Orthogonal q-Polynomials Related To Perturbed Linear Form*

Abdallah Ghressi ${ }^{\dagger}$, Lotfi Khériji ${ }^{\ddagger}$

Received 11 May 2006

Abstract

The purpose of this paper is to study the regular linear form $\widetilde{u}=\delta_{\tau}+\lambda(x-$ $\tau)^{-1} u$ where u is H_{q}-semiclassical. Some q-identities related to this basic class are obtained. An example is carefully analyzed.

1 Introduction

Let u be a regular linear form. We define a new linear form \widetilde{u} by the relation $D(x) \widetilde{u}=$ $A(x) u$ where D and A are non-zero polynomials. This problem has been studied by several authors from different points of view [2,4,7,9,10,12]. In particular, in [12] and for $D(x)=x-\tau, \tau \in \mathbb{C}, A(x)=\lambda, \lambda \in \mathbb{C}-\{0\}$, P. Maroni found necessary and sufficient conditions to \widetilde{u} to be regular. So, the aim of our contribution is to study the H_{q}-semiclassical character of \widetilde{u} by taking into account theory of H_{q}-semiclassical orthogonal polynomials in $[5,6]$ which is a basic class of the so-called discrete orthogonal polynomials with H_{q} the q-derivative operator[3,5,6,8]. In particular, the class \widetilde{s} of \widetilde{u} is discussed. Also the structure relation and the second order linear q-difference equation of the (MOPS) associated with \widetilde{u} are established. Finally, the perturbation of the little q-Laguerre H_{q}-classical linear form is treated.

2 Preliminaries and Notations

Let \mathcal{P} be the vector space of polynomials with coefficients in \mathbb{C} and let \mathcal{P}^{\prime} be its dual. We denote by $\langle u, f\rangle$ the action of $u \in \mathcal{P}^{\prime}$ on $f \in \mathcal{P}$. The linear form u is called regular if we can associate with it a polynomial sequence $\left\{P_{n}\right\}_{n \geq 0}, \operatorname{deg} P_{n}=n$, such that $\left\langle u, P_{m} P_{n}\right\rangle=k_{n} \delta_{n, m}, n, m \geq 0, k_{n} \neq 0, n \geq 0$; the left multiplication $g u$ is defined by $\langle g u, f\rangle:=\langle u, g f\rangle$. Similarly, we define $\left\langle h_{a} u, f\right\rangle:=\left\langle u, h_{a} f\right\rangle=\langle u, f(a x)\rangle, u \in \mathcal{P}^{\prime}$, $f \in \mathcal{P}, a \in \mathbb{C}-\{0\}$. We consider the following well known problem: given a regular linear form u, find all regular linear form \widetilde{u} which satisfy the following equation

$$
\begin{equation*}
(x-\tau) \widetilde{u}=\lambda u, \tau \in \mathbb{C}, \lambda \in \mathbb{C}-\{0\} \tag{1}
\end{equation*}
$$

[^0]with constraints $(\widetilde{u})_{0}=1,(u)_{0}=1$, where $(u)_{n}:=\left\langle u, x^{n}\right\rangle, n \geq 0$, are the moments of u. Equivalently, $\widetilde{u}=\delta_{\tau}+\lambda(x-\tau)^{-1} u$ where $\left\langle\delta_{\tau}, f\right\rangle=f(\tau)$ and the linear form $(x-\tau)^{-1} u$ is defined by $\left\langle(x-\tau)^{-1} u, f\right\rangle:=\left\langle u, \theta_{\tau} f\right\rangle$, with in general $\left(\theta_{\tau} f\right)(x):=$ $\frac{f(x)-f(\tau)}{x-\tau}$. In particular, $\lambda+\tau=(\widetilde{u})_{1}$. If we suppose that the linear form u possesses the discrete representation
\[

$$
\begin{equation*}
u=\sum_{n \geq 0} \rho_{n} \delta_{\tau_{n}} \tag{2}
\end{equation*}
$$

\]

where $\left|\sum_{n \geq 0} \rho_{n}\left(\tau_{n}\right)^{p}\right|<+\infty, p \geq 0$, then the linear form \widetilde{u} is represented by

$$
\begin{equation*}
\widetilde{u}=\left\{1-\lambda \sum_{n \geq 0} \frac{\rho_{n}}{\tau_{n}-\tau}\right\} \delta_{\tau}+\lambda \sum_{n \geq 0} \frac{\rho_{n}}{\tau_{n}-\tau} \delta_{\tau_{n}} \tag{3}
\end{equation*}
$$

since

$$
\begin{equation*}
\left|\sum_{n \geq 0} \frac{\rho_{n}}{\tau_{n}-\tau}\left(\tau_{n}\right)^{p}\right|<+\infty, p \geq 0 \tag{4}
\end{equation*}
$$

In accordance with (1) and after some calculations, we are able to give the connection between the moments of \widetilde{u} and u

$$
\begin{equation*}
(\widetilde{u})_{n}=\tau^{n}+\lambda \sum_{\nu=1}^{n} \tau^{n-\nu}(u)_{\nu-1}, n \geq 1 \tag{5}
\end{equation*}
$$

Let $\left\{P_{n}\right\}_{n \geq 0}$ denote the sequence of orthogonal polynomials with respect to u

$$
\begin{equation*}
P_{0}(x)=1, P_{1}(x)=x-\beta_{0}, P_{n+2}(x)=\left(x-\beta_{n+1}\right) P_{n+1}(x)-\gamma_{n+1} P_{n}(x), n \geq 0 \tag{6}
\end{equation*}
$$

Suppose \widetilde{u} is regular and let $\left\{\widetilde{P}_{n}\right\}_{n \geq 0}$ be its corresponding orthogonal sequence

$$
\begin{equation*}
\widetilde{P}_{0}(x)=1, \widetilde{P}_{1}(x)=x-\widetilde{\beta}_{0}, \widetilde{P}_{n+2}(x)=\left(x-\widetilde{\beta}_{n+1}\right) \widetilde{P}_{n+1}(x)-\widetilde{\gamma}_{n+1} \widetilde{P}_{n}(x), n \geq 0 \tag{7}
\end{equation*}
$$

The relationship between \widetilde{P}_{n} and P_{n} is (see [12])

$$
\begin{equation*}
\widetilde{P}_{n+1}(x)=P_{n+1}(x)+a_{n} P_{n}(x), a_{n}=-\frac{P_{n+1}(\tau)+\lambda P_{n}^{(1)}(\tau)}{P_{n}(\tau)+\lambda P_{n-1}^{(1)}(\tau)} \neq 0, n \geq 0 \tag{8}
\end{equation*}
$$

where $P_{n}^{(1)}(x):=\left\langle u, \frac{P_{n+1}(x)-P_{n+1}(\xi)}{x-\xi}\right\rangle, n \geq 0$. We have [11]

$$
\begin{equation*}
P_{n+1}^{(1)}(x) P_{n+1}(x)-P_{n+2}(x) P_{n}^{(1)}(x)=\prod_{k=0}^{n} \gamma_{k+1}, n \geq 0 \tag{9}
\end{equation*}
$$

Set

$$
\begin{equation*}
\lambda_{n}=-\frac{P_{n}(\tau)}{P_{n-1}^{(1)}(\tau)}, n \geq 1, \lambda_{0}=0 \tag{10}
\end{equation*}
$$

Let us recall that the linear form $\widetilde{u}=\delta_{\tau}+\lambda(x-\tau)^{-1} u$ is regular if and only if $\lambda \neq \lambda_{n}, n \geq 0$. In this case we may write [12]

$$
\begin{gather*}
\frac{\gamma_{n+1}}{a_{n}}+a_{n+1}-\beta_{n+1}=-\tau, n \geq 0 \tag{11}\\
\widetilde{\beta}_{0}=\beta_{0}-a_{0}=\tau+\lambda, \widetilde{\beta}_{n+1}=\beta_{n+1}+a_{n}-a_{n+1}, \widetilde{\gamma}_{n+1}=-a_{n}\left(a_{n}-\beta_{n}+\tau\right), n \geq 0, \tag{12}\\
\left\{\begin{array}{l}
(x-\tau) P_{n}(x)=\widetilde{P}_{n+1}(x)+\left(\beta_{n}-a_{n}-\tau\right) \widetilde{P}_{n}(x), n \geq 0 \\
(x-\tau) P_{n+1}(x)=\left(x-a_{n}-\tau\right) \widetilde{P}_{n+1}(x)+a_{n}\left(a_{n}-\beta_{n}+\tau\right) \widetilde{P}_{n}(x), n \geq 0 .
\end{array}\right. \tag{13}
\end{gather*}
$$

Let us introduce the q-derivative operator H_{q} by $\left(H_{q} f\right)(x)=\frac{f(q x)-f(x)}{q x-x}, f \in \mathcal{P}$. By duality, we can define H_{q} from \mathcal{P}^{\prime} to \mathcal{P}^{\prime} such that $\left\langle H_{q} u, f\right\rangle=-\left\langle u, H_{q} f\right\rangle, f \in \mathcal{P}$, $u \in \mathcal{P}^{\prime}$. In particular, this yields $\left(H_{q} u\right)_{n}=-[n]_{q}(u)_{n-1}, n \geq 0$ with $(u)_{-1}=0$ and $[n]_{q}:=\frac{q^{n}-1}{q-1}, n \geq 0 .[3,5,6,8]$

The linear form u is said to be H_{q}-semiclassical when it is regular and there exists two polynomials Φ (monic) and Ψ with $\operatorname{deg} \Phi \geq 0, \operatorname{deg} \Psi \geq 1$ such that

$$
\begin{equation*}
H_{q}(\Phi u)+\Psi u=0 \tag{14}
\end{equation*}
$$

The class of the H_{q}-semiclassical linear form u is $s=\max (\operatorname{deg} \Phi-2, \operatorname{deg} \Psi-1) \geq 0$ if and only if the following condition is satisfied

$$
\begin{equation*}
\prod_{c \in \mathcal{Z}_{\Phi}}\left\{\left|q\left(h_{q} \Psi\right)(c)+\left(H_{q} \Phi\right)(c)\right|+\left|\left\langle u, q\left(\theta_{c q} \Psi\right)+\left(\theta_{c q} \circ \theta_{c} \Phi\right)\right\rangle\right|\right\}>0 \tag{15}
\end{equation*}
$$

where \mathcal{Z}_{Φ} is the set of zeros of $\Phi[6]$. We can state characterizations of the corresponding orthogonal sequence $\left\{P_{n}\right\}_{n \geq 0}$ as follows: [6]
1). $\left\{P_{n}\right\}_{n \geq 0}$ satisfies the following structure relation

$$
\begin{equation*}
\Phi(x)\left(H_{q} P_{n+1}\right)(x)=\frac{C_{n+1}(x)-C_{0}(x)}{2} P_{n+1}(x)-\gamma_{n+1} D_{n+1}(x) P_{n}(x), n \geq 0 \tag{16}
\end{equation*}
$$

where

$$
\left\{\begin{array}{l}
C_{n+1}(x)=-C_{n}(x)+2\left(x-\beta_{n}\right) D_{n}(x)+2 x(q-1) \Sigma_{n}(x), n \geq 0 \tag{17}\\
\gamma_{n+1} D_{n+1}(x)=-\Phi(x)+\gamma_{n} D_{n-1}(x)+\left(x-\beta_{n}\right)^{2} D_{n}(x)- \\
-\left(\frac{q+1}{2} x-\beta_{n}\right) C_{n}(x)+x(q-1)\left\{\frac{1}{2} C_{0}(x)+\left(x-\beta_{n}\right) \Sigma_{n}(x)\right\}, n \geq 0 \\
\Sigma_{n}(x):=\sum_{k=0}^{n} D_{k}(x), n \geq 0, C_{0}(x)=-\left(q\left(h_{q} \Psi\right)(x)+\left(H_{q} \Phi\right)(x)\right) \\
D_{0}(x)=-\left(H_{q}\left(u \theta_{0} \Phi\right)(x)+q h_{q}\left(u \theta_{0} \Psi\right)(x)\right), D_{-1}(x):=0
\end{array}\right.
$$

with $(u f)(x):=\left\langle u, \frac{x f(x)-\xi f(\xi)}{x-\xi}\right\rangle, f \in \mathcal{P} . \Phi, \Psi$ are the same polynomials as in (14); β_{n}, γ_{n} are the coefficients of the three term recurrence relation (6). Notice that $\operatorname{deg} C_{n} \leq s+1, \operatorname{deg} D_{n} \leq s, n \geq 0$.
2). Also, each polynomial $P_{n+1}, \quad n \geq 0$, satisfies a second order linear q-difference equation. For $n \geq 0$

$$
\begin{equation*}
J_{q}(x, n)\left(H_{q} \circ H_{q^{-1}} P_{n+1}\right)(x)+K_{q}(x, n)\left(H_{q^{-1}} P_{n+1}\right)(x)+L_{q}(x, n) P_{n+1}(x)=0 \tag{18}
\end{equation*}
$$

with

$$
\left\{\begin{array}{l}
J_{q}(x, n)=q \Phi(x) D_{n+1}(x) \tag{19}\\
K_{q}(x, n)=D_{n+1}\left(q^{-1} x\right)\left(H_{q^{-1}} \Phi\right)(x)-\left(H_{q^{-1}} D_{n+1}\right)(x) \Phi\left(q^{-1} x\right)+ \\
\\
\quad+C_{0}\left(q^{-1} x\right) D_{n+1}(x) \\
L_{q}(x, n)=\frac{1}{2}\left(C_{n+1}\left(q^{-1} x\right)-\right. \\
\left.-C_{0}\left(q^{-1} x\right)\right)\left(H_{q^{-1}} D_{n+1}\right)(x)- \\
-\frac{1}{2}\left(H_{q^{-1}}\left(C_{n+1}-C_{0}\right)\right)(x) D_{n+1}\left(q^{-1} x\right)-D_{n+1}(x) \Sigma_{n}\left(q^{-1} x\right), n \geq 0
\end{array}\right.
$$

Φ, C_{n}, D_{n} are the same as in the previous characterization. Notice that $\operatorname{deg} J_{q}(., n) \leq$ $2 s+2, \operatorname{deg} K_{q}(., n) \leq 2 s+1, \operatorname{deg} L_{q}(., n) \leq 2 s$. In particular, when $s=0$ that is to say the H_{q}-classical case, the coefficients of the structure relation (16) become [6]

$$
\left\{\begin{array}{l}
\frac{C_{n+1}(x)-C_{0}(x)}{2}=\frac{1}{2} \Phi^{\prime \prime}(0)\left([n+1]_{q} x-q^{-n-1} S_{n}\right)+ \tag{20}\\
+q^{-n-1}\left(\Psi^{\prime}(0)-\frac{1+q^{n+1}}{2} \Phi^{\prime \prime}(0)[n+1]_{q}\right) \beta_{n+1}+ \\
\quad+q^{-n-1}\left(\Psi(0)-\Phi^{\prime}(0)[n+1]_{q}\right)-q^{-n-1}(q-1) \Psi^{\prime}(0) S_{n} \\
D_{n+1}(x)=q^{-n}\left\{\frac{1}{2} \Phi^{\prime \prime}(0)[2 n+1]_{q}-\Psi^{\prime}(0)\right\}, n \geq 0,
\end{array}\right.
$$

with $S_{n}=\sum_{k=0}^{n} \beta_{k}, n \geq 0$. Also we get for(19) [6]

$$
\left\{\begin{array}{l}
J_{q}(x, n)=\Phi(x) \tag{21}\\
K_{q}(x, n)=-\Psi(x) \\
L_{q}(x, n)=q^{-n}[n+1]_{q}\left(\Psi^{\prime}(0)-\frac{1}{2} \Phi^{\prime \prime}(0)[n]_{q}\right), n \geq 0
\end{array}\right.
$$

3 The H_{q}-Semiclassical Case

3.1 The H_{q}-semiclassical character of \widetilde{u}

In the sequel the linear form u will be supposed to be H_{q}-semiclassical of class s satisfying the q-Pearson equation $H_{q}(\Phi u)+\Psi u=0$. From (1), it is clear that the linear form \widetilde{u}, when it is regular, is also H_{q}-semiclassical and satisfies

$$
\begin{equation*}
H_{q}(\widetilde{\Phi} \widetilde{u})+\widetilde{\Psi} \widetilde{u}=0 \tag{22}
\end{equation*}
$$

with

$$
\begin{equation*}
\widetilde{\Phi}(x)=(x-\tau) \Phi(x) \text { and } \widetilde{\Psi}(x)=(x-\tau) \Psi(x) \tag{23}
\end{equation*}
$$

The class of \widetilde{u} is at most $\widetilde{s}=s+1$.
PROPOSITION 1. The class of \widetilde{u} depends only on the zero $x=\tau q^{-1}$.

For the proof we use the following lemma:
LEMMA 1. For all root c of Φ we have

$$
\begin{equation*}
\left\langle\widetilde{u}, q \theta_{c q} \widetilde{\Psi}+\left(\theta_{c q} \circ \theta_{c} \widetilde{\Phi}\right)\right\rangle=q\left(h_{q} \Psi\right)(c)+\left(H_{q} \Phi\right)(c)+\lambda\left\langle u, q \theta_{c q} \Psi+\left(\theta_{c q} \circ \theta_{c} \Phi\right)\right\rangle \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
q\left(h_{q} \widetilde{\Psi}\right)(c)+\left(H_{q} \widetilde{\Phi}\right)(c)=(c q-\tau)\left\{q\left(h_{q} \Psi\right)(c)+\left(H_{q} \Phi\right)(c)\right\} . \tag{25}
\end{equation*}
$$

PROOF. Let c be a root of Φ, then we can write

$$
\begin{equation*}
\widetilde{\Phi}(x)=(x-\tau)(x-c) \Phi_{c}(x) \text { and } \Phi_{c}(x)=\left(\theta_{c} \Phi\right)(x) \tag{26}
\end{equation*}
$$

So from (23) and (26) we have

$$
\begin{equation*}
\left\langle\widetilde{u}, q \theta_{c q} \widetilde{\Psi}+\left(\theta_{c q} \circ \theta_{c} \widetilde{\Phi}\right)\right\rangle=q\left\langle\widetilde{u}, \theta_{c q}((\xi-\tau) \Psi)\right\rangle+\left\langle\widetilde{u}, \theta_{c q}\left((\xi-\tau) \Phi_{c}\right)\right\rangle . \tag{27}
\end{equation*}
$$

Using the definition of the operator θ_{c}, it is easy to prove that

$$
\begin{equation*}
\theta_{c}(f g)(x)=g(x)\left(\theta_{c} f\right)(x)+f(c)\left(\theta_{c} g\right)(x), \forall f, g \in \mathcal{P} \tag{28}
\end{equation*}
$$

Taking $g(x)=x-\tau$ and $f(x)=\Phi_{c}(x)$, we obtain

$$
\begin{aligned}
\left\langle\widetilde{u}, \theta_{c q}\left((\xi-\tau) \Phi_{c}\right)\right\rangle & =\left\langle\widetilde{u},(x-\tau)\left(\theta_{c q} \Phi_{c}\right)(x)+\Phi_{c}(c q)\right\rangle \\
& =\left\langle\widetilde{u},(x-\tau)\left(\theta_{c q} \circ \theta_{c} \Phi\right)(x)\right\rangle+\left(H_{q} \Phi\right)(c)
\end{aligned}
$$

because

$$
\theta_{c q} \Phi_{c}=\theta_{c q} \circ \theta_{c} \Phi, \Phi_{c}(c q)=\left(H_{q} \Phi\right)(c) \text { and }\left(\theta_{c q}(\xi-\tau)\right)(x)=1
$$

By virtue of (1) we get

$$
\begin{equation*}
\left\langle\widetilde{u}, \theta_{c q}\left((\xi-\tau) \Phi_{c}\right)\right\rangle=\lambda\left\langle u, \theta_{c q} \circ \theta_{c} \Phi\right\rangle+\left(H_{q} \Phi\right)(c) . \tag{29}
\end{equation*}
$$

Now, taking $g(x)=x-\tau$ and $f(x)=\Psi(x)$ in (28), we obtain

$$
q\left\langle\widetilde{u}, \theta_{c q}((\xi-\tau) \Psi)\right\rangle=q\left\langle\widetilde{u},(x-\tau)\left(\theta_{c q} \Psi\right)(x)+\Psi(c q)\right\rangle .
$$

Taking (1) into account we get

$$
\begin{equation*}
q\left\langle\widetilde{u}, \theta_{c q}((\xi-\tau) \Psi)\right\rangle=q \lambda\left\langle u, \theta_{c q} \Psi\right\rangle+\left(h_{q} \Psi\right)(c) . \tag{30}
\end{equation*}
$$

Replacing (29) and (30) in (27), we obtain (24). Also (25) is deduced.
PROOF OF PROPOSITION 1. Let c be a root of Φ such that $c \neq \tau q^{-1}$.
If $q\left(h_{q} \Psi\right)(c)+\left(H_{q} \Phi\right)(c)=0$, from (24) we have $\left\langle\widetilde{u}, q \theta_{c q} \widetilde{\Psi}+\left(\theta_{c q} \circ \theta_{c} \widetilde{\Phi}\right)\right\rangle \neq 0$ since u is H_{q}-semiclassical of class s and so satisfies (15).
If $q\left(h_{q} \Psi\right)(c)+\left(H_{q} \Phi\right)(c) \neq 0$, then $q\left(h_{q} \widetilde{\Psi}\right)(c)+\left(H_{q} \widetilde{\Phi}\right)(c) \neq 0$ from (25).
In any case, we cannot simplify by $(x-c)$.
As a consequence we get the following result:

COROLLARY 1. If the H_{q}-semiclassical linear form u is of class s then the linear form \widetilde{u} is H_{q}-semiclassical of class $\widetilde{s}=s+1$ for

$$
\begin{equation*}
\Phi\left(\tau q^{-1}\right) \neq 0, \lambda \neq \lambda_{n}, n \geq 0 \text { or } \Phi\left(\tau q^{-1}\right)=0, \lambda \neq \lambda_{n}, n \geq-1 \tag{31}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda_{-1}=-\frac{q \Psi(\tau)+\left(H_{q^{-1}} \Phi\right)(\tau)}{\left\langle u, q \theta_{\tau} \Psi+\theta_{\tau} \circ \theta_{\tau q^{-1}} \Phi\right\rangle} \tag{32}
\end{equation*}
$$

3.2 The structure relation and the second order linear q-difference equation of $\left\{\widetilde{P}_{n}\right\}_{n \geq 0}$

From (8), (16) and (6) we have for $n \geq 0$

$$
\begin{gather*}
\Phi(x)\left(H_{q} \widetilde{P}_{n+1}\right)(x)=u_{n}(x) P_{n+1}(x)+v_{n}(x) P_{n}(x) \tag{33}\\
\left\{\begin{array}{r}
u_{n}(x)=\frac{1}{2}\left(C_{n+1}(x)-C_{0}(x)\right)+a_{n} D_{n}(x) \\
v_{n}(x)=\left(-\frac{1}{2}\left(C_{n+1}(x)-C_{0}(x)\right)-C_{0}(x)+\right. \\
\left.+x(q-1) \Sigma_{n}(x)\right) a_{n}-\gamma_{n+1} D_{n+1}(x)
\end{array}\right. \tag{34}
\end{gather*}
$$

On account of (13) and the fact that $P_{n+1}(x)$ and $P_{n}(x)$ are coprime, we have for (33) for $n \geq 0$

$$
\begin{equation*}
\widetilde{\Phi}(x)\left(H_{q} \widetilde{P}_{n+1}\right)(x)=\frac{1}{2}\left(\widetilde{C}_{n+1}(x)-\widetilde{C}_{0}(x)\right) \widetilde{P}_{n+1}(x)-\widetilde{\gamma}_{n+1} \widetilde{D}_{n+1}(x) \widetilde{P}_{n}(x) \tag{35}
\end{equation*}
$$

where

$$
\left\{\begin{array}{l}
\frac{1}{2}\left(\widetilde{C}_{n+1}(x)-\widetilde{C}_{0}(x)\right)=\left(x-\tau-a_{n}\right) u_{n}(x)+v_{n}(x) \tag{36}\\
\widetilde{\gamma}_{n+1} \widetilde{D}_{n+1}(x)=\left(a_{n}-\beta_{n}+\tau\right)\left(v_{n}(x)-a_{n} u_{n}(x)\right)
\end{array}, n \geq s+1\right.
$$

From (17) we have

$$
\widetilde{C}_{0}(x)=-q\left(h_{q} \widetilde{\Psi}\right)(x)-\left(H_{q} \widetilde{\Phi}\right)(x), \widetilde{D}_{0}(x)=-H_{q}\left(\widetilde{u} \theta_{0} \widetilde{\Phi}\right)(x)-q h_{q}\left(\widetilde{u} \theta_{0} \widetilde{\Psi}\right)(x)
$$

By virtue of (23) we get

$$
\begin{equation*}
\widetilde{C}_{0}(x)=(q x-\tau) C_{0}(x)-\Phi(x), \widetilde{D}_{0}(x)=C_{0}(x)+\lambda D_{0}(x) \tag{37}
\end{equation*}
$$

because

$$
\begin{aligned}
\left(\widetilde{u} \theta_{0} \widetilde{\Psi}\right)(x) & =\left\langle\widetilde{u}, \frac{\widetilde{\Psi}(x)-\widetilde{\Psi}(\xi)}{x-\xi}\right\rangle \\
& =\Psi(x)+\left\langle\lambda(\xi-\tau)^{-1} u, \frac{\widetilde{\Psi}(x)-\widetilde{\Psi}(\xi)}{x-\xi}\right\rangle \\
& =\Psi(x)+\lambda\left\langle u,\left\{\frac{\widetilde{\Psi}(x)-\widetilde{\Psi}(\xi)}{x-\xi}-\Psi(x)\right\} \frac{1}{\xi-\tau}\right\rangle \\
& =\Psi(x)+\lambda\left(u \theta_{0} \Psi\right)(x)
\end{aligned}
$$

Consequently and by virtue of (17), we can easily prove by induction that the system (36) is valid for $0 \leq n \leq s$. Hence (36) is valid for $n \geq 0$.

In addition, from (34)-(37) and by taking into account (11) and (17) we get for $n \geq 0$

$$
\begin{equation*}
\widetilde{\Sigma}_{n}(x):=\sum_{\nu=0}^{n} \widetilde{D}_{\nu}(x)=-\frac{1}{2}\left(C_{n+1}(x)-C_{0}(x)\right)-a_{n} D_{n}(x)+(q x-\tau) \Sigma_{n}(x) \tag{38}
\end{equation*}
$$

Therefore, the coefficients of the second order linear q-difference equation satisfied by $\widetilde{P}_{n+1}, n \geq 0$ are for $n \geq 0$

$$
\left\{\begin{array}{l}
\widetilde{J}_{q}(x, n)=q(x-\tau) \Phi(x)\left(v_{n}\left(q^{-1} x\right)-a_{n} u_{n}\left(q^{-1} x\right)\right) \tag{39}\\
\widetilde{K}_{q}(x, n)=\left\{\left(v_{n}\left(q^{-1} x\right)-a_{n} u_{n}\left(q^{-1} x\right)\right) \times\right. \\
\left.\left(\Phi(x)+\left(q^{-1} x-\tau\right)\left(H_{q^{-1}} \Phi\right)(x)\right)\right\}- \\
-\left\{\left(v_{n}(x)-a_{n} u_{n}(x)\right) \times\right. \\
\left.\left((x-\tau)\left(q \Psi(x)+\left(H_{q^{-1}} \Phi\right)(x)\right)+\Phi\left(q^{-1} x\right)\right)\right\}- \\
-\left(\left(H_{q^{-1}} v_{n}\right)(x)-a_{n}\left(H_{q^{-1}} u_{n}\right)(x)\right)\left(q^{-1} x-\tau\right) \Phi\left(q^{-1} x\right), \\
\widetilde{L}_{q}(x, n)=-\left\{\left(v_{n}\left(q^{-1} x\right)-a_{n} u_{n}\left(q^{-1} x\right)\right) \times\right. \\
\left.\left(u_{n}(x)+\left(q^{-1} x-\tau-a_{n}\right)\left(H_{q^{-1}} u_{n}\right)(x)\right)\right\}+ \\
+\left\{\left(\left(H_{q^{-1}} v_{n}\right)(x)-a_{n}\left(H_{q^{-1}} u_{n}\right)(x)\right) \times\right. \\
\left.\quad\left(\left(q^{-1} x-\tau-a_{n}\right) u_{n}\left(q^{-1} x\right)+v_{n}\left(q^{-1} x\right)\right)\right\}+ \\
\quad+\left(v_{n}(x)-a_{n} u_{n}(x)\right)\left(u_{n}(x)-\Sigma_{n}(x)\right) .
\end{array}\right.
$$

3.3 An Illustrative Example

First, let us recall the following standard material needed to the sequel $[1,5,6]$

$$
\begin{gathered}
(a ; q)_{0}=1,(a ; q)_{n}=\prod_{\nu=1}^{n}\left(1-a q^{\nu-1}\right), n \geq 1 \\
{\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}:=\frac{(q ; q)_{n}}{(q ; q)_{k}(q ; q)_{n-k}}, \quad 0 \leq k \leq n}
\end{gathered}
$$

and

$$
(a ; q)_{\infty}=\prod_{\nu=0}^{+\infty}\left(1-a q^{\nu}\right),|q|<1 ; \sum_{\nu=0}^{+\infty} \frac{(a ; q)_{\nu}}{(q ; q)_{\nu}} z^{\nu}=\frac{(a z ; q)_{\infty}}{(z ; q)_{\infty}},|z|<1,|q|<1
$$

Second, let us consider the H_{q}-classical linear form $u=u(a, q)$ of little q-Laguerre for $0<q<1$ and $0<a<q^{-1}$. From (17), (20) and (21), and by virtue of [5] we get

Table 1.

β_{n}	$\left\{1+a-a(1+q) q^{n}\right\} q^{n}, n \geq 0$.	
γ_{n+1}	$a\left(1-q^{n+1}\right)\left(1-a q^{n+1}\right) q^{2 n+1}, n \geq 0$.	
$\Phi(x)$	x	
$\Psi(x)$	$-(a q)^{-1}(q-1)^{-1}\{x-1+a q\}$.	
u	$(a q ; q)_{\infty} \sum_{\nu=0}^{+\infty} \frac{(a q)^{\nu}}{(q ; q)_{\nu}} \delta_{q^{\nu}}, 0<q<1,0<a<q^{-1}$	
$(u)_{n}$	$(a q ; q)_{n}, n \geq 0$.	
$\frac{C_{n+1}(x)-C_{0}(x)}{2}$	$[n+1]_{q}, n \geq 0$.	
$D_{n+1}(x)$	$(a q)^{-1}(q-1)^{-1} q^{-n}, n \geq 0$.	
$C_{0}(x)$	$a^{-1}(q-1)^{-1}\{q x+a-1\}$.	
$D_{0}(x)$	$a^{-1}(q-1)^{-1}$.	
$J_{q}(x, n)$	$x, n \geq 0$.	
$K_{q}(x, n)$	$(a q)^{-1}(q-1)^{-1}\{x-1+a q\}, n \geq 0$.	
$L_{q}(x, n)$	$-(a q)^{-1}(q-1)^{-1} q^{-n}[n+1]_{q}, n \geq 0$.	

Putting $x=0$ in (16) and with Table 1, we get $P_{n+1}(0)=-q^{n}\left(1-a q^{n+1}\right) P_{n}(0), n \geq 0$. Consequently,

$$
\begin{equation*}
P_{n}(0)=(-1)^{n} q^{\frac{(n-1) n}{2}}(a q ; q)_{n}, n \geq 0 . \tag{40}
\end{equation*}
$$

Moreover, taking $x=0$ in (9), in accordance of Table 1 and (40), an easy computation leads to

$$
\begin{equation*}
P_{n}^{(1)}(0)=(-1)^{n} q^{\frac{(n+1) n}{2}}(a q ; q)_{n+1} \sum_{k=0}^{n} \frac{(q ; q)_{k}}{(a q ; q)_{k+1}} a^{k} \neq 0 \tag{41}
\end{equation*}
$$

for $n \geq 0,0<q<1$ and $0<a<q^{-1}$.
Thus, we obtain for (8) and (10)

$$
\begin{gather*}
a_{n}=q^{n}\left(1-a q^{n+1}\right) \frac{1-\lambda \xi_{n+1}}{1-\lambda \xi_{n}}, n \geq 0 \tag{42}\\
\lambda_{n}=\xi_{n}^{-1}, n \geq 1, \lambda_{0}=0 \tag{43}
\end{gather*}
$$

where

$$
\xi_{n}=\sum_{k=0}^{n-1} \frac{(q ; q)_{k}}{(a q ; q)_{k+1}} a^{k}, n \geq 1, \quad \xi_{0}=0
$$

Consequently, on account of Corollary 1 and (23), (31), (32), the linear form $\widetilde{u}=$ $\delta_{0}+\lambda x^{-1} u$ is H_{q}-semiclassical of class $\widetilde{s}=1$ for any $\lambda \neq \lambda_{n}, n \geq-1$ with $\lambda_{-1}=1-a$ and fulfils the functional equation (22) with

$$
\begin{equation*}
\widetilde{\Phi}(x)=x^{2}, \widetilde{\Psi}(x)=-(a q)^{-1}(q-1)^{-1} x\{x-1+a q\} . \tag{44}
\end{equation*}
$$

From (5) with $\tau=0$ and Table 1, the moments of \widetilde{u} are

$$
\begin{equation*}
(\widetilde{u})_{0}=1,(\widetilde{u})_{n}=\lambda(a q ; q)_{n-1}, n \geq 1 . \tag{45}
\end{equation*}
$$

In addition, regarding (3) the linear form \widetilde{u} is represented by the following discrete measure

$$
\begin{equation*}
\widetilde{u}=(a q ; q)_{\infty}\left\{\left(1-\frac{\lambda}{(a ; q)_{\infty}}\right) \delta_{0}+\lambda \sum_{n=0}^{+\infty} \frac{a^{n}}{(q ; q)_{n}} \delta_{q^{n}}\right\}, 0<a<1,0<q<1 . \tag{46}
\end{equation*}
$$

Indeed, (4) is fulfilled, for, putting $w_{n}(p)=\frac{a^{n}}{(q ; q)_{n}} q^{n p}, n, p \geq 0$, we have

$$
\frac{w_{n+1}(p)}{w_{n}(p)}=\frac{a q^{p}}{1-q^{n+1}} \longrightarrow a q^{p}, n \rightarrow+\infty, \forall p \geq 0
$$

and $a q^{p}<1, \forall p \geq 0$ if and only if $a<1$.
Also, by virtue of (11)-(12) and Table 1, we obtain successively

$$
\begin{align*}
& \widetilde{\beta}_{0}=\lambda ; \widetilde{\beta}_{n+1}=q^{n}\left\{a q\left(1-q^{n+1}\right) \frac{1-\lambda \xi_{n}}{1-\lambda \xi_{n+1}}+\left(1-a q^{n+1}\right) \frac{1-\lambda \xi_{n+1}}{1-\lambda \xi_{n}}\right\}, n \geq 0, \tag{47}\\
& \widetilde{\gamma}_{1}=\lambda(1-a q-\lambda) ; \widetilde{\gamma}_{n+1}=a q^{2 n}\left(1-q^{n}\right)\left(1-a q^{n+1}\right) \frac{\left(1-\lambda \xi_{n-1}\right)\left(1-\lambda \xi_{n+1}\right)}{\left(1-\lambda \xi_{n}\right)^{2}}, n \geq 1 . \tag{48}
\end{align*}
$$

Finally, we have all components to write the structure relation and the second order linear q-difference equation of \widetilde{P}_{n} according to (34)-(39).

Acknowledgment. We would like to thank the referee for his valuable review and for bringing certain references to our attention.

References

[1] T. S. Chihara, An introduction to orthogonal polynomials, Gordon and Breach, New York, 1978.
[2] E. B. Christoffel, Über die Gaussiche quadratur und eine verallge-meinerung derselben, J. für Reine und Angew. Math., 55(1858), 61-82.
[3] W. Hahn, Über orthogonalpolynome, die q-differenzengleichungen genügen, Math. Nachr., 2(1949), 4-34.
[4] J. H. Lee and K. H. Kwon, Division problem of moment functionals, Rocky Mount. J. Math., 32(2)(2002), 739-758.
[5] L. Khériji and P. Maroni, The H_{q}-classical orthogonal polynomials, Acta Appl. Math., 71(2002), 49-115.
[6] L. Khériji, An introduction to the H_{q}-semiclassical orthogonal polynomials, Methods and Applications of Analysis, $10(3)(2003), 387-412$.
[7] Kil H. Kwon, D. W. Lee, and S. B. Park, On -semiclassical orthogonal polynomials, Bull. K.M.S., 34(1)(1997), 63-79.
[8] Kil H. Kwon, D. W. Lee, B. H. Yoo, and S. B. Park, Hahn class orthogonal polynomials, Kyungpook Math. J., 38(1998), 259-281.
[9] F. Marcellan and P. Maroni, Sur l'adjonction d'une masse de Dirac à une forme régulière et semi-classique, Ann. Mat. Pura Appl., 162(4)(1992), 1-22.
[10] P. Maroni and I. Nicolau, On the inverse problem of the product of a form by a polynomial: The cubic case, Appl. Num. Math., 45(2003), 419-451.
[11] P. Maroni, Une théorie algébrique des polynômes orthogonaux. Application aux polynômes orthogonaux semi-classique, (C. Brezinski et al Editors.) IMACS, Ann. Comput. Appl. Math., 9 (Baltzer, Basel,1991), 95-130.
[12] P. Maroni, Sur la suite de polynômes orthogonaux associées à la forme $u=\delta_{c}+$ $\lambda(x-c)^{-1} L$, Period. Math. Hung., 21(3)(1990), 223-248.

[^0]: *Mathematics Subject Classifications: 42C05, 33C45.
 \dagger Faculté des Sciences de Gabès Route de Mednine 6029-Gabès, Tunisia
 \ddagger Institut Supérieur des Sciences Appliquées et de Technologie de Gabès Rue Omar Ibn El Khattab 6072-Gabès, Tunisia

