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Abstract

In this note, we consider a classical constant that arises in number theory,
namely the Khintchine constant. This constant is closely related to the growth of
partial quotients that appear in continued fraction expansions of reals. It equals
the limit of the geometric mean of the partial quotient which is proved to be
the same for almost all real numbers. We provide several expressions for this
constant in the particular case of centred continued fraction expansions as well
as a numerical evaluation of this constant up to 1000 digits.

1 Introduction

All real numbers admit various expansions into continued fractions. Here, Two different
continued fraction expansions are presented, namely, the standard continued fraction
expansion and the centred continued fraction expansion (see Rockett and Szüsz [12] for
a precise presentation of standard continued fraction expansions and Schweiger [13] for
a description of a large class of continued fraction expansions).

The growth of the partial quotients (i.e., the continued fraction “digits”) that ap-
pear in the expansion is a particularly interesting subject. Khintchine [6] has proved
the strong fact that for almost all real numbers, the geometric mean of these partial
quotients tends to a constant, namely the Khintchine constant.

This constant has been extensively studied in the case of standard continued fraction
expansions. The current record for its numerical evaluation is owned by Gourdon [5]
who gives its first 110,000 digits.

This note answers a question of Finch regarding the centred continued fraction
constant. Several alternative expressions for this constant are provided. This enables
an evaluation of its first 1000 digits. Independently, Adamshik has evaluated the first
250 digits of the centred Khintchine constant.
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168 Khintchine Constant

2 Continued Fraction Expansions

In this section, we recall the classical definition and the main properties of the continued
fraction expansion based on the classical Euclidean algorithm, namely the standard
continued fraction expansion. The definition given here is by means of expanding
maps. Then, we recall some useful properties of the expansion in order to compute the
Khintchine constant.

Next, we present a slightly different continued fraction expansion based on the
Euclidean algorithm to the nearest integer, namely the centred continued fraction ex-
pansion. The maps used in its definition are just a kind of translation of the standard
maps. Furthermore, this expansion satisfies some similar properties that enable us to
compute the centred Khintchine constant.

2.1 Standard continued fraction expansions

First, consider the standard continued fraction expansion of a real number 0 < x ≤ 1,

x =
1

q1 + 1
q2+ 1

q3+···

= [q1, q2, q3, . . . ],

where q1, q2, q3, . . . are strictly positive integers.
The sequence (q1, q2, q3, . . . ) of partial quotients in the expansion can be obtained

by the shift function T : ]0, 1] → ]0, 1] and the map function σ : ]0, 1] → N,

T (x) =
1
x
−
[

1
x

]
, σ(x) =

[
1
x

]
.

The sequence M (x) := (q1, q2, q3, . . .) of partial quotients that intervene in the expan-
sion of the real number x is equal to (σ(x), σ(T (x)), σ(T 2(x)), . . . ).

As proved by Kuzmin in [7], the probability mn(t) that the expansion M (x) :=
(q1, q2, q3, . . .) of a number x ∈ [0, 1) satisfies qn ≥ 1/t converges to the function
m(t) := log(1 + t)/ log(2). This property is usually referred to as the Gauss-Kuzmin
theorem. At the same time, Lévy in [9] proved the same theorem using a completely
different method. The probability density p(t) := 1/(log(2)(1 + t)) whose distribution
function is m(t) is usually known as Gauss’ measure.

This theorem gives access to the frequency fm of the digit m upon integrating the
Gauss’ measure p(x) over the interval [1/(m+ 1); 1/m],

fm =
1

log2
log(1 +

1
m(m + 2)

).

Finally, Khintchine in [6] proved that for almost all real x, the geometric mean of the
quotients in the continued fraction expansion of x tends to a constant whose expression
is

KSCF := lim
n→∞

n√q1q2 . . . qn =
∞∏

m=1

(
1 +

1
m(m + 2)

) log m
log 2

≈ 2.685452001 . . . .
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This infinite product converges very slowly. Lehmer [8], Shanks and Wrench [14, 15],
Gosper, Bailey, Borwein, and Crandall [1] provide several representations that make
possible a precise numerical evaluation of KSCF . The record currently belongs to
Gourdon [5] who has determined the constant to 110,000 decimal places.

2.2 Centred continued fraction expansions

The principle of the centred Euclidean algorithm is to consider a pseudo-Euclidean
division that involves the nearest integer rounding function

bxe := bx+
1
2
c.

This corresponds to a continued fraction expansion for a real −1/2 < x ≤ 1/2 of the
form

x =
ε1

q1 + ε2
q2+

ε3
q3+···

= [ε1q1, ε2q2, ε3q3, . . . ], (1)

where εi = ±1, and q1, q2, q3, . . . are strictly positive integers.

Precisely, the sequence (ε1q1, ε2q2, ε3q3, . . . ) of the partial quotients in the expansion
is obtained by a combination of iterations of the shift function T : (]−1/2, 1/2]\{0})→
(]−1/2, 1/2]\{0}) and the map function σ : (]−1/2, 1/2]\{0}) → N, defined as follows

T (x) =
∣∣∣∣
1
x

∣∣∣∣−
⌊∣∣∣∣

1
x

∣∣∣∣
⌉
, and σ(x) =

⌊∣∣∣∣
1
x

∣∣∣∣
⌉
.

This, together with the sign function sgn(x) provide the sequences (q1, q2, q3, . . . ) and
(ε1, ε2, ε3, . . . ) associated to the real x in (1)

(q1, q2, q3, . . . ) = (σ(x), σ(T (x)), σ(T 2(x)), . . . ), and

(ε1, ε2, ε3, . . .) = (sgn(x), sgn(T (x)), sgn(T 2(x)), . . . ).

In [10], Rieger proves a Gauss-Kuzmin theorem for the centred continued fraction
expansion. The expansion (1) admits an invariant density of the Gauss’ measure type.
This measure can be found in Rieger [10].

PROPERTY 1. (Rieger) The invariant measure of the centred continued fraction
expansion has density

p(x) =





1
logφ

1
φ2 + x

if −1/2 ≤ x < 0,
1

logφ
1

φ+ x
if 0 ≤ x ≤ 1/2,

where φ :=
1 +

√
5

2
.

By integrating this density for both the positive and the negative case, one obtains
the frequency fm of the digit m.
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PROPERTY 2. (Rockett) The frequency fm of digit m equals

fm =





1
logφ

log
3 + 5φ
2 + 5φ

, if m = 2,

1
logφ

log
(
φ(m− 1

2) + 1
φ(m+ 1

2) + 1
φ2(m + 1

2) − 1
φ2(m − 1

2) − 1

)
, otherwise.

This expression for the frequency of digitm provides a representation of the Khintchine
constant for the centred continued fraction expansion. This Khintchine constant is
defined as the alsmost sure limit of the geometric mean of the absolute values of partial
quotients in the centred continued fraction expansion.

COROLLARY. (Rockett) The centred Khintchine constant admits the following
expression

KCCF =
(

3 + 5φ
2 + 5φ

) log 2
log φ ∏

m≥3

(
φ(m − 1

2 ) + 1
φ(m + 1

2 ) + 1
φ2(m+ 1

2) − 1
φ2(m− 1

2) − 1

) log m
log φ

. (2)

This expression as well as the expression for the frequency of the digits have been
given by Rockett in [11].

The infinite product converges very slowly. We give in the sequel several alternative
expressions of this constant in order to obtain a precise numerical evaluation of KCCF .

3 Evaluation of KCCF

3.1 Expression of KCCF involving the ζ ′ function

First, remark that the frequency fm is the value at 1/m of a complex function ψ(z) :=∑
n≥2 anz

n, that is analytic at 0. This leads to an expression of KCCF by means of
the derivative of the Riemann zeta function,

logφ logKCCF = log 2 log
(

3 + 5φ
2 + 5φ

)
− logφ

∑

n≥2

an(ζ′(n) − log 2
2n

),

where ζ′(n) := −
∑

m≥1 log(m)/mn. It proves convenient to introduce an integer

parameter N in order to decrease the number of ζ′ evaluations.

PROPOSITION 1. Let N be an arbitrary positive integer. The centred Khintchine
constant is expressible in terms of the ζ′ tail function

ζ′(n,N ) :=
∞∑

i=N+1

log i
in

= ζ′(n) −
N∑

i=2

log i
in

under the form

logφ logKCCF = log 2 log
(

3 + 5φ
2 + 5φ

)
+

N∑

m=3

fm log(m) −
∑

n≥2

anζ
′(n,N ), (3)
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where ψ(1/m) :=
∑

n≥2 an/m
n is the expansion of fm.

A fast approximation of the first 10 digits of KCCF is obtained by taking N = 2000,
a2 = 2.078086920 and a3 = −0.4905697760. Due to lack of sufficiently fast algorithms
dedicated to computing the values of the ζ′ function, its proves useful to deal with the
Riemann zeta function instead of its derivative.

3.2 Expression of KCCF involving the ζ function

We give here an expression of KCCF by means of the Riemann ζ function for which
fast evaluation algorithms are known (see Borwein [2]).

THEOREM 1. The centred Khintchine constant is expressible in terms of the ζ
function

ζ(n) :=
∞∑

i=1

1
in

under the form

logφ logKCCF

= log3 logφ+ log
2
3

log
(

5φ+ 3
5φ+ 2

)

+
∞∑

n=2

(−1)n

n
(ζ(n) − 1 − 1

2n
)
[
λn

1hn(
1
λ1

) + hn(λ1) − λn
2hn(

1
λ2

) − hn(λ2)
]

(4)

where λ1 := (φ+ 2)/(2φ) and λ2 := 1/(2φ3) involve the golden ratio φ := (
√

5 + 1)/2
and hn is the harmonic function

hn(x) :=
n−1∑

k=1

xk

k
.

PROOF. First, Abel’s summation formula

AN = SN+1bN −
N∑

k=3

Sn(bn+1 − bn),

with

Sn :=
n∑

k=3

log

(
(k − 1

2) + 1
φ

(k + 1
2) + 1

φ

(k + 1
2) − 1

φ2

(k − 1
2) − 1

φ2

)
, bn := logn,

applies to the partial sum AN of the second term in the expression (2) of KCCF . The
sum Sn simplifies to

Sn = log

(
φ

5φ+ 3
2φ+ 2

·
(n+ 3

2
) − 1

φ2

(n + 3
2 ) + 1

φ

)
= log

(
φ

5φ+ 3
2φ+ 2

·
1 + ( 1

2φ3 ) 1
n+1

1 + (φ+2
2φ

) 1
n+1

)
.
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Thus,

AN = log
(
φ

5φ+ 3
2φ+ 2

)[
logN −

N∑

k=3

log(1 +
1
k

)

]
+ log

(
(N + 3

2
) − 1

φ2

(N + 3
2 ) + 1

φ

)
logN

+
N∑

k=3

log(1 +
1
k

)
[
log(1 + (

1
2φ3

)
1
k

) − log(1 + (
φ+ 2
2φ

)
1
k

)
]
. (5)

Then, by taking the limit when N tends to ∞, one has

lim
N→∞

(logN −
N∑

k=3

log(1 +
1
k

)) = log3, and lim
N→∞

logN log

(
(N + 3

2
) − 1

φ2

(N + 3
2 ) + 1

φ

)
= 0.

Finally, the last term of the summation (5) involves two terms of the form log(1 +
x) log(1 + λix) with λ1 = (φ + 2)/(2φ) and λ2 = 1/(2φ3). This term admits the
expansion

log(1 + x) log(1 + λx) =
∞∑

n=2

(−1)n

n
[λnhn(

1
λ

) + hn(λ)]xn, where hn(x) :=
n−1∑

k=1

xk

k
.

This leads to formula (4) in the statement of Theorem 1.
Notice that the Leibniz theorem for alternating series applies. Thus, an approxi-

mation of the Khintchine constant, upon using the first n terms of the sum implies an
error term of the form ρn with ρ < 0.56. Thus each new term adds about 1/3 of a
digit.

An integer parameter N can be introduced in order to decrease the number of
evaluations of the zeta function as was indicated earlier for the formula (3) in the
context of the ζ′ function. We have

logφ logKCCF

= log 3 logφ+ log
2
3

log
(

5φ+ 3
5φ+ 2

)

+
N∑

k=3

log(1 +
1
k

)[log(1 +
λ1

k
) − log(1 +

λ2

k
)]

+
∞∑

n=2

(−1)n

n
ζ(n,N + 1)

[
λn

1hn(
1
λ1

) + hn(λ1) − λn
2hn(

1
λ2

) − hn(λ2)
]
, (6)

where

λ1 :=
φ+ 2
2φ

, λ2 :=
1

2φ3
, φ :=

√
5 + 1
2

,

hn(x) :=
n−1∑

k=1

xk

k
.
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There ζ(n,N ) is the standard Hurwitz function

ζ(n,N ) =
∞∑

i=N

1
in
.

This trick has been previously used by Flajolet and Vardi [4] in the context of the
standard Khintchine constant.

3.3 Numerical Evaluation

The expression (6) of KCCF allows a fast computation of the centred Khintchine con-
stant to 1000 digits. Take N = 20 and 900 terms of the m in (6) and get:

5.454517244545585756966057724994381016973272416251347045398035204159
84814922453445704655189242823652089086046403237884998603157831225610
06465997154678924336256871870147200595918162772167556536721579206031
81375840007159401994734031863260737005788373341011046964689121709296
10808556425338491856270023267682436158090782414542288584773773388452
63755107416238450083378654568782105109144491353555045878504694557615
15260245299072159440839105065391030234537342975726865923399099645879
46755595877169990109681679062205522783671194035940320571956005074825
34598342473918399855450907761112812630604425852979159496610236385270
09893856737919277204754227916419943983372834757727843829086562631354
22759761090650205238203844094307202674542494133867812307863447006866
64301061855370581307495976960006372427527991789020538115027786801186
14316797042073530878699050633187009534069269541813275117635845989159
97305420785624444123502365239443986621444655191196520147097949453518
8403499143182608393739420553268047580172019979620

The computation needs about 1 · 1011 elementary operations (3 minutes on a 500
Mhz machine in 2001).
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