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Abstract

Smooth solutions of the shallow-water equations for non-rectangular cross-
sections channels are studied. It is found that a complete set of solutions can be
classified in four Lie symmetry groups that show distinctive physical features.

1 Introduction

Shallow-water equations have been extensively used to model the hydrodynamic behav-
ior of flows in hydraulics, hydrology, oceanography, meteorology and engineering [1].
Challenging problems in applied sciences have provided new physical models that in-
clude additional terms and/or different boundary conditions to the basic shallow-water
equations. Thus there has been an increasing need to find out analytical solutions of
the model equations to understand the physical phenomena, as well as to parameterize
and validate complex numerical codes and analyze their results. These problems also
raise a host of interesting mathematical problems.

One of the challenges concerns the density or gravity currents that occur in many
natural and industrial situations [2]. These flows are formed by fluid flowing mainly
horizontally under the influence of gravity into another fluid of slightly different density.
It was found that the experimental results are explained by the similarity solutions of
the depth-averaged shallow-water equations, eventually extended to the case of axial
geometry [3]. The influence of the cross-section shape on the flow has been recently
investigated by Thomas & Marino [4]. A physical model to corroborate the results
of laboratory flows evolving in triangular cross-section channels was presented and a
particular analytical solution was obtained. However, up today there is not a general
study to analyze the complete set of solutions for non-rectangular cross-section shapes
to put the found solution into context as well as to look for new ones.

This paper is a first step to analyze possible solutions of shallow-water equations
for describing gravity flows in non-rectangular cross-sections channels as those used in
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132 Shallow-Water Equations

[4]. Lie symmetry groups are sought in the model equations and it is shown that the
solutions can be divided in four different local groups that reveal distinctive features.
Examples and physical interpretations are given, focusing in the groups where practical
solutions may be found.

2 Model Equations

As mentioned before, the shallow-water equations may be extended for studying gravity
currents evolving in a channel of uniform non-rectangular cross-section defined by

y = y(z) =
{

bza for y ≥ 0,
−bza for y < 0,

(1)

where a, b are constants, and z ≥ 0, y are the coordinates in the vertical and transversal
directions, respectively (cf. [4]). The value a = 1 determines a triangular cross-section,
a ≤ 1 indicates a cross-section with a central depression and a > 1 provides convex
cross-sections. The usual rectangular case is obtained for a → ∞. On the other hand
b is related to the geometric parameters of the channel cross-section through b = w/ha

0

where h0 > 0 and w = y (z = h0) denote the height and width of the channel,
respectively. The use of a and b facilitates the analysis of the basic properties of a flow
developing in arbitrary cross-section channels. For the case of a fluid layer of density
ρ1 over a layer of density ρ2 > ρ1 in a horizontal channel in which the frictional effects
of the bottom are neglected, the mass and momentum conservation equations in one
dimension become the following partial differential equations (PDE) system for the
physical variables:

Π :
{ (

ha+1
)
t
+

(
υha+1

)
x

= 0,
υt + υυx + g′hx = 0,

(2)

where g′ = g (ρ2 − ρ1) /ρ1 is the reduced gravity, h(x, t) is the depth of the lower
layer and υ(x, t) is the corresponding fluid velocity (cf. [1], §3.2, pp. 80-84). Note
how a enters into the first equation of (2) and b is absent in Π. This suggests that w
is not a relevant parameter to determine the flow developed, as in rectangular cross-
section channels, under the present hypotheses. Scaling the variables with the available
parameters g′ and h0 > 0, and redefining h/h0, υ/

√
g′h0, x/h0, t

√
g′/h0 as h, υ, x, t,

respectively, Eq. (2) may be expressed in a dimensionless form by

∆ :
{

(a + 1)(ht + hxυ) + hυx = 0,
υt + υυx + hx = 0.

(3)

If a > −1 then ∆ satisfies the maximal rank condition. Now techniques of Lie groups,
similarity methods and dimensional analysis are available to solve the PDE system (3)
of our interest (cf. [5] [6] [7] [8]).

3 The Symmetry Groups of ∆

Let M be the subset of points (x, t, υ, h) ∈ R4 so that x > 0, t > 0. By X we denote a
vector field on M and let X(1) be the corresponding prolongation of X to the 1− jet
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M (1). So, if X ∈ X (M ) is given as

X = α(x, t, υ, h)
∂

∂x
+ β(x, t, υ, h)

∂

∂t
+ γ(x, t, υ, h)

∂

∂υ
+ δ(x, t, υ, h)

∂

∂h

then X(1) ∈ X
(
M (1)

)
can be written as

X(1) = X + γx ∂

∂υx
+ γt ∂

∂υt
+ δx ∂

∂hx
+ δt ∂

∂ht
.

By evaluating the first prolongation formula (cf. [7], Th. 2.36, pp. 113) the following
relations are obtained:

γx = γx + (γυ − αx) υx + (βx + γh) hx + βxυυx − αυυ2
x + (βυ − αh)υxhx

+βυυυ2
x + βhυυxhx + βhh2

x,

γt = γt − αtυx + (βt − γυ) (υυx + hx) − υxhγh/(a + 1) − γhυhx + αυυυ2
x

+αυυxhx − αhhυ2
x/(a + 1) − αhυυxhx,

δx = δx + δυυx + (δh − αx) hx + βxυxh/(a + 1) + βxhxυ − αυυxhx − αhh2
x

+βυhυ2
x/(a + 1) + βυυυxhx + βhυxhhx/(a + 1) + βhυh2

x,

δt = δt + δυυt + (δh − βt)ht − αthx − αυυthx − αhhthx − βυυtht − βhh2
t .

Since X(1)∆(x, t, υ, h) = 0 (cf. [7], Th. 2.31, pp. 106), it follows that

(a + 1)
(
γhx + υδx + δt

)
+ δυx + hγx = 0, (4)

γυx + υγx + γt + δx = 0.

Let us equate the coefficients of the monomials in the first partial derivatives of υ and
h occurring in (3). The equations defining the symmetry groups of ∆ are: (i) δ = 0,
(ii) −γυ = γt = γx = 0, (iii) −αt + γ = 0, (iv) −αx + βt = 0, (v) βx + γh = 0, (vi)
βx − γh = 0, (vii) βx = βυ = βh, (viii) αυ = αh = 0. Hence, by (ii) is γ = γ (h) and

by (iii) γ = αt. Indeed, by (iv) αx = βt. By (v) and (vi) βx = −
·
γ (h) =

·
γ (h) and so

βx = 0 and γ ≡ c4 for some constant c4 ∈ R. Thus, by (vii) β = β (t) and by (viii)
α = α (x, t) . Now, by (iii) we have α (x, t) = c4t + η (x) for some function η = η (x)

with continuous derivative. Using (iv) we get
·
η (x) =

·
β (t) and so

··
η (x) =

··
β (t) = 0, i.e.

there are c1, c2, c3 ∈ R such that η (x) = c3x + c1 and β (t) = c3t + c2. Consequently,

X = α (x, t)
∂

∂x
+ β (t)

∂

∂t
+ c4

∂

∂υ

= (c4t + c3x + c1)
∂

∂x
+ (c3t + c2)

∂

∂t
+ c4

∂

∂υ

= c1
∂

∂x
+ c2

∂

∂t
+ c3

(
x

∂

∂x
+ t

∂

∂t

)
+ c4

(
t

∂

∂x
+

∂

∂υ

)
.
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Thus the Lie algebra of infinitesimal symmetries of ∆ is spanned by the four vector
fields

X1 = ∂x, X2 = ∂t, X3 = x∂x + t∂t, X4 = t∂x + ∂υ . (5)

The commutation relationships among these vector fields are given by the following
table, where the entry in row i and column j represents [Xi, Xj ] :

X1 X2 X3 X4

X1 0 0 0 X1

X2 0 0 X1 + X2 X2

X3 0 −X1 − X2 0 0
X4 −X1 −X2 0 0

The corresponding local parameter groups are the following:

G1 : (x, t, υ, h) σ1
s−→

(x + s, t, υ, h),

G2 : (x, t, υ, h) σ2
s−→

(x, t + s, υ, h) ,

G3 : (x, t, υ, h) σ3
s−→

(x exp s, t exp s, υ, h),

G4 : (x, t, υ, h) σ4
s−→

(x + st, t, υ + s, h) ,

(6)

where σj
s = exp (sXj) , 1 ≤ j ≤ 4. Since each local Lie group Gj is a symmetry group,

the transformations σj
s suggest that the solutions υj = υj(x, t) and hj = hj(x, t) of ∆

are

υ1(x, t) = υ(x − s, t) and h1(x, t) = h(x − s, t),
υ2(x, t) = υ (x, t − s) and h2(x, t) = h(x, t− s),

υ3(x, t) = υ (x − st, t) + s and h3(x, t) = h(x − st, t),
υ4(x, t) = υ (x exp(−s), t exp(−s)) and h4(x, t) = h(x exp(−s), t exp(−s)).

(7)

4 Invariance Analysis of ∆

From (4) it is inferred that the projectably action of the local groups G1, G2, G3 and
G4 on M , i.e. the changes of the independent variables x and t do not depend on
the independent variables υ and h. Those groups induce semi-regular actions (i.e. all
orbits have the same dimension) with one dimensional orbit. Moreover, those actions
are regular because any point of M has a neighborhood that intersects any orbit in
an arcwise connected set. Consequently (cf. [7], Th. 2.17, pp. 88) we can determine
a complete set of functionally independent invariants related to the vector fields (5)
evaluated in Section 3. Under these assumptions, locally associated to each field,
there exists a single invariant y = y(x, t) of the projected group action on the half-
plane x > 0, t > 0. Furthermore, there are two additional invariants z1 = z1(x, t, υ, h),
z2 = z2(x, t, υ, h) on M so that y, z1, z2 provide the required complete set. By invoking
the implicit function theorem we can do the following analysis of each vector field of
(5):

(i) Clearly X1(t) = X1(υ) = X1(h) = 0. If (x, t, υ, h) ∈ M we write y(x, t) = t,
z1(x, t, υ, h) = υ, z2(x, t, υ, h) = h. Then υ = z1 = z1(y) = z1(t) and h = z2 =
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z2(y) = z2(t). So,
υx = hx = 0, υt = z1

t , ht = z2
t . (8)

Replacing (8) in ∆ we obtain υt = ht = 0, i.e. υ and h must be constants, thus
constituting a trivial solution of ∆.

(ii) Here X2(x) = X2(υ) = X2(h) = 0. If (x, t, υ, h) ∈ M let

y(x, t) = x, z1(x, t, υ, h) = υ, z2(x, t, υ, h) = h.

Then υ = z1 = z1(y) = z1(x) and h = z2 = z2(y) = z2(x). So,

∆ :
{

(a + 1)hxυ + hυx = 0,
hx + υυx = 0.

(9)

Since υ = υ (x) and h = h(x), h+υ2/2 = c for some c ∈ R by the second equation
of ∆. Then the first equation of ∆ gives

·
υ

(
c − (a + 3/2)υ2

)
= 0. In such a case

d/dx
[(

c − (a + 3/2)υ2
)2

]
= 0 and υ and h must be constants.

(iii) We have X3 (υ) = X3(h) = 0. To seek a third invariant let us consider the
characteristic equation dx/x = dt/t. Since x/t is constant on any characteristic
curve we put

y(x, t) =
x

t
, z1(x, t, υ, h) = υ, z2(x, t, υ, h) = h. (10)

Since υ = z1 = z1(y) = z1(x/t) and h = z2 = z2(y) = z1(x/t) we have

υx =
1
t

dz1

dy
, υt = − x

t2
dz1

dy
, hx =

1
t

dz2

dy
, ht = − x

t2
dz2

dy
.

Therefore

∆ :
{

(a + 1)
(
z1 − y

)
dz2/dy + z2dz1/dy = 0,(

z1 − y
)
dz1/dy + dz2/dy = 0.

Hence, if dz1/dy 6= 0 then (locally)

z2 = (a + 1) (z1 − y)2. (11)

There are several alternatives to work with Eq. (11). In particular, by replacing
z2 in the first equation of ∆ and then integrating we get

(2a + 3) z1 = 2(a + 1)y + c,

where c ∈ R. Let us impose the condition z1 = 0 if z2 = 1. If a > −1 and we
write

z1
c =

2 (a + 1) y + c

2a + 3
, z2

c = (a + 1)
(

c − y

2a + 3

)2

,

then z2
c = 1 if and only if y = c ∓ (2a + 3)/

√
a + 1. So, z1

c = 0 if and only if
c = ±2

√
a + 1. Consequently,
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z1 = z1
± (x, t) =

2
√

a+1[(x/t)
√

a+1±1]
2a+3 ,

z2 = z2
± (x, t) =

(a+1)[2
√

a+1∓x/t]2
(2a+3)2 .

(12)

(iv) Finally, X4(t) = X4(h) = 0. As the function x/t − υ is constant in any solution
of the characteristic equation dx/t = dυ, it results

y(x, t) = t, z1(x, t, υ, h) = h, z2(x, t, υ, h) =
x

t
− υ.

Then h = z1 = z1(y) = z1(t) and υ = x/t− z2 = x/t − z2(y) = x/t − z2(t), i.e.

υx =
1
t
, υt = −dz2

dt
− x

t2
, hx = 0, ht =

dz1

dt
.

Therefore

∆ :
{

(a + 1)dz1/dt + z1/t = 0,
dz2/dt + z2/t = 0.

The solutions of ∆ are z1(t) = ct−1/(a+1) and z2 = d/t, where c, d ∈ R. Conse-
quently

h(x, t) = ct−1/(α+1), v(x, t) =
x − d

t
. (13)

5 Physical Interpretation

The set of solutions of the first two symmetry groups are invariant under the actions
of a spatial or a temporal shift of magnitude s. Thus the form of the solution does
not depend on the origin of the spatial or temporal coordinate axis, respectively. A
uniform flow is an example of these groups as seen in Section 4 (i) and (ii).

The spatial and time variables of the local group G3 are linked by means of a
velocity s suggesting that the set of solutions have wave features. In particular, the
self-similar solution (12) is represented in the figure below. By replacing υ = z1 ,
h = z2 and y = const = s in Eq. (11) it is obtained h = (a + 1) (υ − s)2. Here s is a
characteristic velocity that in the physical variables reads

s =

√
g′h0

a + 1
. (14)

This relationship generalizes the well-known wave speed s =
√

g′h0 for rectangular
cross-section channels. The corresponding solutions may be obtained from the PDEs
(2) looking for solutions where h and υ are function of (x − st). In particular, for the
case of a small perturbation h∗(x, t) � h0 and υ∗(x, t) � s of a steady state h = h0

and υ = 0, it is found that system (2) becomes the well-known wave equations whose
solutions are any derivable functions h∗(x−st) and υ∗(x−st) where s is given by (14).

Finally, the local group G4 refers to solutions related to the transformations h(x, t) →
h(xe−s, t) and υ(x, t) → υ (x, te−s). This transformation may be considered as a change
of scale in both independent variables x and t in the form x → s∗x and t → s∗t, where
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s∗ = e−s. This change of scale is additional to that verified in the PDE system ∆
given by Eq. (3) that is independent of the physical scales as shown in Section 2 . The
solution (13) suggests a particular form of discharge of the channel in which depth is
maintained strictly uniform, that is h does not depend on x but only on t. The fluid
velocity is proportional to the position x indicating that the output of the fluid is at
infinity.

Figure 1. Height and velocity distributions provided by the self-similar solution for

underflows in channels with a = 0, 0.5, 1, 2.

6 Conclusions

The smooth solutions of the PDE system defined by (3) were determined by means
of the invariance analysis. The fields X1 and X2 give constant solutions, and fields
X3 and X4 provide the non-trivial solutions as indicated by (12) and (13). Hence the
action of the four Lie groups described by (6) provides genuine solutions that include
the self-similar solutions previously obtained [4] and traveling waves for the new forms
of the cross-sectional section of a uniform channel. The existence of some of these
solutions is certainly direct from (2), but here they are found by means of a general
and exhaustive method. Therefore, the present study may be considered as a reliable
beginning for studying the solutions of systems of PDE analogous to (2) but including
additional terms giving account of more complex physical phenomena.
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