, 1

g

)
+ N (r, g)

T (r)
< 1, r ∈ I (5)

where T (r) = max{T (r, f), T (r, g)}, then f ≡ g or fg ≡ 1.
The proof of Lemma 7 can be found in [10].

3 Proof of Theorem 1

let F = fn+1/a(n + 1) and G = gn+1/a(n + 1). Then F ′ = fnf ′/a and G′ = gng′/a.
Since E3)(a, fnf ′) = E3)(a, gng′), it follows that E3)(1, F ′) = E3)(1, G′). Then by
Lemma 1, if possible, suppose that

T (r, F ′) + T (r, G′) ≤ 2
{

N2

(
r,

1
F ′

)
+ N2(r, F ′) + N2

(
r,

1
G′

)
+ N2(r, G′)

}

+S(r, F ′) + S(r, G′) (6)

We see that

N2

(
r,

1
F ′

)
+ N2(r, F ′) ≤ 2N

(
r,

1
f

)
+ N

(
r,

1
f ′

)
+ 2N (r, f), (7)
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N2

(
r,

1
G′

)
+ N2(r, G′) ≤ 2N

(
r,

1
g

)
+ N

(
r,

1
g′

)
+ 2N(r, g). (8)

Also by Lemma 2, we have

T (r, F ′) ≤ 2T (r, F ) + S(r, F ) = 2(n + 1)T (r, f) + S(r, f), (9)

T (r, G′) ≤ 2T (r, G) + S(r, G) = 2(n + 1)T (r, g) + S(r, g). (10)

So S(r, F ′) = S(r, f) and S(r, G′) = S(r, g). From (7), (8) we get

T (r, F ′) + T (r, G′) ≤ 4N

(
r,

1
f

)
+ 2N

(
r,

1
f ′

)
+ 4N (r, f) + 4N

(
r,

1
g

)

+2N

(
r,

1
g′

)
+ 4N (r, g) + S(r, f) + S(r, g). (11)

By Lemma 3 and (11), we have

T (r, F ) + T (r, G)

≤ T (r, F ′) + N

(
r,

1
f

)
− N

(
r,

1
f ′

)
+ T (r, G′)

+N

(
r,

1
g

)
− N

(
r,

1
g′

)
+ S(r, f) + S(r, g)

≤ 4N

(
r,

1
f

)
+ 4N(r, f) + N

(
r,

1
f

)
+ N

(
r,

1
f

)
+ N (r, f) + 4N

(
r,

1
g

)

+4N (r, g) + N

(
r,

1
g

)
+ N

(
r,

1
g

)
+ N (r, g) + S(r, f) + S(r, g). (12)

So we get
(n − 10)T (r, f) + (n − 10)T (r, g) ≤ S(r, f) + S(r, g), (13)

which is a contradiction. Hence by Lemma 1 either F ′ ≡ G′ or F ′G′ ≡ 1.
If F ′ ≡ G′. Then F = G + c, where c is a constant. If possible, let c 6= 0. Then by

the second fundamental theorem, we get

(n + 1)T (r, f) ≤ N (r, F ) + N

(
r,

1
F

)
+ N

(
r,

1
F − c

)
+ S(r, F )

= N (r, f) + N

(
r,

1
f

)
+ N

(
r,

1
g

)
+ S(r, f)

≤ 2T (r, f) + T (r, g) + S(r, f)
≤ 3T (r) + S(r) (14)

where T (r) = max{T (r, f), T (r, g)}. In a similar manner, we get

(n + 1)T (r, g) ≤ 3T (r) + S(r). (15)

This shows that
(n − 2)T (r) ≤ S(r), (16)
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which is contrary to the assumption. So c = 0. That is F = G or f = dg, where d is
some (n + 1)th root of unity.

If F ′G′ ≡ 1. Then fnf ′gng′ = a2. Set f1 = a
−1

n+1 f and g1 = a
−1

n+1 g. So using
Lemma 4, we get g(z) = c1e

cz and f(z) = c2e
−cz where c, c1 and c2 are constants and

satisfy (c1c2)n+1c2 = −a2. This completes the proof of the theorem.

4 Proof of Theorem 2

let F = fn+1/a(n + 1) and G = gn+1/a(n + 1). Then F ′ = fnf ′/a and G′ = gng′/a.
Since E2)(a, fnf ′) = E2)(a, gng′), it follows that E2)(1, F ′) = E2)(1, G′). Set

H =
(

F ′′′

F ′′ − 2
F ′′

F ′ − 1

)
−

(
G′′′

G′′ − 2
G′′

G′ − 1

)
(17)

Suppose that H 6 ≡0. Then by Lemma 5, we obtain

T (r, F ′) + T (r, G′)

≤ 2
(

N2

(
r,

1
F ′

)
+ N2(r, F ′) + N2

(
r,

1
G′

)
+ N2(r, G′)

)
+ N (3

(
r,

1
F ′ − 1

)

+N (3

(
r,

1
G′ − 1

)
+ S(r, F ′) + S(r, G′). (18)

We see that

N2

(
r,

1
F ′

)
+ N2(r, F ′) ≤ 2N

(
r,

1
f

)
+ N

(
r,

1
f ′

)
+ 2N (r, f), (19)

N2

(
r,

1
G′

)
+ N2(r, G′) ≤ 2N

(
r,

1
g

)
+ N

(
r,

1
g′

)
+ 2N(r, g). (20)

As in the proof of Theorem 1, we have S(r, F ′) = S(r, f) and S(r, G′) = S(r, g). By
Lemma 6, we have

N (3

(
r,

1
F ′ − 1

)
≤ 1

2
N

(
r,

F ′

F ′′

)
=

1
2
N

(
r,

F ′′

F ′

)
+ S(r, f)

≤ 1
2
N (r, F ) +

1
2
N

(
r,

1
F ′

)
+ S(r, f)

≤ 1
2
N (r, F ) +

1
2

(
N2

(
r,

1
F

)
+ N (r, F )

)
+ S(r, f)

≤ 1
2
N (r, f) +

1
2

(
2N

(
r,

1
f

)
+ N (r, f)

)
+ S(r, f)

≤ 2T (r, f) + S(r, f). (21)

By Lemma 3, we have

T (r, F ) + T (r, G) ≤ T (r, F ′) + N

(
r,

1
f

)
− N

(
r,

1
f ′

)
+ T (r, G′)

+N

(
r,

1
g

)
− N

(
r,

1
g′

)
+ S(r, f) + S(r, g). (22)
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Substitute (18), (19), (20) and (21) into (22), we get

(n − 12)T (r, f) + (n − 12)T (r, g) ≤ S(r, f) + S(r, g), (23)

which contradicts the assumption. Thus H ≡ 0. Since

N

(
r,

1
f ′

)
≤ T (r, f ′) − m

(
r,

1
f ′

)
≤ 2T (r, f) − m

(
r,

1
f ′

)
+ S(r, f), (24)

we see that

N

(
r,

1
F ′

)
+ N (r, F ′) + N

(
r,

1
G′

)
+ N (r, G′)

≤ N

(
r,

1
f

)
+ N (r, f) + N

(
r,

1
g

)
+ N (r, g) + N

(
r,

1
f ′

)
+ N

(
r,

1
g′

)

≤ 4T (r, f) + 4T (r, g) − m

(
r,

1
f ′

)
− m

(
r,

1
g′

)
+ S(r)

≤ 8T (r) − m

(
r,

1
f ′

)
− m

(
r,

1
g′

)
+ S(r). (25)

Using Lemma 2, we get

T (r, F ′) + m

(
r,

1
f ′

)
= m

(
r,

fnf ′

a

)
+ m

(
r,

1
f ′

)
+ N

(
r,

fnf ′

a

)

≥ m

(
r,

fn

a

)
+ N (r, fn) = T (r, fn) + O(1). (26)

Similarly we have

T (r, G′) + m

(
r,

1
g′

)
≥ nT (r, g) + O(1). (27)

From (26) and (27), we get

max{T (r, F ′), T (r, G′)} ≥ nT (r) − m

(
r,

1
f ′

)
− m

(
r,

1
g′

)
+ O(1). (28)

By (25) and (28), applying Lemma 7, we get either F ′ ≡ G′ or F ′G′ ≡ 1. Proceeding
as in the proof of Theorem 1, we get either f = dg for some (n + 1)th root of unity
d or g(z) = c1e

cz and f(z) = c2e
−cz where c, c1 and c2 are constants and satisfy

(c1c2)n+1c2 = −a2. This completes the proof of Theorem 2.
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