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Abstract

We present an approach for establishing an existence of oscillatory solutions
for the classical generator equation. Instead of well known second order van der
Poll differential equation we consider an integro-differential equation of first order
and apply the fixed point method by choosing the appropriate functional space
of oscillatory functions.

1 Introduction

In this paper we present a method of analysis of the classical generator circuit. Al-
though the method is demonstrated on the classical example it could be applied to the
analysis of wide class of more complicated problems, for instance, analysis of ladder
oscillator, 2-dimensional low-pass multimode oscillator, etc. (cf. [1] - [3]).

It is known that [1]-[3] the generator regimes are approximated by the harmonic
solutions. This means that voltages and currents are of the type U (t) = Um sin ωt,
I(t) = Im sin ωt . In many practical cases, however, this assumption is not adequate (cf.
[4] - [11]). That is why we show an existence of oscillatory solutions with non-uniformly
distributed zeros. We investigate the integro-differential equation corresponding to the
oscillator circuit [4] - [11] (see the figure below), instead of second order van der Pol
differential equation.
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122 The Classical Generator Equation

Indeed, the second Kirchoff’s law applied to the foregoing circuit yields

L
di(t)
dt

+ Ri(t) +
1
C

∫ t

t0

i(s)ds = M
dia
dt

(1)

with unknown function i = i(t) - the circuit current. The constants L, R, C and M
have the usually accepted sense (cf. [4] - [11]) while ia = ia(t) is the anode current.

In view of the relation between the grid voltage ug and current ug(t) = 1
C

∫ t

t0
i(s)ds

and taking into account the tube V-I characteristics ia = ia(ug), one can derive the
second order differential equation:

LC
d2ug(t)

dt2
+

(
RC − M

dia
dug

)
dug

dt
+ ug = 0. (2)

If ia = ia(ug) is a linear function, then obviously (2) becomes a linear differential
equation. If, however, the tube V-I characteristic is approximated by a third order
polynomial, ia(ug) = Ia0 + Sug − Qu3

g (Ia0,S,Q are prescribed constants), then dia

dug
=

S − 3Qu2
g. Consequently, substituting the foregoing expression in (2), we obtain a

nonlinear second order differential equation:

LC
d2ug(t)

dt2
+

(
RC − MS + 3MQu2

g

) dug

dt
= 0, (3)

which is the well known van der Pol equation considered in a lot of papers (cf. for
instance [4] - [11]).

Our approach is based on the primary integro-differential equation (1). We assume
the unknown function to be the current i = i(t). Then in view of dug/dt = i(t)/C and
substituting in (1) we obtain

L
di(t)
dt

+ Ri(t) +
1
C

∫ t

t0

i(s)ds = M

[
S − 3Q

(
1
C

∫ t

t0

i(τ )dτ

)2
]

i(t)
C

or introducing the denotations

A1 =
MS − RC

LC
, A2 = − 1

LC
, A3 = −3MQ

LC3
,

we have

di(t)
dt

= A1i(t) + A2

∫ t

t0

i(s)ds + A3i(t)
(∫ t

t0

i(s)ds

)2

≡ F

(
i(t),

∫ t

t0

i(s)ds

)
(4)

where F (x, y) = A1x + A2y + A3xy2.
Another example of integro-differential system arises in the analysis of line array of

oscillators [1]:

Ik(t) =
1
L0

∫ t

t0

[Uk(τ ) − Uk+1(τ )]dτ,
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Ik−1 − Ik = C
dUk

d(t)
+

1
L

∫ t

t0

Uk(τ )dτ + gUk(t) − g1Uk(t) + g3U
3
k (t), k = 1, 2, ..., N.

The usually accepted approach to solve the above system is to reduce it to the second
order system of van der Pol type (cf. [1]):

0 =
d2Uk(t)

dt2
− g1 − g

C

(
1 − 3g3

g1 − g
U2

k (t)
)

dUk

dt
+

(
1

LC
+

2
L0C

)
Uk(t)

− 1
L0C

Uk−1(t) −
1

L0C
Uk+1(t).

Instead of the above system one can consider the following one:

dUk(t)
dt

=
1

L0C

∫ t

t0

[Uk+1(τ ) + Uk−1(τ )]dτ −
(

1
LC

+
2

L0C

) ∫ t

t0

Uk(τ )dτ −

−g − g1

C
Uk(t) − g3

C
U3

k (t)

= 0,

which is of the type (4).

2 Φ-Contractive Mappings in Uniform Spaces

Here we recall fixed point theorems for Φ-contractive mappings in uniform spaces in-
troduced in [12]. The uniform spaces turn out a natural extension of the metric spaces.
The particular case of the uniform spaces are the locally convex topological vector
spaces whose topology is uniformizable (cf.[12]). Therefore the fixed point results from
[12] are valid in locally convex spaces, too.

By (X,=) we mean a Hausdorff (T2-separated) sequentially complete uniform space
whose uniformity is generated by a saturated family of pseudometrics

= = {dk(x, y) : k ∈ A} ,

where A is an index set. Let (Φ) = {Φk(t) : k ∈ A} be a family of functions (which we
shall call Φ -contractive) with the properties:

(Φ1) for every k ∈ A Φk(t) : R1
+ → R1

+ is monotone increasing and continuous
from the right;

(Φ2) for every k ∈ A it follows 0 < Φk(t) < t for t > 0 (by right continuity
Φk(0) = 0).

Let j : A → A be a mapping of the index set A into itself. The iterations of j can be
defined as follows:j0(k) = k, jn(k) = j

(
jn−1(k)

)
(n = 1, 2, ...). A mapping T : X → X

is said to be Φ-contractive if dk(Tx, Ty) ≤ Φk(dj(k)(x, y)) for every x, y ∈ X and k ∈ A.
THEOREM 2.1 ([12]). Let the following conditions be fulfilled:
1) the operator T : X → X is Φ-contractive;
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2) for every k ∈ A there exists a function Φk(t) which possesses the properties of
(Φ) such that sup

{
Φjn(k)(t) : n = 0, 1, 2, ...

}
≤ Φk(t) and Φk(t)/t is monotone non-

decreasing;
3) there is x0 ∈ X such that djn(k)(x0, Tx0) ≤ q(k, x0) <∝ (n = 0, 1, 2, ...) for some

q > 0.
Then T has at least one fixed point in X.

A uniform space (X,=) is said to be j-bounded if for every k ∈ A and x, y ∈ X
there exists q = q(x, y, k) such that djn(k)(x, y) ≤ q(x, y, k) <∝ (n = 0, 1, 2, ...). It is
easy to verify that j-boundedness of (X,=) implies condition 3) of the last Theorem
2.1.

THEOREM 2.2 ([12]). If to the conditions of Theorem 2.1 we add the assumption
that X is j-bounded, then T has a unique fixed point in X.

3 An Existence of Oscillatory Solutions

Now we are able to formulate the main problem for (4): to find an oscillatory solution
of (4) on an interval [t0,∝). Without loss of generality one can choose the initial value
to be i(t0) = i0 = 0.

Let S = {tk}∝k=0 be an increasing sequence of real numbers satisfying the following
conditions:

(t1) limk→∝ tk =∝ ;
(t2) 0 < inf {tk+1 − tk : k = 0, 1, 2, ...} ≤ sup {tk+1 − tk : k = 0, 1, 2, ...} ≤ T0 <∝.

Let CS [t0,∝)
(
C1

S[t0,∝)
)

be the set of all continuously (continuously differentiable)
functions f(t) : [t0,∝) → (− ∝,∝) with zeros at S, that is, f(tk) = 0, (k = 0, 1, ...).
Introduce the sets

M =
{

f ∈ CS[t0,∝) :
∫ tk+1

tk

f(t)dt = 0; k = 0, 1, 2, ...

}

M1 =
{

f ∈ C1
S [t0,∝) :

∫ tk+1

tk

f(t)dt = 0; k = 0, 1, 2, ...

}
.

Then it is obvious every primitive function F (t) =
∫ t

t0
f(τ )dτ has zeros at S provided

f(.) ∈ M .

LEMMA 3.1. Equation (4) has a continuously differentiable oscillatory solution
i(.) ∈ M1 iff the operator G has a fixed point in M , that is,

i(t) = (Gi)(t) (5)

where (Gi)(t) =: i(tk+1) +
∫ t

tk
F

(
i(s),

∫ s

t0
i(τ )dτ

)
ds ≡

∫ t

tk
F

(
i(s),

∫ s

t0
i(τ )dτ

)
ds, t ∈

[tk, tk+1] (k = 0, 1, 2, 3, ...) (cf.[13]).

REMARK 1. Note that
∫ t

t0
i(s)ds =

∫ tk

t0
i(s)ds+

∫ t

tk
i(s)ds =

∫ t

tk
i(s)ds, t ∈ [tk, tk+1].
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PROOF. Let i(.) ∈ M1 be an oscillatory solution of (4). Then integrating (4) on
every interval [tk, t] ⊂ [tk, tk+1](k = 0, 1, 2, ...) we obtain

i(t) =
∫ t

tk

F

(
i(s),

∫ s

t0

i(τ )dτ

)
ds (6)

that is, G has a fixed point. In what follows we show that the fixed point belongs to
M . But i(.) ∈ M1 and substituting t = tk+1 we obtain

i(tk+1) =
∫ tk+1

tk

F

(
i(s),

∫ s

tk

i(τ )dτ

)
ds = 0.

Following [13] we obtain that

1
tk+1 − tk

∫ tk+1

tk

[
i(s) + sF

(
i(s),

∫ s

t0

i(τ )dτ

)]
ds = i(tk+1) = 0 (k = 0, 1, 2, ...).

Consequently (5) can be written in the form:

i(t) =
1

tk+1 − tk

∫ tk+1

tk

[
i(s) + sF

(
i(s),

∫ s

t0

i(τ )dτ

)]
ds +

+
∫ t

tk

F

(
i(s),

∫ s

t0

i(τ )dτ

)
ds, (7)

for t ∈ [tk, tk+1], (k = 0, 1, 2, ...). Then integrating (7) we have:
∫ tk+1

tk

i(t)dt

=
∫ tk+1

tk

[
i(s) + sF

(
i(s),

∫ s

t0

i(τ )dτ

)]
ds +

∫ tk+1

tk

∫ τ

tk

F

(
i(s),

∫ s

t0

i(t)dt

)
dsdτ

=
∫ tk+1

tk

i(s)ds +
∫ tk+1

tk

sF

(
i(s),

∫ s

tk

i(τ )dτ

)
ds

+
∫ tk+1

tk

∫ tk+1

τ

F

(
i(s),

∫ s

tk

i(t)dt

)
dτds

=
∫ tk+1

tk

sF

(
i(s),

∫ s

tk

i(τ )dτ

)
ds +

∫ tk+1

tk

(tk+1 − τ )F
(

i(τ ),
∫ τ

tk

i(t)dt

)
dτ

= tk+1

∫ tk+1

tk

F (i(τ ),
∫ τ

tk

i(t)dt)dτ

= 0,

which implies that i(.) ∈ M .
Conversely, if G has a fixed point in M then this fixed point is an oscillatory solution

of (4). Since F
(
i(s),

∫ s

tk
i(τ )dτ

)
is continuous function on [tk, tk+1] and then i(t) from

(5) is differentiable function and consequently differentiating i(t) = (Gi)(t) we obtain
(4).
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So the Lemma 3.1 is proved.
Introduce the set X =

{
f(.) ∈ M : |f(t)| ≤ Ieµ(t−tk), t ∈ [tk, tk+1], k = 0, 1, 2, ...

}

for some µ ∈ (0,∝). Here I > 0 and µ are constants which will be described below.
The set X turns out into a uniform space with respect to the family of pseudometrics
(cf. [12])

ρk(f, f ) = sup
{

e−µ(t−tk)
∣∣f(t) − f (t)

∣∣ : t ∈ [tk, tk+1]
}

The index set here is A = {0, 1, ..., k, ...}.
We apply the results from Section II.

THEOREM 3.1. Let the constants µ, I, T0 > 0 be chosen in such a way that the
following inequalities be fulfilled:

2T0

[(
|A1| +

|A2|
µ

)
1

2 − µT0
+

3|A3|I2

µ2(2 − 3µT0

]
= K < 1; µT0 <

2
3
.

Then there exists a unique continuous oscillatory solution of (6) belonging to X. This
solution can be obtained as a limit of successive approximations.

PROOF. Define the operator G : X → X as in (7). First we show that G maps
X into itself. It is easy to verify that (Gf)(t) is a continuous and oscillatory function.
Indeed, (Gf)(t) is a continuous function as a composition of continuous functions. In
the proof of Lemma 3.1 we have proved that (Gf)(tk) = 0, (k = 0, 1, ...) . Integrating
(7) we have:

∫ tk+1

tk

(Gf)(t)dt

=
∫ tk+1

tk

[
f(s) + sF (f(s),

∫ s

t0

f(τ )dτ )
]

ds +
∫ tk+1

tk

∫ τ

tk

F (f(s),
∫ s

t0

f(t)dt)dsdτ

=
∫ tk+1

tk

f(s)ds +
∫ tk+1

tk

sF (f(s),
∫ s

tk

f(τ )dτ )ds +
∫ tk+1

tk

∫ tk+1

τ

F (f(s),
∫ s

tk

f(t)dt)dτds

=
∫ tk+1

tk

sF (f(s),
∫ s

tk

f(τ )dτ )ds +
∫ tk+1

tk

(tk+1 − τ )F (f(τ ),
∫ τ

tk

f(t)dt)dτ

= tk+1

∫ tk+1

tk

F (f(τ ),
∫ τ

tk

f(t)dt)dτ = 0.

It remains to show that if |i(t)| ≤ Ieµ(t−tk) ⇒ |(Gi)(t)| ≤ eµ(t−tk). In view of the
inequalities

eh − 1
h

=
1
h

(
h +

h2

2!
+

h3

3!
+ ...

)
≤ 1 +

h

2
+

(
h

2

)2

+ +... ≤ 1
1 − (h/2)

=
2

2 − h
(8)
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which holds for h < 2 and we obtain for t ∈ [tk, tk+1] that

|(Gf)(t)| ≤ |A1|
∣∣∣∣
∫ t

tk

f(s)ds

∣∣∣∣ + |A2|
∣∣∣∣
∫ t

tk

∫ τ

t0

f(s)dsdτ

∣∣∣∣ + |A3|

∣∣∣∣∣

∫ t

tk

i(τ )
(∫ τ

t0

f(s)ds

)2

dτ

∣∣∣∣∣

≤ |A1|I
∫ t

tk

eµ(s−tk)ds + |A2|I
∫ t

tk

∫ τ

tk

eµ(s−tk)dsdτ

+|A3|I3

∫ t

tk

eµ(τ−tk)

(∫ τ

tk

eµ(s−tk)ds

)2

dτ,

hence,

|(Gf)(t)| ≤ |A1|I
eµ(t−tk) − 1

µ
+ |A2|I

∫ t

tk

eµ(s−tk) − 1
µ

ds

+|A3|I3

∫ t

tk

eµ(τ−tk)

(
eµ(τ−tk) − 1

µ

)2

dτ

≤ |A1|I(eµ(tk+1−tk) − 1)
µ

+
|A2|I(eµ(tk+1−tk) − 1)

µ2
+

|A3|I3

µ2

|A2|I(e3µ(tk+1−tk) − 1)
3µ

≤ |A1|I(eµT0 − 1)
µT0

T0 +
|A2|I(eµT0 − 1)

µµT0
T0 +

|A3|I3

µ2

|A2|I(e3µT0 − 1)
3µT0

T0

≤ |A1|I.2T0

2 − µT0
+

|A2|I2T0

µ(2 − µT0)
+

|A3|I3

µ2

2T0

2 − 3µT0

≤ I2T0

(
|A1| + |A2|/µ

2 − µT0
+

|A3|I2

µ2(2 − 3µT0)

)

≤ IKeµ(t−tk

< Ieµ(t−tk).

Therefore the operator G maps X into itself.

Now we show G is an Φ-contractive operator. Indeed, for every f, f ∈ X and
t ∈ [tk, tk+1], we have

|(Gf)(t) − (Gf )(t)|

≤ |A1|
∫ t

tk

|f(τ ) − f (τ )|dτ + |A2|
∫ t

tk

∫ τ

t0

|f(θ) − f (θ)|dθdτ

+|A3|
∫ t

tk

∣∣∣∣∣f(τ )
(∫ τ

t0

f(θ)dθ)
)2

− f (τ )
(∫ τ

t0

f(θ)dθ

)2
∣∣∣∣∣ dτ

+|A3|
∫ t

tk

∣∣∣∣∣f (τ )
(∫ τ

t0

f(θ)dθ)
)2

− f (τ )
(∫ τ

t0

f (θ)dθ

)2
∣∣∣∣∣ dτ,
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hence

|(Gf)(t) − (Gf )(t)|

≤ ρk(f, f )
(
|A1|
µ

+
|A2|
µ2

)[
eµ(t−tk) − 1

]

+|A3|I2

∫ t

tk

∣∣f(τ ) − f(τ )
∣∣
(

eµ(t−tk) − 1
µ

)2

dτ

+|A3|I
∫ t

tk

eµ(τ−tk)

∣∣∣∣∣

(∫ τ

tk

f(θ)dθ

)2

−
(∫ τ

tk

f (θ)dθ

)2
∣∣∣∣∣dτ

≤ ρk(f, f )
(
|A1|
µ

+
|A2|
µ2

)(
eµT0 − 1

)
+ ρk(f, f )

|A3|I2

µ2

∫ t

tk

e3µ(τ−tk)dτ

+2|A3|I2

∫ t

tk

eµ(τ−tk) e
µ(τ−tk) − 1

µ

∫ τ

tk

∣∣f(θ) − f (θ)
∣∣ dθdτ

≤ ρk(f, f )
(
|A1|+

|A2|
µ

)
eµT0 − 1

µT0
T0 + ρk(f, f )

|A3|I2

µ2

3eµT0 − 1
3µT0

T0

+ρk(f, f )2|A3|I2

∫ t

tk

eµ(τ−tk)

(
eµ(τ−tk) − 1

µ

)2

dτ

≤ ρk(f, f )
(
|A1|+

|A2|
µ

)
eµT0 − 1

µT0
T0 + ρk(f, f )

|A3|I2

µ2

3eµT0 − 1
3µT0

T0

+ρk(f, f )
2|A3|I2

µ2

3eµT0 − 1
3µT0

T0

≤ ρk(f, f )eµ(t−tk).2T0

[(
|A1| +

|A2|
µ

)
1

2 − µT0
+

3|A3|I2

µ2

1
2 − 3µT0

]

= Kρk(f, f )eµ(t−tk).

Multiplying by e−µ(t−tk) and taking the supremum on [tk, tk+1] we obtain ρk(Gf, Gf) ≤
Kρk(f, f ) . Here j is the identity mapping. Then obviously the uniform space X is
j-bounded. Indeed, for every f, f ∈ X the following inequality holds ρjn(k)(f, f ) =
ρk(f, f ) <∝ (n = 0, 1, 2...). Therefore in view of Theorems 2.1 and 2.2 the operator G
has a unique fixed point which is a solution of (5). Theorem 3.1 is thus proved.

4 Conclusions

We have:

i(t) =
∫ t

k

{
A1i(τ ) + A2

∫ τ

tk

i(θ)dθ + A3i(τ )
[∫ τ

tk

i(θ)dθ

]2
}

dτ, t ∈ [tk, tk+1] (k = 0, 1, ...).
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Let us choose the 0-approximation i(0)(t) = Isin
2π(t−tk)
tk+1−tk

, t ∈ [tk, tk+1]. Then for the
first approximation we obtain:

i(1)(t) = A1

∫ t

tk

i(0)(τ )dτ + A2

∫ t

tk

∫ τ

tk

i(0)(θ)dθdτ + A3

∫ t

tk

i(0)(τ )
[∫ τ

tk

i(0)(θ)dθ

]2

dτ

= A1

∫ t

tk

I sin
2π(τ − tk)
tk+1 − tk

dτ + A2

∫ t

tk

∫ τ

tk

I sin
2π(θ − tk)
tk+1 − tk

dθdτ

+A3

∫ t

tk

I sin
2π(τ − tk)
tk+1 − tk

[∫ τ

tk

I sin
2π(θ − tk)
tk+1 − tk

dθ

]2

dτ

=
A1I(tk+1 − tk)

2π

(
1 − cos

2π(t − tk)
tk+1 − tk

)
+

A2I(tk+1 − tk)(t − tk)
2π

−A2I(tk+1 − tk)2

(2π)2
sin

2π(t − tk)
tk+1 − tk

−
A3I

3(tk+1 − tk)3

(2π)3

(
cos

2π(t − tk)
tk+1 − tk

− cos2
2π(t − tk)
tk+1 − tk

+
1
3

cos3
2π(t − tk)
tk+1 − tk

−
1
3

)
.

Then ρk

(
i(0), i(1)

)
≤ A1IT0

π
+ A2IT2

0
2π

(
1 + 1

2π

)
+ A3I3T3

0
(2π)3

(
2 + 2

3

)
+ I.Therefore if i∗(t) is

the solution then ρk

(
i(∗), i(n)

)
≤ KnI

1−K

[
A1T0

π + A2T2
0 (2π+1)
4π2 + A3I2T3

0
3π3 + 1

]
.

REMARK 2. The inequality from Theorem 3.1 implies that the convergence be-
comes faster provided the constants µ and T0 to be chosen in a suitable way.
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