A Short Remark On Energy Functionals Related To Nonlinear Hencky Materials^{*}

Michael Bildhauer[†], Martin Fuchs[‡]

Received 8 March 2006

Abstract

We prove interior $C^{1,\alpha}$ -regularity of minimizing displacement fields for a class of nonlinear Hencky materials in the 2D-case.

Let $\Omega \subset \mathbb{R}^2$ denote a bounded open set on which the displacements u of an elastic body are defined. If the case of linear elasticity is considered, then the elastic energy of the deformation is given by

$$J_0[u] = \int_{\Omega} \left[\frac{1}{2} \lambda (\operatorname{div} u)^2 + \kappa |\varepsilon(u)|^2 \right] dx, \tag{1}$$

where λ , $\kappa > 0$ denote physical constants and $\varepsilon(u) = \frac{1}{2}(\nabla u + \nabla u^T)$ is the symmetric gradient of u. In order to model a nonlinear material behaviour, in particular the nonlinear Hencky material, see [1], (1) is replaced by the energy

$$J[u] = \int_{\Omega} \left[\frac{1}{2} \lambda (\operatorname{div} u)^2 + \varphi \left(|\varepsilon^D(u)|^2 \right) \right] dx \tag{2}$$

for some nonlinear function φ . Here $\varepsilon^D(u)$ is the deviatoric part of $\varepsilon(u)$, i.e. $\varepsilon^D(u) = \varepsilon(u) - \frac{1}{2}(\operatorname{div} u)\mathbf{1}$. The purpose of our short note is to investigate the regularity properties of local minimizers of the functional J under suitable assumptions on the function φ . To be precise and to have more flexibility, we replace the quantity $\varphi(|\varepsilon^D(u)|^2)$ in the expression (2) for the energy by $F(\varepsilon^D(u))$, where $F: \mathbb{S}^2 \to [0, \infty)$ is a function of class C^2 defined on the space \mathbb{S}^2 of all symmetric (2×2) -matrices satisfying for some exponent $s \in (1, \infty)$ and with positive constants a, A the ellipticity estimate

$$a\left(1+|\varepsilon|^2\right)^{\frac{s-2}{2}}|\sigma|^2 \le D^2 F(\varepsilon)(\sigma,\sigma) \le A\left(1+|\varepsilon|^2\right)^{\frac{s-2}{2}}|\sigma|^2 \tag{3}$$

for all $\varepsilon, \sigma \in \mathbb{S}^2$.

^{*}Mathematics Subject Classifications: 74B20, 49N60, 74G40, 74G65.

 $^{^\}dagger \mathrm{Department}$ of Mathematics, Saarland University, P.O. Box 151150, D-66041 Saarbrücken, Germany

 $^{^{\}ddagger}$ Department of Mathematics, Saarland University, P.O. Box 151150, D-66041 Saarbrücken, Germany

DEFINITION 1. A function u from the Sobolev class $W^1_{1,loc}(\Omega; \mathbb{R}^2)$ is called a local minimizer of the functional

$$I[v,\Omega] := \int_{\Omega} \left[\frac{\lambda}{2} (\operatorname{div} v)^2 + F(\varepsilon^D(v)) \right] dx \tag{4}$$

iff $I[u, \Omega'] < \infty$ and $I[u, \Omega'] \leq I[v, \Omega']$ for all $v \in W^1_{1,loc}(\Omega; \mathbb{R}^2)$ such that $\operatorname{spt}(u-v)$ is compactly contained in Ω', Ω' being an arbitrary subdomain with compact closure in Ω , spt denoting the support of a function.

Then we have

THEOREM 1. Let u denote a local minimizer of the functional $I[\cdot, \Omega]$ defined in (4) with F satisfying (3). Then u is in the local Hölder space $C^{1,\alpha}(\Omega; \mathbb{R}^2)$ for any $0 < \alpha < 1$ provided that $s \in (1, 4)$.

REMARK 1. In the case that $s \leq 2$ the result from Theorem 1 in principle is a consequence of the work of Frehse and Seregin [2] on plastic materials with logarithmic hardening. They consider the function $F(\varepsilon) = |\varepsilon| \ln(1 + |\varepsilon|)$ but it is not hard to show that their arguments actually cover the case of exponents $s \leq 2$.

REMARK 2. For $s \in (1, 2]$ the functional $I[\cdot, \Omega]$ also serves as a model for plasticity with power hardening, we refer to [3], [4] and [5]. It is worth remarking that Seregin proved partial regularity in the 3D-case for the above mentioned range of exponents, see e.g. [6], [7].

PROOF OF THEOREM 1. Let $f(\varepsilon) := \frac{\lambda}{2}(\mathrm{tr}\varepsilon)^2 + F(\varepsilon^D), \varepsilon \in \mathbb{S}^2$. Here $\mathrm{tr}\varepsilon$ is the trace of the matrix ε and $\varepsilon^D = \varepsilon - \frac{1}{2}\mathrm{tr}\varepsilon \mathbf{1}$. Clearly $f: \mathbb{S}^2 \to [0, \infty)$ is of class C^2 and satisfies for all $\varepsilon, \sigma \in \mathbb{S}^2$

$$D^{2}f(\varepsilon)(\sigma,\sigma) = \lambda(\mathrm{tr}\sigma)^{2} + D^{2}F(\varepsilon^{D})(\sigma^{D},\sigma^{D}).$$
(5)

If $s \ge 2$, then (3) and (5) imply with positive constants ν and μ

$$\nu|\sigma|^2 \le D^2 f(\varepsilon)(\sigma,\sigma) \le \mu \left(1+|\varepsilon|^2\right)^{\frac{s-2}{2}} |\sigma|^2 \tag{6}$$

for arbitrary matrices $\varepsilon, \sigma \in \mathbb{S}^2$. If 1 < s < 2, then we observe (see (3) and (5))

$$D^{2}f(\varepsilon)(\sigma,\sigma) \geq \lambda \left(1+|\varepsilon|^{2}\right)^{\frac{s-2}{2}} (\mathrm{tr}\sigma)^{2} + a \left(1+|\varepsilon|^{2}\right)^{\frac{s-2}{2}} |\sigma^{D}|^{2}$$

which follows from $(1+|\varepsilon|^2)^{(s-2)/2} \leq 1$ and $(1+|\varepsilon|^2)^{(s-2)/2} \leq (1+|\varepsilon^D|^2)^{(s-2)/2}$. Thus, for a suitable constant $\overline{\nu} > 0$ we find that

$$D^{2}f(\varepsilon)(\sigma,\sigma) \geq \overline{\nu} \left(1+|\varepsilon|^{2}\right)^{\frac{s-2}{2}} \left[|\sigma^{D}|^{2} + (\mathrm{tr}\sigma)^{2} \right] \geq \overline{\nu} \left(1+|\varepsilon|^{2}\right)^{\frac{s-2}{2}} |\sigma|^{2},$$

and (see again (3))

$$D^2 f(\varepsilon)(\sigma, \sigma) \le \lambda(\mathrm{tr}\sigma)^2 + A|\sigma^D|^2 \le \overline{\mu}|\sigma|^2$$

for some $\overline{\mu} > 0$. Putting together both cases by letting $q := \max\{2, s\}$, $p := \min\{2, s\}$ we deduce from (6) and the calculations following (6) that

$$\overline{\alpha} \left(1 + |\varepsilon|^2 \right)^{\frac{p-2}{2}} |\sigma|^2 \le D^2 f(\varepsilon)(\sigma, \sigma) \le \overline{\beta} \left(1 + |\varepsilon|^2 \right)^{\frac{q-2}{2}} |\sigma|^2 \tag{7}$$

is true for all ε , $\sigma \in \mathbb{S}^2$ with constants $\overline{\alpha}$, $\overline{\beta} > 0$. But in [8] we showed that any local minimizer $u \in W^1_{1,loc}(\Omega; \mathbb{R}^2)$ of the energy $\int_{\Omega} f(\varepsilon(v)) dx$ with f satisfying (7) is of class $C^{1,\alpha}$ in the interior of Ω provided that the exponents p and q are related through the condition

$$q < \min(2p, p+2). \tag{8}$$

Recalling the definitions of p and q it is immediate that the latter condition on p and q holds for $s \in (1, 4)$. The reader should note that in [8] all comparison functions have to satisfy the incompressibility condition divv = 0 but of course the situation now simplifies in comparison to [8] and all results remain valid if this condition is dropped.

REMARK 3. If Ω is a domain in \mathbb{R}^3 and if F satisfies (3), then local minimizers u of the functional $I[\cdot, \Omega]$ are of class $C^{1,\alpha}$ on an open subset Ω_0 of Ω such that $\Omega - \Omega_0$ is of Lebesgue measure zero, provided s < 10/3. This follows from the results in [9] if again the incompressibility condition is neglected.

REMARK 4. If we replace the term $\frac{\lambda}{2}(\operatorname{div} u)^2$ in the functional (4) by an expression like $g(\operatorname{div} u)$ with function g of growth rate $r \in (1, \infty)$, then a regularity result like Theorem 1 follows along the lines of [8] if we require (8) to hold with the choices $q := \max\{s, r\}, p := \min\{s, r\}.$

Let us now partially remove the restriction that s < 4.

THEOREM 2. Suppose that $u \in W^1_{1,loc}(\Omega; \mathbb{R}^2)$ is a local minimizer of the energy $I[\cdot, \Omega]$ defined in (4), where F satisfies (3) for some exponent $s \ge 4$. Then the first derivatives of u are α -continuous functions in the interior of Ω for any $\alpha \in (0, 1)$, provided we assume that $\operatorname{div} u \in L^s_{loc}(\Omega)$.

PROOF. We define the class

$$V := \left\{ v \in L^2(\Omega; \mathbb{R}^2) : \operatorname{div} v \in L^2(\Omega), \quad \varepsilon^D(v) \in L^s(\Omega; \mathbb{S}^2) \right\}$$

being the subspace of $W_{1,loc}^1(\Omega; \mathbb{R}^2)$ on which the functional I is well defined. If $v \in V$ is compactly supported in Ω , then it follows from

$$I[u, \operatorname{spt} v] \leq I[u + tv, \operatorname{spt} v], \ t \in \mathbb{R},$$

that

$$\int_{\Omega} \left[\lambda \operatorname{div} u \operatorname{div} v + DF(\varepsilon^{D}(u)) : \varepsilon^{D}(v) \right] dx = 0.$$
(9)

For $h \in \mathbb{R} - \{0\}$ and $k \in \{1, 2\}$ let

$$\Delta_h w(x) := \frac{1}{h} [w(x + he_k) - w(x)]$$

denote the difference quotient of the function w. For $\varphi \in C_0^{\infty}(\Omega)$ it is easy to check that $v := \Delta_{-h}(\varphi^2 \Delta_h(u - Px))$ is admissible in (9) for any constant matrix P. Following for example the calculations carried out in [9], it is not hard to show that after passing to the limit $h \to 0$ the next inequality can be deduced (from now on summation w.r.t. k)

$$\int_{\Omega} D^2 W(\varepsilon(u))(\partial_k \varepsilon(u), \partial_k \varepsilon(u))\varphi^2 dx$$

$$\leq -\int_{\Omega} D^2 W(\varepsilon(u))(\partial_k \varepsilon(u), \nabla \varphi^2 \odot \partial_k [u - Px]) dx, \qquad (10)$$

where

$$W(\sigma) := \frac{\lambda}{2} (\mathrm{tr}\sigma)^2 + F(\sigma^D), \ \sigma \in \mathbb{S}^2,$$

 \odot being the symmetric product of tensors. In particular, all the derivatives of u occurring in (10) exist in the weak sense. Let

$$H := \left(D^2 W(\varepsilon(u))(\partial_k \varepsilon(u), \partial_k \varepsilon(u)) \right)^{\frac{1}{2}}$$

and observe that $H^2 \in L^1_{loc}(\Omega)$ which can be justified in strength via difference quotient technique but can be made plausible as follows: since we assume $\operatorname{div} u \in L^s_{loc}(\Omega)$, we have

$$\varepsilon(u) = \varepsilon^{D}(u) + \frac{1}{2}(\operatorname{div} u)\mathbf{1} \in L^{s}_{loc}(\Omega; \mathbb{S}^{2}),$$

hence $\nabla u \in L^s_{loc}(\Omega; \mathbb{R}^{2 \times 2})$ by Korn's inequality. If we apply the Cauchy-Schwarz inequality to the bilinear form $D^2W(\varepsilon(u))$, we get

$$D^{2}W(\varepsilon(u))(\partial_{k}\varepsilon(u),\nabla\varphi^{2}\odot\partial_{k}u)\Big|$$

$$\leq 2\left[D^{2}W(\varepsilon(u))(\partial_{k}\varepsilon(u),\partial_{k}\varepsilon(u))\varphi^{2}\right]^{\frac{1}{2}}\left[D^{2}W(\varepsilon(u))(\nabla\varphi\odot\partial_{k}u,\nabla\varphi\odot\partial_{k}u)\right]^{\frac{1}{2}}.$$

Applying this estimate on the r.h.s. of (10) (choosing P = 0 for the moment) and using Young's inequality we obtain

$$\begin{split} \int_{\Omega} \varphi^2 H^2 dx &= \int_{\Omega} \varphi^2 D^2 W(\varepsilon(u)) (\partial_k \varepsilon(u), \partial_k \varepsilon(u)) dx \\ &\leq c \int_{\Omega} |D^2 W(\varepsilon(u))| |\nabla \varphi|^2 |\nabla u|^2 dx \\ &\leq c \int_{\Omega} |\nabla \varphi|^2 (1 + |\nabla u|^2)^{\frac{s}{2}} dx < \infty \end{split}$$

on account of our assumption. This "shows" the local integrability of the function H^2 , and a similar argument gives that the integral on the r.h.s. of (10) is well defined. Note that $H^2 \in L^1_{loc}(\Omega)$ is equivalent to

$$\operatorname{div}\partial_k u \in L^2_{loc}(\Omega), \quad \left(1 + |\varepsilon^D(u)|^2\right)^{\frac{s-2}{4}} |\partial_k \varepsilon^D(u)| \in L^2_{loc}(\Omega). \tag{11}$$

In fact, the definition of W implies for any ε , τ , $\sigma \in \mathbb{S}^2$

$$D^{2}W(\varepsilon)(\tau,\sigma) = \lambda(\mathrm{tr}\tau)(\mathrm{tr}\sigma) + D^{2}F(\varepsilon^{D})(\tau^{D},\sigma^{D}),$$

thus

$$H^{2} = \lambda |\nabla \operatorname{div} u|^{2} + D^{2} F(\varepsilon^{D}(u))(\partial_{k} \varepsilon^{D}(u), \partial_{k} \varepsilon^{D}(u))$$

80

and therefore (11) is immediate. Moreover, we have

$$\begin{split} &\int_{\Omega} \left| D^2 W(\varepsilon(u))(\partial_k \varepsilon(u), \nabla \varphi^2 \odot \partial_k [u - Px]) \right| dx \\ &\leq c \int_{\Omega} \left[|\nabla \operatorname{div} u| |\nabla \varphi| |\nabla u - P| + \left(1 + |\varepsilon^D(u)|^2 \right)^{\frac{s-2}{2}} |\nabla \varepsilon^D(u)| |\nabla \varphi| |\nabla u - P \right] dx \\ &\leq c \int_{\Omega} \left(1 + |\varepsilon^D(u)|^2 \right)^{\frac{s-2}{4}} |\nabla u - P| |\nabla \varphi| \left[|\nabla \operatorname{div} u| + \left(1 + |\varepsilon^D(u)|^2 \right)^{\frac{s-2}{4}} |\nabla \varepsilon^D(u)| \right] dx \\ &\leq c \int_{\Omega} \left(1 + |\varepsilon^D(u)|^2 \right)^{\frac{s-2}{4}} |\nabla u - P| H |\nabla \varphi| dx. \end{split}$$

Letting $h := (1 + |\varepsilon^D(u)|^2)^{(s-2)/4}$ and returning to (10) it is shown that

$$\int_{B_R} H^2 dx \le \frac{c}{R} \int_{B_{2R}} h H |\nabla u - P| dx, \tag{12}$$

provided we choose $\varphi \in C_0^{\infty}(B_{2R})$, $\varphi \equiv 1$ on B_R , $|\nabla \varphi| \leq c/R$, where B_{2R} is any open disc with compact closure in Ω . Now (12) exactly corresponds to (2.4) in [8], and with $\gamma := 4/3$ we end up with (2.5) of [8], i.e. we deduce from (12) (choosing $P = \oint_{B_{2R}} \nabla u dx$)

$$\int_{B_R} H^2 dx \le c \left[\int_{B_{2R}} (Hh)^{\gamma} dx \right]^{\frac{1}{\gamma}} \left[\int_{B_{2R}} |\nabla^2 u|^{\gamma} dx \right]^{\frac{1}{\gamma}}.$$
(13)

Noting that

$$|\nabla^2 u| \le c |\nabla \varepsilon(u)| \le c (|\nabla \operatorname{div} u| + |\nabla \varepsilon^D(u)|) \le c Hh,$$

(13) turns into

$$\left[\oint_{B_R} H^2 dx \right]^{\frac{1}{2}} \le c \oint_{B_R} (hH)^{\gamma} dx.$$
(14)

But (14) is the starting inequality for applying Lemma 1.2 of [8], provided we let $d := 2/\gamma$, $f := H^{\gamma}$, $g := h^{\gamma}$ in the lemma. Note that as in Section 2 of [8] all the assumptions of the lemma are satisfied since by (11)

$$\Phi := \left(1 + |\varepsilon^D(u)|^2\right)^{\frac{s}{4}} \in W^1_{2,loc}(\Omega)$$

and therefore

$$\int_{B_{\rho}} \exp(\beta h^2) dx \le c(\rho, \beta) < \infty$$

follows as outlined after (2.7) in [8]. We conclude from the lemma that (with a suitable constant c_0)

$$\int_{B_{\rho}} H^2 \log^{c_0 \beta}(e+H) dx \le c(\beta, \rho) < \infty$$
(15)

is valid for any $\beta > 0$ and all $\rho < 2R$. Finally, let $\sigma := DW(\varepsilon(u))$. Then

$$|\nabla \sigma| \le c \left[|\nabla \operatorname{div} u| + \left(1 + |\varepsilon^D(u)|^2 \right)^{\frac{s-2}{2}} |\nabla \varepsilon^D(u)| \right] \le chH,$$

and we may proceed as in [8] (see the calculations after (2.11)) to combine the latter inequality with (15) in order to get

$$\int_{B_R} |\nabla \sigma|^2 \log^\alpha (e + |\nabla \sigma|) dx \le c(R, \alpha)$$
(16)

for any $\alpha > 0$ (compare (2.11) of [8]). By results outlined in [10] (in particular Example 5.3) (16) shows the continuity of σ . Since $\varepsilon(u) = (DW)^{-1}(\sigma)$, the continuity of $\varepsilon(u)$ follows as well. If $v := \partial_k u$, k = 1, 2, then

$$0 = \int_{\Omega} D^2 W(\varepsilon(u))(\varepsilon(v), \varepsilon(\varphi)) dx$$
(17)

for all $\varphi \in C_0^{\infty}(\Omega; \mathbb{R}^2)$, and (17) can be seen as an elliptic system with continuous coefficients. Then we use Campanato-type estimates for systems with constant coefficients (see, e.g. [11]) combined with a freezing argument to deduce $v \in C^{0,\alpha}(\Omega; \mathbb{R}^2)$, $0 < \alpha < 1$. A detailed proof can be found for example in [12], Corollary 5.1, where of course the incompressibility condition can be dropped.

References

- E. Zeidler, Nonlinear Functional Analysis and its Applications, vol. IV, Springer, Berlin, 1987.
- [2] J. Frehse and G. Seregin, Regularity for solutions of variational problems in the deformation theory of plasticity with logarithmic hardening. Proc. St. Petersburg Math. Soc. 5(1998), 184–222 (in Russian). English translation: Transl. Amer. Math. Soc., II, 193(1999), 127–152.
- [3] L.M. Kachanov, Foundations of the Theory of Plasticity, North-Holland Publishing Company, Amsterdam-London, 1971.
- [4] V. D. Klyushnikov, The Mathematical Theory of Plasticity, Izd. Moskov Gos. Univ., Moscov, 1979.
- [5] J. Necăs and I. Hlaváček, Mathematical theory of elastic and elasto-plastic bodies: an introduction, Elsevier Publishing Company, Amsterdam-Oxford-New York, 1981.
- [6] G. Seregin, On the regularity of weak solutions of variational problems in plasticity theory, Algebra i Analiz 2 (1990), 121–140 (in Russian). English translation: Leningrad Math. J. 2(1991), 321–338.
- [7] G. Seregin, On the regularity of minimizers of certain variational problems in plasticity theory, Algebra i Analiz 4(1992), 181–218 (in Russian). English translation: St. Petersburg Math. J. 4(1993), 989–1020.
- [8] M. Bildhauer, M. Fuchs and X. Zhong, A lemma on the higher integrability of functions with applications to the regularity theory of two-dimensional generalized Newtonian fluids, Manus. Math. 116(2005), 135–156.

- [9] M. Bildhauer, M. Fuchs, M., Variants of the Stokes Problem: the case of anisotropic potentials. J. Math. Fluid Mech. 5(2003), 364–402.
- [10] J. Kauhanen, P. Koskela and J. Malý: On functions with derivatives in a Lorentz space, Manus. Math. 100(1999), 87–101.
- [11] M. Giaquinta and G. Modica, Nonlinear systems of the type of the stationary Navier-Stokes system, J. Reine Angew. Math. 330(1982), 173–214.
- [12] D. Apushkinskaya, M. Bildhauer and M. Fuchs, Steady states of anisotropic generalized Newtonian fluids, J. Math. Fluid Mech. 7(2005), 261–297.