Unitary Completions Of Complex Symmetric And Skew Symmetric Matrices*

Tin-Yau Tam and Wen Yan ${ }^{\dagger}$

Received 18 April 2006

Abstract

Unitary symmetric completions of complex symmetric matrices are obtained via Autonne decomposition. The problem arises from atomic physics. Of independent interest unitary skew symmetric completions of skew symmetric matrices are also obtained by Hua decomposition.

1 Introduction

A recent theory in atomic physics, called phase-integral halfway-house variational continuum distorted wave theory (PIVCDW) [1], requires finding a symmetric unitary matrix X (that is, X is coninvolutory: $X \bar{X}=I$) whose leading principal submatrix is $S /\|S\|$, where $S \in \mathbb{C}_{n \times n}$ is a given complex nonsingular symmetric matrix. The resulting matrix X can be applied to correct a loss of unitarity of a scattering matrix due to the use of a finite basis set in the solution of a collision problem. We call the problem a unitary symmetric completion of the symmetric matrix S. Brown and Crothers [1] studied the problem and obtained the following result for providing some unitary completions by rather lengthy computation. Let S^{*} denote the complex conjugate transpose of S.

THEOREM 1.1 (Brown and Crothers). Let S be a complex symmetric non-singular matrix with singular values $s_{1} \geq s_{2} \geq \cdots \geq s_{n}$. Let $w_{j}, j=1, \ldots, n$, be the (unit) eigenvectors of $S S^{*}$ corresponding to the eigenvalues of $s_{j}^{2}, j=1, \ldots, n$. The complex symmetric matrix

$$
X=\frac{1}{\|S\|}\left(\begin{array}{cc}
S & A \tag{1}\\
A^{T} & Z
\end{array}\right)
$$

is unitary, where

$$
\begin{gathered}
A=\left[w_{2} \cdots w_{n}\right] \operatorname{diag}\left(\left(s_{1}^{2}-s_{2}^{2}\right)^{1 / 2} e^{i \theta_{2}}, \ldots,\left(s_{1}^{2}-s_{n}^{2}\right)^{1 / 2} e^{i \theta_{n}}\right) \in \mathbb{C}_{n \times(n-1)}, \\
Z=\operatorname{diag}\left(s_{2} e^{i \phi_{2}}, \ldots, s_{n} e^{i \phi_{n}}\right)
\end{gathered}
$$

and

$$
\begin{equation*}
\phi_{j}=\pi-\arg \left(w_{j}^{T} S \bar{w}_{j}\right)-2 \theta_{j}, \quad j=2, \ldots, n \tag{2}
\end{equation*}
$$

[^0]The matrix X in (1) is smallest in size.
However Theorem 1.1 is incorrect, but can be easily fixed, due to a minor error in [1, p.2927] (which occurred when formula (23) was deduced from (21) incorrectly).

EXAMPLE 1.2. Let $S=\operatorname{diag}\left(s_{1}, s_{2}\right)$ with $s_{1}>s_{2}>0$. According to the construction in Theorem 1.1, pick $w_{1}=e_{1}, w_{2}=e_{2}$, where $I_{2}=\left[e_{1} e_{2}\right]$, and

$$
Z=\left(s_{2} e^{i \phi_{2}}\right), \quad A=\binom{0}{\left(s_{1}-s_{2}\right)^{1 / 2} e^{i \theta_{2}}}
$$

with $\theta_{2}, \phi_{2} \in \mathbb{R}$ so that

$$
X=\frac{1}{s_{1}}\left(\begin{array}{ccc}
s_{1} & 0 & 0 \\
0 & s_{2} & \left(s_{1}^{2}-s_{2}^{2}\right)^{1 / 2} e^{i \theta_{2}} \\
0 & \left(s_{1}^{2}-s_{2}^{2}\right)^{1 / 2} e^{i \theta_{2}} & s_{2} e^{i \phi_{2}}
\end{array}\right)
$$

Notice that $\arg \left(w_{2}^{T} S \bar{w}_{2}\right)=0$. For X to be a unitary matrix, we must have $e^{2 i \theta_{2}}+e^{i \phi_{2}}=$ 0 . Now $\phi_{2}=\pi+2 \theta_{2}$ would work but $\phi_{2}=\pi-2 \theta_{2}\left(\theta_{2} \neq 0\right)$ would not in general.

In [1, p.2927-2928] a unitary completion was given for an $S \in \mathbb{C}_{3 \times 3}$ but the choice $\theta_{2}=\theta_{3}=0$ was made so that the error (2) was not manifested. The condition (2) should be replaced by

$$
\begin{equation*}
\phi_{j}=\pi-\arg \left(w_{j}^{T} S \bar{w}_{j}\right)+2 \theta_{j}, \quad j=2, \ldots, n \tag{3}
\end{equation*}
$$

With the above adjustment, Theorem 1.1 still fails to be true if some eigenvalue of $S S^{*}$ is not simple.

EXAMPLE 1.3. Let $S=\operatorname{diag}(\sqrt{3}, 1,1)$. The eigenvalues of $S S^{*}$ are $3,1,1$. Clearly $w_{2}=(1 / \sqrt{2})(0,1, i)^{T}$ and $w_{3}=(1 / \sqrt{2})(0,1,-i)^{T}$ are eigenvectors of $S S^{*}$ corresponding to 1 . According to the construction in Theorem 1.1,

$$
\begin{aligned}
A & =\sqrt{2}\left[e^{i \theta_{2}} w_{2} \mid e^{i \theta_{3}} w_{3}\right], \\
Z & =\operatorname{diag}\left(e^{i \phi_{2}}, e^{i \phi_{3}}\right), \\
X X^{*} & =\frac{1}{3}\left(\begin{array}{cc}
S S^{*}+A A^{*} & S \bar{A}+A Z^{*} \\
A^{T} S^{*}+Z A^{*} & Z Z^{*}+A^{T} \bar{A}
\end{array}\right) .
\end{aligned}
$$

However

$$
\begin{aligned}
S \bar{A}+A Z^{*} & =\left[e^{-i \theta_{2}} \bar{w}_{2}+e^{i\left(\theta_{2}-\phi_{2}\right)} w_{2} \mid e^{-i \theta_{3}} \bar{w}_{3}+e^{i\left(\theta_{3}-\phi_{3}\right)} w_{3}\right] \\
& =\left[e^{-i \theta_{2}} w_{3}+e^{i\left(\theta_{2}-\phi_{2}\right)} w_{2} \mid e^{-i \theta_{3}} w_{2}+e^{i\left(\theta_{3}-\phi_{3}\right)} w_{3}\right] \\
& \neq 0_{3 \times 2},
\end{aligned}
$$

for any θ_{j} and $\phi_{j}, j=2,3$, since w_{2} and w_{3} are linearly independent. So X is not unitary.

Our first goal is to give a complete description of all possible unitary symmetric completions of a general complex symmetric matrix $S \in \mathbb{C}_{n \times n}$. The result, Theorem 2.1, is given in Section 2 by using Autonne decomposition. The advantage of using Autonne decomposition is that it provides canonical unit eigenvectors for $S S^{*}$ without
getting into the trouble in Example 1.3. Based on Theorem 2.1, we remark that (1) If s_{1} is not simple, the size of X could be even smaller. (2) The singular case is also handled. (3) Theorem 1.1 does not sort out all possible unitary completions, even those of smallest size.

Of independent interest, we study the unitary completion problem for skew symmetric matrices in Section 3.

2 Unitary Symmetric Completions for Symmetric Matrices

The singular values of a matrix $A \in \mathbb{C}_{n \times n}$ are the square roots of the eigenvalues of $A A^{*}$ or $A^{*} A$. We will find all unitary symmetric completions via Autonne decomposition of a complex symmetric matrix $S \in \mathbb{C}_{n \times n}[4$, p.204-205] which asserts that there is a unitary $U \in \mathbb{C}_{n \times n}$ such that

$$
\begin{equation*}
U^{T} S U=s_{1} I_{n_{1}} \oplus s_{2} I_{n_{2}} \oplus \cdots \oplus s_{k} I_{n_{k}} \tag{4}
\end{equation*}
$$

where $s_{1}>s_{2}>\cdots>s_{k}$ are the distinct singular values of S and s_{j} has multiplicity $n_{j}, j=1, \ldots, k\left(n_{1}+\cdots+n_{k}=n\right)$.

THEOREM 2.1. Let $S \in \mathbb{C}_{n \times n}$ be a nonzero complex symmetric matrix with Autonne decomposition (4). Then

$$
X=\frac{1}{\|S\|}\left(\begin{array}{cc}
S & A \tag{5}\\
A^{T} & Z
\end{array}\right) \in \mathbb{C}_{(n+m) \times(n+m)}
$$

is a unitary symmetric matrix if and only if

1. the distinct singular values of Z are $s_{1}>s_{2}>\cdots>s_{k}$ where s_{j} has multiplicity $n_{j}, j=2, \ldots, k$, and s_{1} has multiplicity $m-n+n_{1}$, that is, there exists a unitary matrix $V \in \mathbb{C}_{m \times m}$ such that

$$
V^{T} Z V=s_{1} I_{m-n+n_{1}} \oplus s_{2} I_{n_{2}} \oplus \cdots \oplus s_{k} I_{n_{k}} \in \mathbb{C}_{m \times m}
$$

and
2.

$$
U^{T} A V=\left(\begin{array}{cc}
0_{n_{1} \times\left(m-n+n_{1}\right)} & 0 \\
0 & A_{0}
\end{array}\right)
$$

where $A_{0} \in \mathbb{C}_{\left(n-n_{1}\right) \times\left(n-n_{1}\right)}$ is of the form

$$
A_{0}=\left(s_{1}^{2}-s_{2}^{2}\right)^{1 / 2} A_{2} \oplus\left(s_{1}^{2}-s_{3}^{2}\right)^{1 / 2} A_{3} \oplus \cdots \oplus\left(s_{1}^{2}-s_{k}^{2}\right)^{1 / 2} A_{k}
$$

and $i A_{j} \in \mathbb{C}_{n_{j} \times n_{j}}, j=2, \ldots, k$, are orthogonal matrices except for $i A_{k}$ when $s_{k}=0$ (in which case A_{k} is unitary).

When $m=n-n_{1}$, the unitary completions (5) are smallest in size.
PROOF. Let

$$
X=\frac{1}{s_{1}}\left(\begin{array}{cc}
S & A \\
A^{T} & Z
\end{array}\right) \in \mathbb{C}_{(n+m) \times(n+m)}
$$

be a unitary symmetric completion of $S \in \mathbb{C}_{n \times n}$. Let $Z_{0}:=V^{T} Z V=\operatorname{diag}\left(z_{1}, \ldots, z_{m}\right)$, $z_{1} \geq \cdots \geq z_{m}$ be Autonne decomposition of the symmetric $Z \in \mathbb{C}_{m \times m}$. So

$$
X_{0}:=\left(\begin{array}{cc}
U^{T} & 0 \\
0 & V^{T}
\end{array}\right) X\left(\begin{array}{cc}
U & 0 \\
0 & V
\end{array}\right)=\frac{1}{s_{1}}\left(\begin{array}{cc}
U^{T} S U & U^{T} A V \\
V^{T} A^{T} U & V^{T} Z V
\end{array}\right)=\frac{1}{s_{1}}\left(\begin{array}{cc}
S_{0} & A^{\prime}{ }_{0} \\
A_{0}^{\prime T} & Z_{0}
\end{array}\right)
$$

is unitary, where $A_{0}^{\prime}:=U^{T} A V$ and $S_{0}:=U^{T} S U=s_{1} I_{n_{1}} \oplus s_{2} I_{n_{2}} \oplus \cdots \oplus s_{k} I_{n_{k}}$. Now

$$
X_{0}^{*} X_{0}=I_{n+m}
$$

which is equivalent to

$$
\begin{align*}
S_{0}^{2}+\overline{A^{\prime}}{ }_{0} A_{0}^{T} & =s_{1}^{2} I_{n} \tag{6}\\
A_{0}^{\prime} A_{0}^{\prime}+Z_{0}^{2} & =s_{1}^{2} I_{m} \tag{7}\\
S_{0} A_{0}^{\prime}+\overline{A^{\prime}}{ }_{0} Z_{0} & =0_{n \times m} . \tag{8}
\end{align*}
$$

From (6),

$$
\begin{equation*}
A_{0}^{\prime} A_{0}^{\prime *}=0_{n_{1} \times n_{1}} \oplus\left(s_{1}^{2}-s_{2}^{2}\right) I_{n_{2}} \oplus \cdots \oplus\left(s_{1}^{2}-s_{k}^{2}\right) I_{n_{k}} \tag{9}
\end{equation*}
$$

and from (7),

$$
A_{0}^{\prime *} A_{0}^{\prime}=s_{1}^{2} I_{m}-\operatorname{diag}\left(z_{1}^{2}, \ldots, z_{m}^{2}\right)
$$

The eigenvalues of $A_{0}^{\prime} A_{0}^{\prime *}$ and $A_{0}^{\prime *} A_{0}^{\prime}$ are identical (counting multiplicities) except some zeros. So

$$
Z_{0}=s_{1} I_{h} \oplus s_{2} I_{n_{2}} \oplus \cdots \oplus s_{k} I_{n_{k}}
$$

where $h:=m-n+n_{1}$, and

$$
\begin{equation*}
A_{0}^{\prime *} A_{0}^{\prime}=0_{h \times h} \oplus\left(s_{1}^{2}-s_{2}^{2}\right) I_{n_{2}} \oplus \cdots \oplus\left(s_{1}^{2}-s_{k}^{2}\right) I_{n_{k}} \tag{10}
\end{equation*}
$$

It follows from (9) and (10) that

$$
A_{0}^{\prime}=\left(\begin{array}{cc}
0_{n_{1} \times h} & 0 \\
0 & A_{0}
\end{array}\right)
$$

where $A_{0} \in \mathbb{C}_{\left(n-n_{1}\right) \times\left(n-n_{1}\right)}$. By (8) one has

$$
\left(s_{2} I_{n_{2}} \oplus \cdots \oplus s_{k} I_{n_{k}}\right) A_{0}+\bar{A}_{0}\left(s_{2} I_{n_{2}} \oplus \cdots \oplus s_{k} I_{n_{k}}\right)=0_{\left(n-n_{1}\right) \times\left(n-n_{1}\right)}
$$

Notice that $s_{2}>s_{3}>\cdots>s_{k}$ so that by block multiplication, we have

$$
A_{0}=B_{2} \oplus B_{3} \oplus \cdots \oplus B_{k}
$$

where $B_{j} \in i \mathbb{R}_{n_{j} \times n_{j}}, j=2, \ldots, k-1$. If $s_{k} \xlongequal{ }=0$, then $B_{k} \in i \mathbb{R}_{n_{k} \times n_{k}}$; if $s_{k}=0$, then $B_{k} \in \mathbb{C}_{n_{k} \times n_{k}}$. Then by (9) or (10), A_{0} is of the following diagonal block form

$$
\left(s_{1}^{2}-s_{2}^{2}\right)^{1 / 2} A_{2} \oplus\left(s_{1}^{2}-s_{3}^{2}\right)^{1 / 2} A_{3} \oplus \cdots \oplus\left(s_{1}^{2}-s_{k}^{2}\right)^{1 / 2} A_{k}
$$

where $i A_{n_{j}} \in \mathbb{R}_{n_{j} \times n_{j}}$ is an orthogonal matrix for $j=2, \ldots, k$, except for $i A_{k}$ when $s_{k}=0$. If $s_{k}=0$, then A_{k} is unitary.

Conversely, (5) is a unitary symmetric completion of S.
Clearly when $h=0$, that is, $m=n-n_{1}, X$ is smallest in size.
COROLLARY 2.2. Let $S \in \mathbb{C}_{n \times n}$ be a complex symmetric nonsingular matrix with singular values $s_{1}>s_{2}>\cdots>s_{n}>0$ with Autonne decomposition $U^{T} S U=$ $\operatorname{diag}\left(s_{1}, \ldots, s_{n}\right)$, where U is unitary. Then

$$
X=\frac{1}{\|S\|}\left(\begin{array}{cc}
S & A \\
A^{T} & Z
\end{array}\right)
$$

is a unitary symmetric matrix of smallest size if and only if $X \in \mathbb{C}_{(2 n-1) \times(2 n-1)}$ and

$$
V Z V^{T}=\operatorname{diag}\left(s_{2}, \ldots, s_{n}\right)
$$

for some unitary $V \in \mathbb{C}_{(n-1) \times(n-1)}$, and

$$
U^{T} A V=\binom{0_{1 \times(n-1)}}{A_{0}}
$$

where

$$
A_{0}=\operatorname{diag}\left(\pm i\left(s_{1}^{2}-s_{2}^{2}\right)^{1 / 2}, \cdots, \pm i\left(s_{1}^{2}-s_{n}^{2}\right)^{1 / 2}\right) \in \mathbb{C}_{n \times(n-1)}
$$

REMARK 2.3. One can deduce the corrected version of Theorem 1.1 from Corollary 2.2. Of course, we assume $s_{1}>s_{2}>\cdots>s_{n}>0$ due to Example 1.3. By Autonne decomposition,

$$
S_{0}:=U^{T} S U=\operatorname{diag}\left(s_{1}, \ldots, s_{n}\right)
$$

Then $S=\bar{U} S_{0} U^{*}$ and $S S^{*}=\bar{U} S_{0}^{2} \bar{U}^{*}$. Hence \bar{u}_{j} is a unit eigenvector of $S S^{*}$ corresponding to the eigenvalue $s_{j}^{2}, j=1, \ldots, n$. Since all the eigenvalues of $S S^{*}$ are simple, the unit eigenvector w_{j}, in Theorem 1.1 must be a scalar multiple of \bar{u}_{j}, say,

$$
\bar{u}_{j}=e^{i \xi_{j}} w_{j}, \quad j=2, \ldots, n
$$

One can easily recover ξ_{j} via $w_{j}^{*} S \bar{w}_{j}=e^{2 i \xi} s_{j}$ so that

$$
\begin{equation*}
2 \xi_{j}=\arg \left(w_{j}^{*} S \bar{w}_{j}\right), \quad j=1, \ldots, n \tag{11}
\end{equation*}
$$

From this point of view, the vectors $\bar{u}_{j}, j=1, \ldots, n$, are the canonical unit eigenvectors of $S S^{*}$ with respect to transforming S into a diagonal matrix with a unitary congruence $U^{T} S U=S_{0}$. Let

$$
\Lambda=\operatorname{diag}\left(\left(s_{1}^{2}-s_{2}^{2}\right)^{1 / 2}, \ldots,\left(s_{1}^{2}-s_{n}^{2}\right)^{1 / 2}\right)
$$

By Theorem 2.1, we may choose

$$
A_{0}=-i \Lambda, \quad V=\operatorname{diag}\left(e^{-i \phi_{2} / 2}, \ldots, e^{-i \phi_{n} / 2}\right)
$$

so that $Z=\operatorname{diag}\left(s_{2} e^{i \phi_{2}}, \ldots, s_{n} e^{i \phi_{n}}\right)$. By Theorem 2.1,

$$
\begin{aligned}
A & =\bar{U}\binom{0}{A_{0}} V^{*} \\
& =\left[\bar{u}_{2} \cdots \bar{u}_{n}\right] A_{0} \operatorname{diag}\left(e^{i \phi_{2} / 2}, \ldots, e^{i \phi_{n} / 2}\right) \\
& =\left[w_{2} \cdots w_{n}\right] \operatorname{diag}\left(e^{i\left(-\pi / 2+\xi_{2}+\phi_{2} / 2\right)}, \ldots, e^{i\left(-\pi / 2+\xi_{n}+\phi_{n} / 2\right)}\right) \Lambda .
\end{aligned}
$$

Let $\theta_{j}:=-\pi / 2+\xi_{j}+\phi_{j} / 2$. Clearly $\phi_{j}=\pi-2 \xi_{j}+2 \theta_{j}, j=1, \ldots, n$, that is, $\phi_{j}=\pi-\arg \left(w_{j}^{*} S \bar{w}_{j}\right)+2 \theta_{j}$ by (11). This is just (3).

3 Unitary Skew Symmetric Completions for Skew Symmetric Matrices

Of independent interest, we consider the unitary skew symmetric completion problem for a given complex skew symmetric matrix $S \in \mathbb{C}_{n \times n}$. The singular values of a complex skew symmetric matrix A occur in pairs, except 0 when n is odd [4, Problem 25, p.217]. Indeed according to Hua decomposition [2, Theorem 7, p.481], there exists a unitary matrix $U \in \mathbb{C}_{n \times n}$ such that

$$
U^{T} S U= \begin{cases}s_{1} J_{2 n_{1}} \oplus s_{2} J_{2 n_{2}} \oplus \cdots \oplus s_{k} J_{2 n_{k}} & \text { if } n \text { is even } \tag{12}\\ s_{1} J_{2 n_{1}} \oplus s_{2} J_{2 n_{2}} \oplus \cdots \oplus s_{k} J_{2 n_{k}} \oplus(0) & \text { if } n \text { is odd }\end{cases}
$$

where $s_{1}>s_{2}>\cdots>s_{k}$ are the distinct eigenvalues of S and $J_{2 p} \in \mathbb{C}_{2 p \times 2 p}$ is the following diagonal block matrix

$$
J_{2 p}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \oplus\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \oplus \cdots \oplus\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) .
$$

A unitary matrix $A \in \mathbb{C}_{2 n \times 2 n}$ is said to be symplectic if $A^{T} J_{2 n} A=J_{2 n}$. Notice that our definition is different from [3, p.445] due to a different choice of skew symmetric bilinear form, namely $J_{2 n}$. Nevertheless, the two differ by a (fixed) permutation similarity. Our choice is made for easier presentation of the proof of the following theorem.

THEOREM 3.1. Let $S \in \mathbb{C}_{n \times n}$ be a nonzero complex skew symmetric matrix with Hua decomposition (12). Then

$$
X=\frac{1}{\|S\|}\left(\begin{array}{cc}
S & A \\
-A^{T} & Z
\end{array}\right) \in \mathbb{C}_{(m+n) \times(m+n)}
$$

is a unitary skew symmetric matrix if and only if

1. the singular values of Z are those of S, counting multiplicities, except s_{1} whose multiplicity is $2 h:=m-n+2 n_{1}$, that is, there exists a unitary $V \in \mathbb{C}_{m \times m}$ such that

$$
V^{T} Z V= \begin{cases}s_{1} J_{2 h} \oplus s_{2} J_{2 n_{2}} \oplus \cdots \oplus s_{k} J_{2 n_{k}} & \text { if } n \text { is even } \\ s_{1} J_{2 h} \oplus s_{2} J_{2 n_{2}} \oplus \cdots \oplus s_{k} J_{2 n_{k}} \oplus(0) & \text { if } n \text { is odd }\end{cases}
$$

(so n and m have the same parity), and
2.

$$
U^{T} A V= \begin{cases}0_{2 n_{1} \times 2 h} \oplus A_{0} & \text { if } n \text { is even } \\ 0_{2 n_{1} \times 2 h} \oplus A_{0} \oplus\left(s_{1}\right) & \text { if } n \text { is odd },\end{cases}
$$

where

$$
A_{0}=\left(s_{1}^{2}-s_{2}^{2}\right)^{1 / 2} A_{2} \oplus\left(s_{1}^{2}-s_{3}^{2}\right)^{1 / 2} A_{3} \oplus \cdots \oplus\left(s_{1}^{2}-s_{k}^{2}\right)^{1 / 2} A_{k}
$$

such that $i A_{j} \in \mathbb{C}_{2 n_{j} \times 2 n_{j}}, j=2, \ldots, k$, are symplectic matrices except for $i A_{k}$ when $s_{k}=0$. When $s_{k}=0, A_{k}$ is unitary.

When $h=0$, that is, $m=n-2 n_{1}, X$ is smallest in size.
PROOF. We now provide a proof when n, the size of S, is even. The odd case is similar. Let

$$
S_{0}:=U^{T} S U=s_{1} J_{2 n_{1}} \oplus s_{2} J_{2 n_{2}} \oplus \cdots \oplus s_{k} J_{2 n_{k}},
$$

and

$$
Z_{0}:=V^{T} Z V= \begin{cases}z_{1} J_{2 m_{1}} \oplus z_{2} J_{2 m_{2}} \oplus \cdots \oplus z_{\ell} J_{2 m_{\ell}} & \text { if } m \text { is even } \\ z_{1} J_{2 m_{1}} \oplus z_{2} J_{2 m_{2}} \oplus \cdots \oplus z_{\ell} J_{2 m_{\ell}} \oplus(0) & \text { if } m \text { is odd }\end{cases}
$$

be Hua decompositions of the skew symmetric $S \in \mathbb{C}_{n \times n}$ and $Z \in \mathbb{C}_{m \times m}$, where $z_{1} \geq \cdots \geq z_{\ell}$. Clearly X is unitary if and only if

$$
X_{0}:=\left(\begin{array}{cc}
U^{T} & 0 \\
0 & V^{T}
\end{array}\right) X\left(\begin{array}{cc}
U & 0 \\
0 & V
\end{array}\right)=\frac{1}{s_{1}}\left(\begin{array}{cc}
S_{0} & A_{0}^{\prime} \\
-A_{0}^{T} & Z_{0}
\end{array}\right)
$$

is unitary, where $A_{0}^{\prime}=U^{T} A V \in \mathbb{C}_{n \times m}$. It amounts to $X_{0}^{*} X_{0}=I_{n+m}$, that is,

$$
\begin{align*}
-S_{0}^{2}+\overline{A_{0}^{\prime}} A_{0}^{T} & =s_{1}^{2} I_{n} \tag{13}\\
A_{0}^{\prime *} A_{0}^{\prime}-Z_{0}^{2} & =s_{1}^{2} I_{m} \tag{14}\\
-S_{0} A_{0}^{\prime}-\overline{A_{0}^{\prime}} Z_{0} & =0_{n \times m} . \tag{15}
\end{align*}
$$

Now (13) and (14) yield

$$
\begin{aligned}
A_{0}^{\prime} A_{0}^{\prime *} & =0_{2 n_{1}} \oplus\left(s_{1}^{2}-s_{2}^{2}\right) I_{2 n_{2}} \oplus \cdots \oplus\left(s_{1}^{2}-s_{k}^{2}\right) I_{2 n_{k}}, \\
A_{0}^{\prime *} A_{0}^{\prime} & = \begin{cases}s_{1}^{2} I_{m}-\left[z_{1}^{2} I_{2 m_{1}} \oplus z_{2}^{2} I_{2 m_{2}} \oplus \cdots \oplus z_{\ell}^{2} I_{2 m_{\ell}}\right] & \text { if } m \text { is even } \\
s_{1}^{2} I_{m}-\left[z_{1}^{2} I_{2 m_{1}} \oplus z_{2}^{2} I_{2 m_{2}} \oplus \cdots \oplus z_{\ell}^{2} I_{2 m_{\ell}} \oplus(0)\right] & \text { if } m \text { is odd },\end{cases}
\end{aligned}
$$

where $z_{1} \geq \cdots \geq z_{\ell}$. Because the singular values of $A_{0}^{\prime *} A_{0}$ and $A_{0}^{\prime} A_{0}^{\prime *}$ are identical (counting multiplicities) except for some zeros, m must be even and

$$
Z_{0}=s_{1} J_{2 h} \oplus s_{2} J_{2 n_{2}} \oplus \cdots \oplus s_{k} J_{2 n_{k}},
$$

$2 h:=m-n-2 n_{1}$. Hence

$$
A_{0}^{\prime}=\left(\begin{array}{cc}
0_{2 n_{1} \times 2 h} & 0 \\
0 & A_{0}
\end{array}\right),
$$

where $A_{0} \in \mathbb{C}_{\left(n-2 n_{1}\right) \times\left(n-2 n_{1}\right)}$ and

$$
\begin{equation*}
A_{0} A_{0}^{*}=A_{0}^{*} A_{0}=\left(s_{1}^{2}-s_{2}^{2}\right) I_{2 n_{2}} \oplus \cdots \oplus\left(s_{1}^{2}-s_{k}^{2}\right) I_{2 n_{k}} . \tag{16}
\end{equation*}
$$

Now (15) implies that

$$
\begin{equation*}
\left(s_{2} J_{2 n_{2}} \oplus \cdots \oplus s_{k} J_{2 n_{k}}\right)^{T} A_{0}-\bar{A}_{0}\left(s_{2} J_{2 n_{2}} \oplus \cdots \oplus s_{k} J_{2 n_{k}}\right)=0 \tag{17}
\end{equation*}
$$

Multiplying both sides of (17) by $s_{2} J_{2 n_{2}} \oplus \cdots \oplus s_{k} J_{2 n_{k}}$ from the left, we have

$$
\left(s_{2}^{2} I_{2 n_{2}} \oplus \cdots \oplus s_{k}^{2} I_{2 n_{k}}\right) A_{0}-\left(s_{2} J_{2 n_{2}} \oplus \cdots \oplus s_{k} J_{2 n_{k}}\right) \bar{A}_{0}\left(s_{2} J_{2 n_{2}} \oplus \cdots \oplus s_{k} J_{2 n_{k}}\right)=0
$$

Since $s_{2}>\cdots>s_{k}$, by straightforward computation,

$$
\begin{equation*}
A_{0}=\left(s_{1}^{2}-s_{2}^{2}\right)^{1 / 2} A_{2} \oplus\left(s_{1}^{2}-s_{3}^{2}\right)^{1 / 2} A_{3} \oplus \cdots \oplus\left(s_{1}^{2}-s_{k}^{2}\right)^{1 / 2} A_{k}, \tag{18}
\end{equation*}
$$

where $A_{j} \in \mathbb{C}_{2 n_{j} \times 2 n_{j}}, j=2, \ldots, k$. By (16), each A_{j} is a unitary matrix. Substituting (18) into (17) yields

$$
J_{2 n_{j}} A_{j}+\bar{A}_{j} J_{2 n_{j}}=0, \quad j=2, \ldots, k
$$

except for A_{k} when $s_{k}=0$. Since A_{j} is unitary, $i A_{j}$ is symplectic, $j=1, \ldots, k$ except A_{k} when $s_{k}=0$. More precisely, A_{j} is of the following 2×2 block form $A_{j}=\left(A_{s t}\right)_{n_{j} \times n_{j}}$:

$$
A_{s t}=\left(\begin{array}{cc}
a_{s t} & b_{s t} \\
\bar{b}_{s t} & -\bar{a}_{s t}
\end{array}\right), \quad a_{s t}, b_{s t} \in \mathbb{C}
$$

except for A_{k} when $s_{k}=0$.
Conversely it is easy to see that (5) is a unitary completion of S.
Clearly X is smallest in size if $h=0$.
Acknowledgement: In the original manuscript the authors mistakenly attributed Autonne decomposition to Takagi and Hua decomposition to Youla [7, Corollary 2, p.701]. The authors thank Prof. Roger Horn for pointing out that [4, p.204] attributes Autonne decomposition to Takagi, but in [5, p.136] the attribution is corrected. This fundamental canonical form has been re-discovered many times; see [4, p.218]. He also pointed out the general dilation problem was solved by Thompson and Kuo [6, Theorem 2, p.349]. See [5, p.64].

References

[1] G. J. N. Brown and D. S. F. Crothers, Unitarization of complex symmetric matrices, J. Phys. A, 27(1994), 2923-2933.
[2] L. K. Hua, On the theory of automorphic functions of a matrix level, I. Geometrical basis, Amer. J. Math., 66(1944), 470-488.
[3] S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, New York, 1978.
[4] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, 1985.
[5] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1991.
[6] R. C. Thompson and C. T. Kuo, Doubly stochastic, unitary, unimodular, and complex orthogonal power embeddings, Acta Sci. Math. (Szeged), 44(1982), 345357.
[7] D. C. Youla, A normal form for a matrix under the unitary group, Canad. J. Math., 13(1961), 694-704.

[^0]: *Mathematics Subject Classifications: 15A90, 15A18.
 ${ }^{\dagger}$ Department of Mathematics and Statistics, Auburn University, Auburn, AL 36849-5310, U. S. A.

