
Applied Mathematics E-Notes, 7(2007), 60-64 c© ISSN 1607-2510
Available free at mirror sites of http://www.math.nthu.edu.tw/∼amen/

Remarks On Sequence Covering Images Of Metric

Spaces∗

Ying Ge†

Received 27 March 2006

Abstract

In this paper, we prove that a space is a sequence-covering image of a metric
space iff it is a sequentially-quotient image of a metric space, which answers a
question on pseudo-sequence-covering images of metric spaces. As an application
of this result, the sequential fan is a sequence-covering image of a metric space.

Sequence-covering mappings, pseudo-sequence-covering mappings and sequentially-
quotient mappings play an important role in the study of images of metric spaces.
It is well known that every sequence-covering mapping is pseudo-sequence-covering,
and if the domain is metric, every pseudo-sequence-covering mapping is sequentially-
quotient[4]. But none of these implications can be reversed. This leads us to investigate
images of metric spaces under these mappings. In [10], S. Lin proved the following
theorem [10, Theorem 3.5.14] (see [5, Corollary 3.3], for example).

THEOREM 1. A space is a pseudo-sequence-covering, s-image of a metric space iff
it is a sequentially-quotient, s-image of a metric space.

It is natural to raise the following question [5].
QUESTION 2. Can “s-” in Theorem 1 be omitted? More precisely, is every

sequentially-quotient image of a metric space a pseudo-sequence-covering image of a
metric space?

In this paper, we answer the above question. As an application of this result,
the sequential fan is a sequence-covering image of a metric space. Throughout this
paper, all spaces are assumed to be Hausdorff and all mappings are continuous and
onto. N denotes the set of all natural numbers, {xn} denotes a sequence, where the
n-th term is xn. For a sequence L = {xn}, f(L) denotes the sequence {f(xn)}. Let
X be a space and P ⊂ X. A sequence {xn} converging to x in X is eventually in
P if {xn : n > k} ∪ {x} ⊂ P for some k ∈ N. Let P be a family of subsets of X
and let x ∈ X.

⋃
P and (P)x denote the union

⋃
{P : P ∈ P} and the subfamily

{P ∈ P : x ∈ P} of P respectively. For a sequence {Pn : n ∈ N} of subsets of a space
X, we abbreviate {Pn : n ∈ N} to {Pn}. A point b = (βn)n∈N of a Tychonoff-product
space is abbreviated to (βn).

DEFINITION 3. Let f : X −→ Y be a mapping.
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(1) f is called a sequence-covering mapping [12] if whenever convergent sequence S
in Y there exists a convergent sequence L in X such that f(L) = S.

(2) f is called a pseudo-sequence-covering mapping [8], if whenever convergent
sequence S converging to y in Y , there exists a compact subset K of X such that
f(K) = S

⋃
{y}.

(3) f is called a sequentially-quotient mapping [1], if whenever convergent sequence
S in Y , there exists a convergent sequence L in X such that f(L) is a subsequence of
S.

REMARK 4. “Pseudo-sequence-covering mapping” in Definition 3(2) was also
called “sequence-covering mapping” by G.Gruenhage, E.Michael and Y.Tanaka in [7].

DEFINITION 5. Let P = ∪{Px : x ∈ X} be a cover of a space X, where Px ⊂ (P)x.
P is called a network of X [11], if for every x ∈ U with U open in X, there exists P ∈ Px

such that x ∈ P ⊂ U , where Px is called a network at x in X.

LEMMA 6. Let f : X −→ Y be a mapping, and {yn} be a sequence converging to y
in Y . If {Bk} is a decreasing network at some x ∈ f−1(y) in X, and {yn} is eventually
in f(Bk) for every k ∈ N, then there is a sequence {xn} converging to x such that
xn ∈ f−1(yn) for every n ∈ N.

PROOF. Let {Bk} be a decreasing network at some x ∈ f−1(y) in X, and let {yn}
be eventually in f(Bk) for every k ∈ N. Then, for every k ∈ N, there exists nk ∈ N such
that yn ∈ f(Bk) for every n > nk, so f−1(yn)

⋂
Bk 6= ∅ for every n > nk. Without

loss of generality, we can assume 1 < nk < nk+1 for each k ∈ N. For every n ∈ N, pick

xn ∈





f−1(yn) n < n1

f−1(yn)
⋂

Bk nk ≤ n < nk+1,

then xn ∈ f−1(yn) for every n ∈ N. It suffices to prove that {xn} converges to x.
Let U be an open neighborhood of x. There exists k ∈ N such that x ∈ Bk ⊂ U .

For each n > nk, there exists k′ ≥ k such that nk′ ≤ n < nk′+1, so xn ∈ Bk′ ⊂ Bk ⊂ U .
This proves that {xn} converges to x.

Now we give the main theorem of this paper, which gives an affirmative answer for
Question 2.

THEOREM 7. The following are equivalent for a space X.
(1) X is a sequence-covering image of a metric space.
(2) X is a pseudo-sequence-covering image of a metric space.
(3) X is a sequentially-quotient image of a metric space.

PROOF. It is clear that (1) =⇒ (2) =⇒ (3). We only need to prove that (3) =⇒
(1).

Let X be a sequentially-quotient image of a metric space. For every x ∈ X and
every sequence S = {xn} converging to x, put PS,i = {xn : n > i}

⋃
{x} for every i ∈ N

and PS = {PS,i : i ∈ N}. Put Px =
⋃
{PS : S is a sequence converging to x} and

P =
⋃
{Px : x ∈ X}. It is clear that {x} ∈ P for every x ∈ X. We construct a metric

space as follows. Let P = {Pβ : β ∈ Λ}. For every n ∈ N, put Λn = Λ and endow Λn
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a discrete topology. Put M = {b = (βn) ∈ Πn∈NΛn : {Pβn} is a network at some point
xb in X}. It suffices to prove the following four facts.

Fact 1. M is a metric space:
In fact, Λn, as a discrete space, is a metric space for every n ∈ N. So M , which is

a subspace of the Tychonoff-product space Πn∈NΛn, is a metric space.
Fact 2. Let b = (βn) ∈ M . Then there exists unique xb such that {Pβn} is a

network at xb in X:
The existence comes from the construction of M , we only need to prove the unique-

ness. Let {Pβn} be a network at both xb and x′
b in X, then {xb, x

′
b} ⊂ Pβn for every

n ∈ N. If xb 6= x′
b, then there exists an open neighborhood U of xb such that x′

b 6 ∈U .
Because {Pβn} is a network at xb in X, there exists n ∈ N such that xb ∈ Pβn ⊂ U ,
thus x′

b 6 ∈Pβn , a contradiction. This proves the uniqueness.
By Fact 2, for every b = (βn) ∈ M , there exists unique xb such that {Pβn} is a

network at xb in X. Define f(b) = xb. Thus we construct a correspondence f : M −→
X.

Fact 3. f is continuous and onto, so f is a mapping:
Firstly, for every x ∈ X, {x} ∈ P = {Pβ : β ∈ Λ}, so for every n ∈ N, there exists

βn ∈ Λn such that {x} = Pβn . Thus {Pβn} is a network at x in X. Put b = (βn), then
b ∈ M and f(b) = x. So f is onto. Secondly, let b = (βn) ∈ M and let f(b) = xb. If U
is an open neighborhood of x, then there exists k ∈ N such that xb ∈ Pβk ⊂ U because
{Pβn} is a network at xb in X. Put V = {c = (γn) ∈ M : γk = βk}, then U is an open
neighborhood of b. It is easy to see that f(V ) ⊂ Pβk ⊂ U . So f is continuous.

Fact 4. f is sequence-covering:
Let S = {xn} be a sequence converging to x in X. It is clear that {xn} is eventually

in PS,i for every i ∈ N, and so {xn} is eventually in
⋂

i≤k PS,i for every k ∈ N. For
every i ∈ N, since PS,i ∈ P, there exists βi ∈ Λi such that PS,i = Pβi. It is clear that
{Pβi} is a network at x in X. Put b = (βi), then b ∈ f−1(x). For every k ∈ N, put
Bk = {(γi) ∈ M : γi = βi for i ≤ k}. Then {Bk} is a decreasing neighborhood base at
b in M . It is not difficulty to prove that f(Bk) =

⋂
i≤k Pβi . In fact, let c = (γi) ∈ Bk,

then {Pγi} is a network at f(c) in X. So f(c) ∈
⋂

i∈N Pγi ⊂
⋂

i≤k Pγi =
⋂

i≤k Pβi,
Thus f(Bk) ⊂

⋂
i≤k Pβi . On the other hand, let y ∈

⋂
i≤k Pβi. By Fact 3, there exists

c′ = (γ′
i) ∈ M such that f(c′) = y, so {Pγ′

i
} is a network at y in X. For every i ∈ N,

put γi = βi if i ≤ k, and γi = γ′
i−k if i > k. Put c = (γi). It is easy to see that c ∈ Bk.

Note that {Pγi} is a network at y in X, so y = f(c) ∈ f(Bk). Thus
⋂

i≤k Pβi ⊂ f(Bk).
So f(Bk) =

⋂
i≤k Pβi. Because {xn} is eventually in

⋂
i≤k Pβi = f(Bk) for every k ∈ N,

by Lemma 6, there exists a sequence {bn} converging to b in M such that bn ∈ f−1(xn)
for every n ∈ N. This proves that f is sequence-covering.

By the above Fact 1, Fact 3 and Fact 4, X is a sequence-covering image of a metric
space.

As an application of Theorem 7, we give an example. Recall a mapping f : X −→ Y
is a quotient mapping [2], if there exists an equivalence relation E on the set X and
a homeomorphism f ′ : X/E −→ Y such that f = f ′q, where q : X −→ X/E is the
natural quotient mapping. It is known that a mapping f : X −→ Y is a quotient
mapping if whenever U ⊂ Y , f−1(U ) is open in X if and only if U is open in Y [2,
Proposition 2.4.3]. So we have the following lemma, which belongs to S. Lin (see [3,
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Remark 1.8], for example).
LEMMA 8. Let f : X −→ Y be a quotient mapping, where X is a metric space.

Then f is a sequentially-quotient mapping.
EXAMPLE 9. There exists a non-metrizable space, which is a sequence-covering

image of a metric space.
PROOF. For every n ∈ N, let An = {(n, 1/m) : m ∈ N}

⋃
{(n, 0)} ⊂ R2, where R2

is the Euclidean plane. Put X =
⋃
{An : n ∈ N}, which is a subspace of R2. Define an

equivalence relation E on X as follows: (n, x)E(n′, x′) if and only if either x = x′ = 0
or n = n′, x = x′.

Let Y be the quotient space X/E. That is, Y is the space obtained from X by
shrinking the set {(n, 0) : n ∈ N} to a point. Then Y is the sequential fan Sω [9],
which is not metrizable (see [9, Corollary 3.16], for example). Put f : X −→ Y is the
natural quotient mapping. By Lemma 8, f is a sequentially-quotient mapping, so Y is
a sequentially-quotient image of a metric space. Consequently, Y is a sequence-covering
image of a metric space from Theorem 7.
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