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Abstract

In this paper we construct a class of new solutions for both the Black Scholes
and the Diffusion Equations using similarities between them. In particular, we
construct two important new solutions: one that generalizes both terms of the
Black Scholes Classical Solution and another with paradoxical properties. We
also establish the equivalence group for the Black Scholes Equation and obtain
the largest set of transformations that converts the Black Scholes Equation into
the Diffusion Equation.

1 Introduction

Let us consider the Black-Scholes equation (see for example [1])

V̇ + (σ2x2/2)Vxx + rxVx − rV = 0 (1)

where V (x, t) > 0; V̇ ≡ ∂V/∂t; Vx ≡ ∂V/∂x; x > 0. The volatility σ (σ > 0) and
risk-free interest rate r are arbitrary constants. The classical solution of the Black
Scholes equation (from now on, we will refer to it as “classical solution”) for call option
has the following structure:

V (x, t) = xN (d1) − Ke−r(T−t)N (d2); (2)

where K and T are positive constants, N is the normal distribution function

N (θ) =
1√
2π

∫ θ

−∞
e−

u2
2 du, N ′′ + θN ′ = 0, (3)

d1 ≡ lnx − lnK

τ
+ (1 − β)τ, d2 ≡ lnx − lnK

τ
− βτ,
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and
τ ≡ σ

√
T − t, β ≡ (1/2) − (r/σ2). (4)

The regular transformation (for instance, Wilmott et al. [1])

τ = −σ2t, ξ = ln x, V (t, X) = U (τ, ξ) exp
{
βlnx + (β − 1)2σ2t/2

}
(5)

converts the equation (1) into the diffusion equation: ∂U/∂τ = (1/2)∂2U/∂ξ2.
The structure of this paper is the following: in Sec. 2 and Sec. 3 we use the ansatz

method to construct two new solutions of the diffusion equation and two new solutions
of the Black Scholes equation respectively. In Sec. 4, we review the invariance group
of the diffusion equation to show that the new solutions belong to the same class of
equivalence. In Sec. 5, we obtain the widest group of equivalence of the Black Scholes
equation and apply the same classification for the Black Scholes equation and its new
solutions. We also find the largest set of transformations that convert the Black Scholes
equation into the diffusion equation.

2 New Solutions to the Diffusion Equation

Let the diffusion equation be:

Ψ̇ − (1/2)Ψxx = 0. (6)

We impose a solution with the following structure:

Ψ = u(x, t)N (θ(x, t)) (7)

where u(x, t) is a particular exact solution of the equation (7) and function N (· ) verifies
the ordinary differential equation in (3). Let us apply ansatz (7) to equation (6). From
this, we obtain a non linear system:

u̇ − (1/2)uxx = 0, (8)

θ̇ − θxx/2 − (ux/u)θx + θθ2
x/2 = 0. (9)

Using the parallelism with the Black Scholes classic solution, we suppose that function
θ(x, t) is linear: θ(x, t) = α(t)x + γ(t). Given θx = α 6= 0, we get from (9):

u(x, t) = exp
{
m(t)x2 + n(t)x + v(t)

}
, (10)

m(t) ≡
(
α̇ + α3/2

)
/2α, n(t) ≡

(
γ̇ + γα2/2

)
/α (11)

and v(t) is an arbitrary function. The equation (9) gives:

ṁ = 2m2, ṅ = 2mn, v̇ = m + n2/2. (12)

Afterwards, two possible cases appear.
Case 1. m = 0. From (12) ṅ = 0, v̇ = n2/2,

u(x, t) = c exp
{

n(x − λ) +
n2

2
(t − t0)

}
; n, c, λ, t0 = const (c 6= 0). (13)
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This particular solution of the diffusion equation is the one obtained traditionally
by separation of variables and used to apply Fourier series. Therefore we conclude:

PROPOSITION 1. The diffusion equation (6) has an exact solution:

Ψ(x, t, λ, t0, n, c) = N (θ(x, t))c exp
{

n(x − λ) +
n2

2
(t − t0)

}
(14)

with N (θ) the normal distribution function in (3),

θ(x, t) = ε
(x − λ) + n(t − t0)√

t − t0
, ε = ±1,

and four arbitrary constants c, n, λ, t0.

Case 2. m 6= 0. From (12):

m = − 1
2(t − t0)

, n =
λ

(t − t0)
, v = −1

2
ln(t − t0) + λ2m + ln c,

u(x, t) =
c√

t − t0
exp

{
− (x − λ)2

2(t − t0)

}
; c, λ, t0 = const (c 6= 0). (15)

In this case, the solution u(x, t) in (15) represents the fundamental solution (or
Green function) of the diffusion equation (6) where t > t0, and c, λ, t0 (c 6= 0) are

arbitrary constants. From (11),
1
α2

= a(t − t0)2 − (t − t0), γ = α(t − t0)2 − (t − t0).
Thus, we find a new exact solution.

PROPOSITION 2. The diffusion equation (6) has a solution:

Ψ(x, t, λ, t0, c, a, p) = N (θ(x, t))
c√

t − t0
exp

{
− (x − λ)2

2(t − t0)

}
; c, λ, t0 = const(c 6= 0).

(16)
with N (θ) the normal distribution function in (3),

θ(x, t) = ε
(x − λ) + p(t − t0)√
(t − t0)[a(t − t0) − 1]

, ε = ±1,

and five arbitrary constant c, a, λ, t0, p (c 6= 0, a > 0).
This paradoxical solution has various interesting properties. First, only under the

condition t > t0 + 1/a , function θ(x, t) is real and can have a logical interpretation.
This property guarantees that (16) will not share the interpretation difficulty of the
Green function (15): the solution (16) does not describe a motion with infinite speed.

We can also state that under conditions t → t0 + 1/a, a → ∞ , solution (16) tends
to the Dirac delta function δ(x − λ). Also for t → ∞, θ → εp/

√
a.

Note that the function (16) can be normalized because 0 ≤ N (θ) ≤ 1 for any value
of its argument. Graphically, the presence of N (θ) creates an asymmetry of the Gauss
curve. The selection of ε’s sign allows displacement of this deformation to the left or to
the right side of the curve. Our idea of interpretation for the paradoxical solution (16)
is that it describes the diffusion process superposed by some reactions such as chemical
ones (see Sukhomlin and Ortiz [10]).
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3 New Solutions to the Black Scholes Equation

We construct new solutions to the Black Scholes equation (1) using the structure of
(7) and the same procedure. Considering parallelism with the classical solution (2) we

suppose that θ(x, t) is a linear function of ln x: θ(x, t) =
1

δ(t)
ln(x/K) + γ(t) where

functions δ(t), γ(t) are to be determined and K is a positive constant. Substituting
ansatz (7) into (1) we get a system similar to (8) and (9):

u̇ − σ2

2
x2uxx + rxux − ru = 0,

θ̇ − σ2

2
x2θxx − ux

u
σ2x2θx − σ2

2
x2θθ2

x + rxθx = 0,

u(x, t) = exp

{
2δδ̇ + σ2

4σ2δ2
ln2 x

K
+ n(t) ln

x

K
+ v(t)

}

with a certain v(t) and n(t) ≡ −γ̇δ/σ2 + γ/2δ + β. Similar to the diffusion equation,
we have two different cases.

Case 1. 2δδ̇ + σ2 = 0. δ = εσ
√

T − t (ε = ±1) where T (T > 0) is an arbitrary
constant interpreted as the expiry date for the option. From this we obtain a new exact
solution.

PROPOSITION 3. The Black Scholes equation (1) has the following solution:

V (x, t, K, T, n, c) = N (θ(x, t))c exp
{

(β + n) ln
x

K
+

n2 − (β − 1)2

2
σ2(T − t)

}
(17)

with N (θ) the normal distribution function in (3),

θ(x, t) = ε
ln(x/K) + nσ2(T − t)

σ
√

T − t
, ε = ±1,

and four real arbitrary independent constants K, T, n, c (K > 0, T > 0, c > 0) (∀ t ∈
[0, T ]).

It is important to note that for different values of constant n (ε = +1) the function
(17) includes both terms of the classical solution (2): the first term for n = 1 − β and
the second term for n = −β .

Case 2. 2δδ̇ + σ2 6= 0.

PROPOSITION 4. The Black Scholes Equation (1) has the following exact solution:

V (x, t, K, T, a, p, c) = N (θ(x, t))
c

σ
√

T − t
exp

{
− [ln(x/K) − βσ2(T − t)]2

2σ2(T − t)
− r(T − t)

}

(18)
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with N (θ) the normal distribution function in (3),

θ(x, t) = ε
ln(x/K) + pσ2(T − t)√
σ2(T − t)[a(T − t) − 1]

, ε = ±1, (19)

and five arbitrary constants K, T, a, p, c (K > 0, T > 0, a > 1/T, c 6= 0).
Solution (18) has paradoxical properties similar to those of solution (16). First,

only under the condition that 0 ≤ t ≤ T − ta (ta ≡ 1/a) , function (19) becomes real
and therefore allows solution (18) to be used in mathematical finance.

On the other hand, it should be noted that solution (18) has properties of a function
that converges to the Dirac delta function δ(ln(x/K)) when t → T and a → ∞ (ta → 0).
The existence of a > 0 is coherent with the market convention that an option cannot
be traded when it is almost maturing.

The idea of our interpretation of the new solutions to the Black-Scholes equation
is in the superposition of two process: one is the Black-Scholes stochastic process and
another is a deterministic process such as a collective stock market behavior. This new
compound process will also describe the price formation but in a slightly different way
from the one used in the Black-Scholes classical model (see Sukhomlin and Ortiz [10]).

4 Invariance Group for the Diffusion Equation

The very effective approaches have been developed by Shapovalov [2]1 and applied by
Sukhomlin to parabolic and ultraparabolic equations [2] - [7]. We use this theory to
classify the set of diffusion equation’s solutions, in order to show that new solution (14)
and our paradoxical solution (16) belong to the same class of equivalence. It is known
that the diffusion equation (6) is invariant to the following transformation group (for
example, [2]).

PROPOSITION 5. The largest invariance group admitted by the diffusion equation
(6) is Γdif = Gdif ⊗ Ndif , where Gdif is the Galilean subgroup and Ndif is a discrete
subgroup defined by:

A) Galilean subgroup Gdif : τ = s2(t − t0), ξ = s[(x − x0) + n(t − t0)], Ψ(x, t) =
a(x, t)U (ξ, τ ), a(x, t) ≡ exp

{
n(x − x0) + n2(t − t0)/2

}
, s = const 6= 0; t0, x0, n =

const.
B) discrete subgroup is a cyclic group: Ndif ≡ [ν, ν2, ν3, ν4] where ν is the

following transformation: τ = −1/t, ξ = x/t, Ψ(x, t) = a(x, t)U (ξ, τ ), a(x, t) ≡
[1/

√
t] exp

{
−x2/2t

}
.

For each subgroup: Galilean and discrete, equation (6) transforms into:

∂Ψ
∂t

− 1
2

∂2Ψ
∂x2

= a(x, t)τ̇
{

∂U

∂τ
− 1

2
∂2U

∂ξ2

}
= 0.

The group Γdif contains four parameters: s (s 6= 0), t0, x0, n. In mechanics, the
discrete subgroup Ndif is interpreted as the rotation of π/2 on the phase plane.

1The Shapovalov’s non Lie approaches in symmetry are very constructive also. Using it Sukhomlin
[11] - [12] built the Conservation Law of Strike Price, resolved exactly the market calibration problem
to the Black Scholes model and to similar model with non-constant volatility.
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PROPOSITION 6. The solutions (14) and (16) belong to the same equivalent class.
Indeed, solution (14) is equal to g′G[gN (gG(Ψ))], where Ψ is the solution in (16),

gG, g′G ∈ Gdif ; and gN ∈ Ndif .

5 Equivalence Group for the Black Scholes Equation

In this section we construct the widest equivalence group of the Black Scholes equation
and therefore generalize Sukhomlin [4]. Using this group we apply the same classifica-
tion to the Black Scholes equation’s solutions and particularly to new exact solutions.
We also find the largest set of transformations that convert the Black Scholes equation
into the diffusion equation.

Let the Black Scholes Equation be (1). We consider the regular transformation of
variables:

τ = τ (t), ξ = ξ(x, t), V (x, t) = a(x, t) Q(ξ, τ ) (20)

which does not change the structure of (1), though the new equation with new variables
can be multiplied by a non null function:

f(x, t)
{

∂Q

∂τ
+

1
2
(σ0)2ξ2 ∂2Q

∂ξ2
+ r0ξ

∂Q

∂ξ
− r0Q

}
= 0. (21)

The set of all those transformations constitutes a group (see Proposition 7 below).
If we impose σ0 = σ, r0 = r we obtain the invariance group of the Black Scholes
equation. If we assume that constants σ0, r0 are not equal to σ, r respectively, the
result represents the equivalence group for the Black Scholes equation. Then we state
two facts.

Consider the Black Scholes Equation (1). The transformation:

τ = T0 −
α2σ2

(σ0)2
(T − t), ∀t ∈ [0, T ], ξ = K0

( x

K

)α

exp
{
−αnσ2(T − t)

}
(n = const),

a(x, t) = exp
{

[β − α(β0 + n)] ln
x

K
+

1
2
[α2(β0 + n − 1)2 − (β − 1)2]σ2(T − t)

}
(22)

converts (1) into (21) with the exterior factor f(x, t) = a(x, t) τ̇ 6= 0 and with four
real arbitrary independent constants: α, T, K, n (α 6= 0, T > 0, K > 0). K0, T0 are
dimensional constants. Here constant β is defined by (4) and β0 ≡ (1/2) − (r0/σ0

2).
Transformation (22) represents a continuous group with four parameters: constant

α corresponds to the change on the time scale with a simultaneous scale variation of
variable ln x. Constants T, T0 represent the liberty of selecting the exercise date for
the option. Constants K, K0 > 0 are related with liberty of selecting the strike price.
Constants α, K, K0 define the units for coordinates {x, t} and {ξ, τ}. The constant n
defines the liberty to select the actualization rate.

We also call this group the Galilean group of Black Scholes equation GBS . Its
invariance subgroup G0 appears using (22) along with the conditions σ0 = σ, r0 = r:

τ = T0 − α2(T − t), ξ = K0

( x

K

)α

exp
{
−αnσ2(T − t)

}
(n = const),
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a(x, t) = exp
{

[β − α(β + n)] ln
x

K
+

1
2
[α2(β + n − 1)2 − (β − 1)2]σ2(T − t)

}
(23)

Besides this group, there is also another special transformation that does not change
the structure of equation (1). The following transformation, which we denote by ν:

x′ = exp {−(ln x)/t} , t′ = −1/t. (24)

converts the Black Scholes equation (1) into equation (21). The collection [ν, ν2, ν3, ν4]
represents a discrete group, which we denote by NBS .

PROPOSITION 7. Consider the Black Scholes equation (1) with constants σ 6= 0,
r.

1) The largest equivalence group admitted by equation (1) is ΓBS = GBS ⊗ NBS ,
where GBS is the Galilean group and NBS represents the discrete group defined by
(22) and (24) respectively.

2) The invariance group for equation (1) is Γ0 BS = G0⊗NBS where G0 (G0 ⊂ GBS)
is the invariance subgroup (23).

It is easy to verify this Proposition by applying transformation (20) to equation (1)
and imposing the equation structure on (21). As in the diffusion equation case, the
equivalence between the paradoxical solution (18) and the new solution (17) can be
established. The proof is the same as in Section 4.

To generalize these results and to explain the correspondence between these two
equations, we denote the transformation (5) by gBS→dif .

PROPOSITION 8. Consider the Black Scholes equation (1) and the diffusion equa-
tion (6). Let Γdif and ΓBS be the invariance group for the diffusion equation and the
equivalence group for the Black Scholes equation which are defined in Propositions 5
and 7 respectively. The largest set of transformations of the equation (1) into (6) has
the following structure: ΓBS→dif = ΓBS ⊗ gBS→dif ⊗ Γdif .

Gazizov and Ibraguimov [8] constructed two particular transformations of this set.
Pooe et al. [9] used these transformations.

6 Conclusions

Actually the ansatz approach has a wide variety of applications when searching for
the exact solutions of non linear equations. We illustrate that this method gives new
interesting results for known linear equations. Using the ansatz (7) we obtain two
new particular solutions for the Black Scholes equation and the diffusion equation.
One solution has paradoxical properties. It shows the Dirac delta function’s behavior
under certain conditions but it does not share the interpretation difficulty of the Green
function: it does not describe motion with infinite speed.

We obtained the largest equivalence group of the Black Scholes equation and we
found an equivalence class that includes our new solutions. Also, the invariance group
of the diffusion equation and the equivalence group of the Black Scholes equation allow
the construction of the largest set of transformations between these equations.
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