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Abstract

Unitary symmetric completions of complex symmetric matrices are obtained
via Autonne decomposition. The problem arises from atomic physics. Of inde-
pendent interest unitary skew symmetric completions of skew symmetric matrices
are also obtained by Hua decomposition.

1 Introduction

A recent theory in atomic physics, called phase-integral halfway-house variational con-
tinuum distorted wave theory (PIVCDW) [1], requires finding a symmetric unitary
matrix X (that is, X is coninvolutory: XX = I) whose leading principal submatrix
is S/‖S‖, where S ∈ Cn×n is a given complex nonsingular symmetric matrix. The
resulting matrix X can be applied to correct a loss of unitarity of a scattering ma-
trix due to the use of a finite basis set in the solution of a collision problem. We
call the problem a unitary symmetric completion of the symmetric matrix S. Brown
and Crothers [1] studied the problem and obtained the following result for providing
some unitary completions by rather lengthy computation. Let S∗ denote the complex
conjugate transpose of S.

THEOREM 1.1 (Brown and Crothers). Let S be a complex symmetric non-singular
matrix with singular values s1 ≥ s2 ≥ · · · ≥ sn. Let wj, j = 1, . . . , n, be the (unit)
eigenvectors of SS∗ corresponding to the eigenvalues of s2

j , j = 1, . . . , n. The complex
symmetric matrix

X =
1

‖S‖

(
S A

AT Z

)
(1)

is unitary, where

A = [w2 · · · wn] diag((s2
1 − s2

2)
1/2eiθ2 , . . . , (s2

1 − s2
n)1/2eiθn) ∈ Cn×(n−1),

Z = diag (s2e
iφ2 , . . . , sneiφn ),

and
φj = π − arg (wT

j Swj) − 2θj , j = 2, . . . , n. (2)
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The matrix X in (1) is smallest in size.
However Theorem 1.1 is incorrect, but can be easily fixed, due to a minor error in

[1, p.2927] (which occurred when formula (23) was deduced from (21) incorrectly).
EXAMPLE 1.2. Let S = diag (s1, s2) with s1 > s2 > 0. According to the construc-

tion in Theorem 1.1, pick w1 = e1, w2 = e2, where I2 = [e1 e2], and

Z = (s2e
iφ2), A =

(
0

(s1 − s2)1/2eiθ2

)
,

with θ2, φ2 ∈ R so that

X =
1
s1




s1 0 0
0 s2 (s2

1 − s2
2)1/2eiθ2

0 (s2
1 − s2

2)1/2eiθ2 s2e
iφ2


 .

Notice that arg (wT
2 Sw2) = 0. For X to be a unitary matrix, we must have e2iθ2+eiφ2 =

0. Now φ2 = π + 2θ2 would work but φ2 = π − 2θ2 (θ2 6 =0) would not in general.
In [1, p.2927-2928] a unitary completion was given for an S ∈ C3×3 but the choice

θ2 = θ3 = 0 was made so that the error (2) was not manifested. The condition (2)
should be replaced by

φj = π − arg (wT
j Swj) + 2θj , j = 2, . . . , n. (3)

With the above adjustment, Theorem 1.1 still fails to be true if some eigenvalue of SS∗

is not simple.
EXAMPLE 1.3. Let S = diag (

√
3, 1, 1). The eigenvalues of SS∗ are 3, 1, 1.

Clearly w2 = (1/
√

2) (0, 1, i)T and w3 = (1/
√

2) (0, 1,−i)T are eigenvectors of SS∗

corresponding to 1. According to the construction in Theorem 1.1,

A =
√

2[eiθ2w2 | eiθ3w3],
Z = diag (eiφ2 , eiφ3),

XX∗ =
1
3

(
SS∗ + AA∗ SA + AZ∗

AT S∗ + ZA∗ ZZ∗ + AT A

)
.

However

SA + AZ∗ = [e−iθ2w2 + ei(θ2−φ2)w2 | e−iθ3w3 + ei(θ3−φ3)w3]
= [e−iθ2w3 + ei(θ2−φ2)w2 | e−iθ3w2 + ei(θ3−φ3)w3]
6= 03×2,

for any θj and φj, j = 2, 3, since w2 and w3 are linearly independent. So X is not
unitary.

Our first goal is to give a complete description of all possible unitary symmetric
completions of a general complex symmetric matrix S ∈ Cn×n. The result, Theorem
2.1, is given in Section 2 by using Autonne decomposition. The advantage of using
Autonne decomposition is that it provides canonical unit eigenvectors for SS∗ without
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getting into the trouble in Example 1.3. Based on Theorem 2.1, we remark that (1)
If s1 is not simple, the size of X could be even smaller. (2) The singular case is also
handled. (3) Theorem 1.1 does not sort out all possible unitary completions, even those
of smallest size.

Of independent interest, we study the unitary completion problem for skew sym-
metric matrices in Section 3.

2 Unitary Symmetric Completions for Symmetric

Matrices

The singular values of a matrix A ∈ Cn×n are the square roots of the eigenvalues of AA∗

or A∗A. We will find all unitary symmetric completions via Autonne decomposition
of a complex symmetric matrix S ∈ Cn×n [4, p.204-205] which asserts that there is a
unitary U ∈ Cn×n such that

UT SU = s1In1 ⊕ s2In2 ⊕ · · · ⊕ skInk , (4)

where s1 > s2 > · · · > sk are the distinct singular values of S and sj has multiplicity
nj, j = 1, . . . , k (n1 + · · ·+ nk = n).

THEOREM 2.1. Let S ∈ Cn×n be a nonzero complex symmetric matrix with
Autonne decomposition (4). Then

X =
1

‖S‖

(
S A

AT Z

)
∈ C(n+m)×(n+m), (5)

is a unitary symmetric matrix if and only if

1. the distinct singular values of Z are s1 > s2 > · · · > sk where sj has multiplicity
nj, j = 2, . . . , k, and s1 has multiplicity m−n+n1, that is, there exists a unitary
matrix V ∈ Cm×m such that

V T ZV = s1Im−n+n1 ⊕ s2In2 ⊕ · · · ⊕ skInk ∈ Cm×m,

and

2.

UT AV =
(

0n1×(m−n+n1) 0
0 A0

)
,

where A0 ∈ C(n−n1)×(n−n1) is of the form

A0 = (s2
1 − s2

2)
1/2A2 ⊕ (s2

1 − s2
3)

1/2A3 ⊕ · · · ⊕ (s2
1 − s2

k)1/2Ak,

and iAj ∈ Cnj×nj , j = 2, . . . , k, are orthogonal matrices except for iAk when
sk = 0 (in which case Ak is unitary).
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When m = n − n1, the unitary completions (5) are smallest in size.
PROOF. Let

X =
1
s1

(
S A

AT Z

)
∈ C(n+m)×(n+m)

be a unitary symmetric completion of S ∈ Cn×n. Let Z0 := V T ZV = diag (z1, . . . , zm),
z1 ≥ · · · ≥ zm be Autonne decomposition of the symmetric Z ∈ Cm×m. So

X0 :=
(

UT 0
0 V T

)
X

(
U 0
0 V

)
=

1
s1

(
UT SU UT AV

V T AT U V T ZV

)
=

1
s1

(
S0 A′

0

A′T
0 Z0

)

is unitary, where A′
0 := UT AV and S0 := UT SU = s1In1 ⊕ s2In2 ⊕ · · · ⊕ skInk . Now

X∗
0X0 = In+m

which is equivalent to

S2
0 + A′

0A
′T
0 = s2

1In (6)
A′∗

0A
′
0 + Z2

0 = s2
1Im (7)

S0A
′
0 + A′

0Z0 = 0n×m. (8)

From (6),
A′

0A
′∗
0 = 0n1×n1 ⊕ (s2

1 − s2
2)In2 ⊕ · · · ⊕ (s2

1 − s2
k)Ink , (9)

and from (7),
A′∗

0A
′
0 = s2

1Im − diag (z2
1 , . . . , z2

m).

The eigenvalues of A′
0A

′∗
0 and A′∗

0A
′
0 are identical (counting multiplicities) except some

zeros. So
Z0 = s1Ih ⊕ s2In2 ⊕ · · · ⊕ skInk ,

where h := m − n + n1, and

A′∗
0A

′
0 = 0h×h ⊕ (s2

1 − s2
2)In2 ⊕ · · · ⊕ (s2

1 − s2
k)Ink . (10)

It follows from (9) and (10) that

A′
0 =

(
0n1×h 0

0 A0

)
,

where A0 ∈ C(n−n1)×(n−n1). By (8) one has

(s2In2 ⊕ · · · ⊕ skInk)A0 + A0(s2In2 ⊕ · · · ⊕ skInk) = 0(n−n1)×(n−n1).

Notice that s2 > s3 > · · · > sk so that by block multiplication, we have

A0 = B2 ⊕ B3 ⊕ · · · ⊕ Bk,

where Bj ∈ iRnj×nj , j = 2, . . . , k − 1. If sk 6 =0, then Bk ∈ iRnk×nk; if sk = 0, then
Bk ∈ Cnk×nk . Then by (9) or (10), A0 is of the following diagonal block form

(s2
1 − s2

2)
1/2A2 ⊕ (s2

1 − s2
3)

1/2A3 ⊕ · · · ⊕ (s2
1 − s2

k)1/2Ak,
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where iAnj ∈ Rnj×nj is an orthogonal matrix for j = 2, . . . , k, except for iAk when
sk = 0. If sk = 0, then Ak is unitary.

Conversely, (5) is a unitary symmetric completion of S.
Clearly when h = 0, that is, m = n − n1, X is smallest in size.

COROLLARY 2.2. Let S ∈ Cn×n be a complex symmetric nonsingular matrix
with singular values s1 > s2 > · · · > sn > 0 with Autonne decomposition UT SU =
diag (s1, . . . , sn), where U is unitary. Then

X =
1

‖S‖

(
S A

AT Z

)

is a unitary symmetric matrix of smallest size if and only if X ∈ C(2n−1)×(2n−1) and

V ZV T = diag (s2, . . . , sn),

for some unitary V ∈ C(n−1)×(n−1), and

UT AV =
(

01×(n−1)

A0

)
,

where
A0 = diag (±i(s2

1 − s2
2)

1/2, · · · ,±i(s2
1 − s2

n)1/2) ∈ Cn×(n−1).

REMARK 2.3. One can deduce the corrected version of Theorem 1.1 from Corollary
2.2. Of course, we assume s1 > s2 > · · · > sn > 0 due to Example 1.3. By Autonne
decomposition,

S0 := UT SU = diag (s1, . . . , sn).

Then S = US0U
∗ and SS∗ = US2

0U
∗
. Hence uj is a unit eigenvector of SS∗ corre-

sponding to the eigenvalue s2
j , j = 1, . . . , n. Since all the eigenvalues of SS∗ are simple,

the unit eigenvector wj, in Theorem 1.1 must be a scalar multiple of uj, say,

uj = eiξjwj , j = 2, . . . , n.

One can easily recover ξj via w∗
j Swj = e2iξsj so that

2ξj = arg (w∗
j Swj), j = 1, . . . , n. (11)

From this point of view, the vectors uj, j = 1, . . . , n, are the canonical unit eigenvectors
of SS∗ with respect to transforming S into a diagonal matrix with a unitary congruence
UT SU = S0. Let

Λ = diag ((s2
1 − s2

2)
1/2, . . . , (s2

1 − s2
n)1/2).

By Theorem 2.1, we may choose

A0 = −i Λ, V = diag (e−iφ2/2, . . . , e−iφn/2).
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so that Z = diag (s2e
iφ2 , . . . , sneiφn ). By Theorem 2.1,

A = U

(
0

A0

)
V ∗

= [u2 · · · un]A0 diag (eiφ2/2, . . . , eiφn/2)
= [w2 · · · wn] diag(ei(−π/2+ξ2+φ2/2), . . . , ei(−π/2+ξn+φn/2)) Λ.

Let θj := −π/2 + ξj + φj/2. Clearly φj = π − 2ξj + 2θj, j = 1, . . . , n, that is,
φj = π − arg (w∗

j Swj) + 2θj by (11). This is just (3).

3 Unitary Skew Symmetric Completions for Skew
Symmetric Matrices

Of independent interest, we consider the unitary skew symmetric completion problem
for a given complex skew symmetric matrix S ∈ Cn×n. The singular values of a complex
skew symmetric matrix A occur in pairs, except 0 when n is odd [4, Problem 25, p.217].
Indeed according to Hua decomposition [2, Theorem 7, p.481], there exists a unitary
matrix U ∈ Cn×n such that

UT SU =

{
s1J2n1 ⊕ s2J2n2 ⊕ · · · ⊕ skJ2nk if n is even
s1J2n1 ⊕ s2J2n2 ⊕ · · · ⊕ skJ2nk ⊕ (0) if n is odd,

(12)

where s1 > s2 > · · · > sk are the distinct eigenvalues of S and J2p ∈ C2p×2p is the
following diagonal block matrix

J2p =
(

0 1
−1 0

)
⊕

(
0 1
−1 0

)
⊕ · · · ⊕

(
0 1
−1 0

)
.

A unitary matrix A ∈ C2n×2n is said to be symplectic if AT J2nA = J2n. Notice
that our definition is different from [3, p.445] due to a different choice of skew sym-
metric bilinear form, namely J2n. Nevertheless, the two differ by a (fixed) permutation
similarity. Our choice is made for easier presentation of the proof of the following
theorem.

THEOREM 3.1. Let S ∈ Cn×n be a nonzero complex skew symmetric matrix with
Hua decomposition (12). Then

X =
1

‖S‖

(
S A

−AT Z

)
∈ C(m+n)×(m+n)

is a unitary skew symmetric matrix if and only if

1. the singular values of Z are those of S, counting multiplicities, except s1 whose
multiplicity is 2h := m − n + 2n1, that is, there exists a unitary V ∈ Cm×m such
that

V T ZV =

{
s1J2h ⊕ s2J2n2 ⊕ · · · ⊕ skJ2nk if n is even
s1J2h ⊕ s2J2n2 ⊕ · · · ⊕ skJ2nk ⊕ (0) if n is odd,

(so n and m have the same parity), and
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2.

UT AV =

{
02n1×2h ⊕ A0 if n is even
02n1×2h ⊕ A0 ⊕ (s1) if n is odd,

where

A0 = (s2
1 − s2

2)
1/2A2 ⊕ (s2

1 − s2
3)

1/2A3 ⊕ · · · ⊕ (s2
1 − s2

k)1/2Ak

such that iAj ∈ C2nj×2nj , j = 2, . . . , k, are symplectic matrices except for iAk

when sk = 0. When sk = 0, Ak is unitary.

When h = 0, that is, m = n − 2n1, X is smallest in size.
PROOF. We now provide a proof when n, the size of S, is even. The odd case is

similar. Let
S0 := UT SU = s1J2n1 ⊕ s2J2n2 ⊕ · · · ⊕ skJ2nk,

and

Z0 := V T ZV =

{
z1J2m1 ⊕ z2J2m2 ⊕ · · · ⊕ z`J2m` if m is even
z1J2m1 ⊕ z2J2m2 ⊕ · · · ⊕ z`J2m` ⊕ (0) if m is odd

be Hua decompositions of the skew symmetric S ∈ Cn×n and Z ∈ Cm×m, where
z1 ≥ · · · ≥ z`. Clearly X is unitary if and only if

X0 :=
(

UT 0
0 V T

)
X

(
U 0
0 V

)
=

1
s1

(
S0 A′

0

−A′T
0 Z0

)

is unitary, where A′
0 = UT AV ∈ Cn×m. It amounts to X∗

0X0 = In+m, that is,

−S2
0 + A′

0A
′T
0 = s2

1In (13)
A′∗

0A
′
0 − Z2

0 = s2
1Im (14)

−S0A
′
0 − A′

0Z0 = 0n×m. (15)

Now (13) and (14) yield

A′
0A

′
0
∗ = 02n1 ⊕ (s2

1 − s2
2)I2n2 ⊕ · · · ⊕ (s2

1 − s2
k)I2nk ,

A′
0
∗A′

0 =

{
s2
1Im − [z2

1I2m1 ⊕ z2
2I2m2 ⊕ · · · ⊕ z2

` I2m` ] if m is even
s2
1Im − [z2

1I2m1 ⊕ z2
2I2m2 ⊕ · · · ⊕ z2

` I2m` ⊕ (0)] if m is odd,

where z1 ≥ · · · ≥ z`. Because the singular values of A′
0
∗
A0 and A′

0A
′
0
∗ are identical

(counting multiplicities) except for some zeros, m must be even and

Z0 = s1J2h ⊕ s2J2n2 ⊕ · · · ⊕ skJ2nk ,

2h := m − n − 2n1. Hence

A′
0 =

(
02n1×2h 0

0 A0

)
,
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where A0 ∈ C(n−2n1)×(n−2n1) and

A0A
∗
0 = A∗

0A0 = (s2
1 − s2

2)I2n2 ⊕ · · · ⊕ (s2
1 − s2

k)I2nk . (16)

Now (15) implies that

(s2J2n2 ⊕ · · · ⊕ skJ2nk)
T A0 − A0(s2J2n2 ⊕ · · · ⊕ skJ2nk) = 0. (17)

Multiplying both sides of (17) by s2J2n2 ⊕ · · · ⊕ skJ2nk from the left, we have

(s2
2I2n2 ⊕ · · · ⊕ s2

kI2nk)A0 − (s2J2n2 ⊕ · · · ⊕ skJ2nk)A0(s2J2n2 ⊕ · · · ⊕ skJ2nk) = 0.

Since s2 > · · · > sk, by straightforward computation,

A0 = (s2
1 − s2

2)
1/2A2 ⊕ (s2

1 − s2
3)

1/2A3 ⊕ · · · ⊕ (s2
1 − s2

k)1/2Ak, (18)

where Aj ∈ C2nj×2nj , j = 2, . . . , k. By (16), each Aj is a unitary matrix. Substituting
(18) into (17) yields

J2njAj + AjJ2nj = 0, j = 2, . . . , k,

except for Ak when sk = 0. Since Aj is unitary, iAj is symplectic, j = 1, . . . , k except
Ak when sk = 0. More precisely, Aj is of the following 2×2 block form Aj = (Ast)nj×nj :

Ast =
(

ast bst

bst −ast

)
, ast, bst ∈ C,

except for Ak when sk = 0.
Conversely it is easy to see that (5) is a unitary completion of S.
Clearly X is smallest in size if h = 0.
Acknowledgement: In the original manuscript the authors mistakenly attributed

Autonne decomposition to Takagi and Hua decomposition to Youla [7, Corollary 2,
p.701]. The authors thank Prof. Roger Horn for pointing out that [4, p.204] attributes
Autonne decomposition to Takagi, but in [5, p.136] the attribution is corrected. This
fundamental canonical form has been re-discovered many times; see [4, p.218]. He
also pointed out the general dilation problem was solved by Thompson and Kuo [6,
Theorem 2, p.349]. See [5, p.64].
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