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Abstract

In this paper, we discuss the problem of meromorphic functions sharing one
value and obtain two theorems which improve a result of C.C.Yang and X.H.Hua.

1 Introduction

In this paper, a meromorphic function always mean a function which is meromorphic
in the whole complex plane.

DEFINITION 1. Let f(z) and g(z) be nonconstant meromorphic functions, a €
C U{oo}. We say that f and g share the value a CM if f —a and g — a have the same
zeros with the same multiplicities.

DEFINITION 2. Let k be a positive integer or infinity. We denote by Ej)(a, f) the
set of all a-points of f with multiplicities not exceeding k, where an a-point is counted
according to its multiplicity. Particularly if for some a € C U {oo}, Exy(a, f) =
E(a, g), it is obvious that f and g share a CM.

DEFINITION 3. We denote by Ny (r,1/(f —a)) the counting function for zeros of
[ — a with multiplicity < k, and by Ny (r,1/(f — a)) the corresponding one for which
multiplicity is not counted. Let N (r,1/(f — a)) be the counting function for zeros
of f — a with multiplicity at least k and N (r,1/(f — a)) the corresponding one for
which multiplicity is not counted. Set

1 _ 1 _ 1 _ 1
Ny, (T,—f_a> —N<T,—f_a>+]\](2 (T’f—a>+m+N(k (T,f_a> (1)

It is assumed that the reader is familiar with the notations of the Nevanlinna theory
that can be found, for instance, in [1].

In the 1920’s, Nevanlinna [1] proved the following result.

THEOREM A. Let f and g be two nonconstant meromorphic functions. If f and
g share four distinct values CM, then f is a fractional transformation of g.
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In 1997, Yang and Hua [2] studied meromorphic functions sharing only one value
and proved the following result.

THEOREM B. Let f and g be two nonconstant meromorphic functions, n > 11 an
integer and a € C' — {0}. If f*f’ and ¢g"¢’ share the value a CM, then either f = dg
for some (n + 1)th root of unity d or g(z) = c1e°® and f(z) = cee™* where ¢, ¢; and

c2 are constants and satisfy (cjc2)"c? = —a?.

Corresponding to entire functions, Xu and Qu [3] proved the following result.

THEOREM C. Let f and g be two nonconstant entire functions, n > 12 an integer,
and a € C —{0}. If f*f’ and g"g’ share the value a IM, then either f = dg for some
(n + 1)th root of unity d or g(z) = c1e®® and f(z) = coe”°* where ¢, ¢; and ¢y are

constants and satisfy (c1c2)"t1e? = —a?.

Recently Lahiri [4] and Banerjee [5] extended Theorem B with the notion of weight
sharing respectively. Here we extend Theorem B from a new way.

THEOREM 1. Let f and g be two nonconstant meromorphic functions, n > 11 an
integer and a € C — {0}. If Es(a, f*f') = Es)(a,g"g’), then either f = dg for some
(n + 1)th root of unity d or g(z) = c1e® and f(z) = coe”°* where ¢, ¢; and ¢y are
constants and satisfy (c1c2)"t1e? = —a?.

THEOREM 2. Let f and g be two nonconstant meromorphic functions, n > 13 an
integer and a € C' — {0}. If Ey)(a, f"f') = Ey)(a,g"g’), then either f = dg for some
(n + 1)th root of unity d or g(z) = c1e® and f(z) = coe”°* where ¢, ¢; and ¢y are
constants and satisfy (c1c2)"t1e? = —a?.

2 Some Lemmas

We need the following Lemmas in the proof of Theorem 1 and Theorem 2. The first
one is in [6].

LEMMA 1. If f, g are nonconstant meromorphic functions and E3)(1, f) = E3)(1, g),
then one of the following cases holds: (1)T'(r, f) + T(r,g) < 2{Na(r, %) + Na(r, f) +
Na(r, 5) + Na(r, )} + S(r, f) + S(r. g), (2)f = g, or, 3)fg = 1.

LEMMA 2. Let f be a nonconstant meromorphic function and P(f) = ap + a1 f +
asf?+ ...+ a, f", where ag, ai, as, ..., a, are constant and a,, # 0. Then T(r, P(f)) =
nT(r, f) + S(r, f).

The proof of Lemma 2 can be found in [7].

LEMMA 3. Let f be a nonconstant meromorphic function and F = f**! /a(n+1),
n being a positive integer. Then

T(r,F)<T(r,F')+ N (r, %) - N (r, %) +S(r, f) (2)

The proof of Lemma 3 can be found in [5].

LEMMA 4. Let f and g be two nonconstant meromorphic functions, n > 6. If
frf'g"g’ =1, then g = c1e*, f = coe™*, where (c1c2)"1c? = —1.
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The proof of Lemma 4 can be found in [2].
LEMMA 5. Let f and g be two nonconstant meromorphic functions and Es)(1, f) =

EQ)(l,g) Set,
(S Y (9, 9
h_<f’ 2f—1> (g/ 29—1>

If h /0, then
T(r, f)+T(r,g) < 2 (Ng (T, %) + No(r, f) + N (T, é) + No(r, g))
+N(3 (r, ﬁ) + N(g (r, g_%) + S(r, f)+ S(r,9). (3)

The proof of Lemma 5 can be found in [8].

LEMMA 6. Let f be a nonconstant meromorphic function, k be a positive integer,
then

NZD (T’ %) < N;D+k (Ta %) + kN(T, f) + S(Ta f)a (4)

where N, (r, ﬂ%) denotes the counting function of the zeros of f*) where a zero of
multiplicity m is counted m times if m < p and p times if m > p. Clearly N (r, ﬂ%) =

N (1, 7 )

The proof of Lemma 6 can be found in [9].
LEMMA 7. Let h be defined as in Lemma 5, if h = 0 and

limsup N (r3)+ N0, f)Tz; )N (r1) +N.g)

where T'(r) = max{T(r, f),T(r,g)}, then f =g or fg=1.
The proof of Lemma 7 can be found in [10].

<1, rel (5)

3 Proof of Theorem 1

let F = f""'/a(n+1)and G = ¢g"*'/a(n+1). Then F' = f"f'/a and G’ = ¢g"¢'/a.
Since Esy(a, f"f') = Esy(a,g"g’), it follows that Esy(1,F’) = E3)(1,G’). Then by
Lemma 1, if possible, suppose that
1 1
T )+ 10.6) < 2{ N (ro g )+ M) 4 s (o )+ Malrn )
+S(r, F')+ S(r,G") (6)

We see that

Ny (r, Fi> + No(r, F') < 9N (r, %) +N (r, fi> +ON( f), (1)
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Ny (T, é) + No(r,G') < 2N (T, é) + N (T, 5) +2N(r, g). (8)

Also by Lemma 2, we have
T(r,F'y <2T(r,F)+ S(r,F) =2(n+ 1)T(r, f) + S(r, f), (9)
T(r,G') <2T(r,G)+ S(r,G) =2(n+ 1)T(r,g) + S(r, g). (10)

So S(r, F") = S(r, f) and S(r,G") = S(r,g). From (7), (8) we get

T(r,FY+T(r,G") < ( %)
1
g’

(s

_l’_
) N(r,g)+ S(r, f) + S(r, 9). (11)

By Lemma 3 and (11), we have

T(r,F)+T(r,G)

< T FY+ N (r, %) - N (r, %) +T(r,G")
+N (r, é) ~N | ;) +S(r, f) +5(r, 9)
< 4N (r, %) AN )+ N (r, %) LN (r, %) +N(r, f) + 4N (r, ;)
V00 + N (r )+ 8 () 4K + S0+ Sra) (12)
)Tt )+ (n 10)T(rs6) < S 1) 4 S(rs8), (13)

which is a contradiction. Hence by Lemma 1 either F/ = G’ or F'G’ = 1.
If F"=G'. Then F = G + ¢, where c is a constant. If possible, let ¢ # 0. Then by
the second fundamental theorem, we get

(n+1)T(r,f) < N(rF)+N (r, %) +N (r, ) +S(r, F)

F—c
- N(T,f)—!-ﬁ(r,%) +N(r, é) +5(r, f)

2T(r, )+ T(r,g) + S(r, f)
3T(r) + S(r) (14)

IN N

where T'(r) = max{T(r, f),T(r,g)}. In a similar manner, we get
(n+ 1D)T(r,g9) <3T(r)+ S(r). (15)

This shows that
(n—2)T'(r) <S(r), (16)
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which is contrary to the assumption. So ¢ = 0. That is F' = G or f = dg, where d is
some (n + 1)th root of unity.

If F'G’ = 1. Then f"f'g"g’ = a%. Set f; = an;+llf and g1 = an;+llg. So using
Lemma 4, we get g(z) = c1e®® and f(z) = cpe”%* where ¢, ¢; and ¢z are constants and
satisfy (c1co)"T1c? = —a?. This completes the proof of the theorem.

4 Proof of Theorem 2

let F = f"*'/a(n+1)and G = ¢g"*'/a(n+1). Then F' = f"f'/a and G’ = ¢g"¢'/a.
Since Ey(a, f*f') = Ea)(a,g"g’), it follows that Ey)(1, F') = E9)(1,G’). Set

F/// F// G/// G//
1= 2m) - (& o) o
Suppose that H £0. Then by Lemma 5, we obtain
T(r,F'Y+T(r,G")
— 1
< 2( (,F,>+N2TF)+N2< G’>+N2(TG)>+N(3(T’—F/_1>
+N ( e ) +S(r,F") + S(r,G"). (18)
We see that
( >+N2 T,F’)§2N(T,%>+ ( f’>+2N( ), (19)
1 — 1 1 —
Ny + No(r,G'Y<2N (r,= )|+ N {r,= | +2N(r, g). (20)
G/ g g/

As in the proof of Theorem 1, we have S(r, F') = S(r, f) and S(r,G’) = S(r,g). By
Lemma 6, we have

— 1 1 F’ 1 F"
N(3 (T’ ﬁ) S §N (T’ ﬁ) ==-N (Ta F) + S(Ta f)
S

2
< %N(T, F)+ %N (T, %) + S(r, f)
< %N(r, F)+% (N2 (r, %) +( )) + 50, f)
1— 1/ —( 1\ —
< 5N(r, H+ 3 (2]\] (r, ?> + N(r, f)) + S(r, f)
< 2T(r, f) + S(r, f) (21)

By Lemma 3, we have

T(r,F)+T(r,G) < T(r,F’)—l—N(r,%)—N( )-‘rT(TG)

7
N (r, é) N (r, gl> + S0 )+ St (22)
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Substitute (18), (19), (20) and (21) into (22), we get
(n=12)T(r, f) + (n — 12)T(r,g) < S(r, f) + S(r, 9), (23)
which contradicts the assumption. Thus H = 0. Since

N (r, %) <T(r, f)—m (r, %) <2T(r,f)—m (r, %) +S(r, f), (24)

we see that

F
_ 1 — — 1 — — 1 — 1
< N(T,f)“rN(T,f)‘i—N T,;)+N(T,g)+N(T,F>+N(T,—/>
+ S

g
< AT(r, f) +AT(r, g) — m (r, l) —m (rgi +5(r)
< 80y —m (7, fi> Cm (r, gi> +8(r). (25)

Using Lemma 2, we get

T(r,F')+m (T, %) = m (T, Jw;f/> +m (T, %) + N (T, Jw;f/>

Y
3
RS
=
| %
3
N————
+
=2
—
=
~
3
S—
|
S
—
=
~
3
S~—
+
S
—
—
S—
—
[N}
(=]
S~—

Similarly we have

T(r,G'Y+m (T, ;) >nT(r,g)+ O(1). (27)

From (26) and (27), we get

max{T(r, F"),T(r,G")} > nT(r) —m (r, fi> -m (r, gi> +0(1). (28)

By (25) and (28), applying Lemma 7, we get either F/ = G’ or F'G’ = 1. Proceeding
as in the proof of Theorem 1, we get either f = dg for some (n + 1)th root of unity
d or g(z) = c1e®”* and f(z) = coe” % where ¢, ¢; and ¢y are constants and satisfy
(c1c9)"Tte? = —a?. This completes the proof of Theorem 2.
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