A Short Remark On Energy Functionals Related To Nonlinear Hencky Materials*

Michael Bildhauer ${ }^{\dagger}$, Martin Fuchs ${ }^{\ddagger}$

Received 8 March 2006

Abstract

We prove interior $C^{1, \alpha}$-regularity of minimizing displacement fields for a class of nonlinear Hencky materials in the $2 D$-case.

Let $\Omega \subset \mathbb{R}^{2}$ denote a bounded open set on which the displacements u of an elastic body are defined. If the case of linear elasticity is considered, then the elastic energy of the deformation is given by

$$
\begin{equation*}
J_{0}[u]=\int_{\Omega}\left[\frac{1}{2} \lambda(\operatorname{div} u)^{2}+\kappa|\varepsilon(u)|^{2}\right] d x \tag{1}
\end{equation*}
$$

where $\lambda, \kappa>0$ denote physical constants and $\varepsilon(u)=\frac{1}{2}\left(\nabla u+\nabla u^{T}\right)$ is the symmetric gradient of u. In order to model a nonlinear material behaviour, in particular the nonlinear Hencky material, see [1], (1) is replaced by the energy

$$
\begin{equation*}
J[u]=\int_{\Omega}\left[\frac{1}{2} \lambda(\operatorname{div} u)^{2}+\varphi\left(\left|\varepsilon^{D}(u)\right|^{2}\right)\right] d x \tag{2}
\end{equation*}
$$

for some nonlinear function φ. Here $\varepsilon^{D}(u)$ is the deviatoric part of $\varepsilon(u)$, i.e. $\varepsilon^{D}(u)=$ $\varepsilon(u)-\frac{1}{2}(\operatorname{div} u) \mathbf{1}$. The purpose of our short note is to investigate the regularity properties of local minimizers of the functional J under suitable assumptions on the function φ. To be precise and to have more flexibility, we replace the quantity $\varphi\left(\left|\varepsilon^{D}(u)\right|^{2}\right)$ in the expression (2) for the energy by $F\left(\varepsilon^{D}(u)\right)$, where $F: \mathbb{S}^{2} \rightarrow[0, \infty)$ is a function of class C^{2} defined on the space \mathbb{S}^{2} of all symmetric (2×2)-matrices satisfying for some exponent $s \in(1, \infty)$ and with positive constants a, A the ellipticity estimate

$$
\begin{equation*}
a\left(1+|\varepsilon|^{2}\right)^{\frac{s-2}{2}}|\sigma|^{2} \leq D^{2} F(\varepsilon)(\sigma, \sigma) \leq A\left(1+|\varepsilon|^{2}\right)^{\frac{s-2}{2}}|\sigma|^{2} \tag{3}
\end{equation*}
$$

for all $\varepsilon, \sigma \in \mathbb{S}^{2}$.

[^0]DEFINITION 1. A function u from the Sobolev class $W_{1, l o c}^{1}\left(\Omega ; \mathbb{R}^{2}\right)$ is called a local minimizer of the functional

$$
\begin{equation*}
I[v, \Omega]:=\int_{\Omega}\left[\frac{\lambda}{2}(\operatorname{div} v)^{2}+F\left(\varepsilon^{D}(v)\right)\right] d x \tag{4}
\end{equation*}
$$

iff $I\left[u, \Omega^{\prime}\right]<\infty$ and $I\left[u, \Omega^{\prime}\right] \leq I\left[v, \Omega^{\prime}\right]$ for all $v \in W_{1, l o c}^{1}\left(\Omega ; \mathbb{R}^{2}\right)$ such that $\operatorname{spt}(u-v)$ is compactly contained in $\Omega^{\prime}, \Omega^{\prime}$ being an arbitrary subdomain with compact closure in Ω, spt denoting the support of a function.

Then we have
THEOREM 1. Let u denote a local minimizer of the functional $I[\cdot, \Omega]$ defined in (4) with F satisfying (3). Then u is in the local Hölder space $C^{1, \alpha}\left(\Omega ; \mathbb{R}^{2}\right)$ for any $0<\alpha<1$ provided that $s \in(1,4)$.

REMARK 1. In the case that $s \leq 2$ the result from Theorem 1 in principle is a consequence of the work of Frehse and Seregin [2] on plastic materials with logarithmic hardening. They consider the function $F(\varepsilon)=|\varepsilon| \ln (1+|\varepsilon|)$ but it is not hard to show that their arguments actually cover the case of exponents $s \leq 2$.

REMARK 2. For $s \in(1,2]$ the functional $I[\cdot, \Omega]$ also serves as a model for plasticity with power hardening, we refer to [3], [4] and [5]. It is worth remarking that Seregin proved partial regularity in the 3D-case for the above mentioned range of exponents, see e.g. [6], [7].

PROOF OF THEOREM 1. Let $f(\varepsilon):=\frac{\lambda}{2}(\operatorname{tr} \varepsilon)^{2}+F\left(\varepsilon^{D}\right), \varepsilon \in \mathbb{S}^{2}$. Here $\operatorname{tr} \varepsilon$ is the trace of the matrix ε and $\varepsilon^{D}=\varepsilon-\frac{1}{2} \operatorname{tr} \varepsilon \mathbf{1}$. Clearly $f: \mathbb{S}^{2} \rightarrow[0, \infty)$ is of class C^{2} and satisfies for all $\varepsilon, \sigma \in \mathbb{S}^{2}$

$$
\begin{equation*}
D^{2} f(\varepsilon)(\sigma, \sigma)=\lambda(\operatorname{tr} \sigma)^{2}+D^{2} F\left(\varepsilon^{D}\right)\left(\sigma^{D}, \sigma^{D}\right) \tag{5}
\end{equation*}
$$

If $s \geq 2$, then (3) and (5) imply with positive constants ν and μ

$$
\begin{equation*}
\nu|\sigma|^{2} \leq D^{2} f(\varepsilon)(\sigma, \sigma) \leq \mu\left(1+|\varepsilon|^{2}\right)^{\frac{s-2}{2}}|\sigma|^{2} \tag{6}
\end{equation*}
$$

for arbitrary matrices $\varepsilon, \sigma \in \mathbb{S}^{2}$. If $1<s<2$, then we observe (see (3) and (5))

$$
D^{2} f(\varepsilon)(\sigma, \sigma) \geq \lambda\left(1+|\varepsilon|^{2}\right)^{\frac{s-2}{2}}(\operatorname{tr} \sigma)^{2}+a\left(1+|\varepsilon|^{2}\right)^{\frac{s-2}{2}}\left|\sigma^{D}\right|^{2}
$$

which follows from $\left(1+|\varepsilon|^{2}\right)^{(s-2) / 2} \leq 1$ and $\left(1+|\varepsilon|^{2}\right)^{(s-2) / 2} \leq\left(1+\left|\varepsilon^{D}\right|^{2}\right)^{(s-2) / 2}$. Thus, for a suitable constant $\bar{\nu}>0$ we find that

$$
D^{2} f(\varepsilon)(\sigma, \sigma) \geq \bar{\nu}\left(1+|\varepsilon|^{2}\right)^{\frac{s-2}{2}}\left[\left|\sigma^{D}\right|^{2}+(\operatorname{tr} \sigma)^{2}\right] \geq \bar{\nu}\left(1+|\varepsilon|^{2}\right)^{\frac{s-2}{2}}|\sigma|^{2}
$$

and (see again (3))

$$
D^{2} f(\varepsilon)(\sigma, \sigma) \leq \lambda(\operatorname{tr} \sigma)^{2}+A\left|\sigma^{D}\right|^{2} \leq \bar{\mu}|\sigma|^{2}
$$

for some $\bar{\mu}>0$. Putting together both cases by letting $q:=\max \{2, s\}, p:=\min \{2, s\}$ we deduce from (6) and the calculations following (6) that

$$
\begin{equation*}
\bar{\alpha}\left(1+|\varepsilon|^{2}\right)^{\frac{p-2}{2}}|\sigma|^{2} \leq D^{2} f(\varepsilon)(\sigma, \sigma) \leq \bar{\beta}\left(1+|\varepsilon|^{2}\right)^{\frac{q-2}{2}}|\sigma|^{2} \tag{7}
\end{equation*}
$$

is true for all $\varepsilon, \sigma \in \mathbb{S}^{2}$ with constants $\bar{\alpha}, \bar{\beta}>0$. But in [8] we showed that any local minimizer $u \in W_{1, l o c}^{1}\left(\Omega ; \mathbb{R}^{2}\right)$ of the energy $\int_{\Omega} f(\varepsilon(v)) d x$ with f satisfying (7) is of class $C^{1, \alpha}$ in the interior of Ω provided that the exponents p and q are related through the condition

$$
\begin{equation*}
q<\min (2 p, p+2) \tag{8}
\end{equation*}
$$

Recalling the definitions of p and q it is immediate that the latter condition on p and q holds for $s \in(1,4)$. The reader should note that in [8] all comparison functions have to satisfy the incompressibility condition $\operatorname{div} v=0$ but of course the situation now simplifies in comparison to [8] and all results remain valid if this condition is dropped.

REMARK 3. If Ω is a domain in \mathbb{R}^{3} and if F satisfies (3), then local minimizers u of the functional $I[\cdot, \Omega]$ are of class $C^{1, \alpha}$ on an open subset Ω_{0} of Ω such that $\Omega-\Omega_{0}$ is of Lebesgue measure zero, provided $s<10 / 3$. This follows from the results in [9] if again the incompressibility condition is neglected.

REMARK 4. If we replace the term $\frac{\lambda}{2}(\operatorname{div} u)^{2}$ in the functional (4) by an expression like $g(\operatorname{div} u)$ with function g of growth rate $r \in(1, \infty)$, then a regularity result like Theorem 1 follows along the lines of [8] if we require (8) to hold with the choices $q:=\max \{s, r\}, p:=\min \{s, r\}$.

Let us now partially remove the restriction that $s<4$.
THEOREM 2. Suppose that $u \in W_{1, l o c}^{1}\left(\Omega ; \mathbb{R}^{2}\right)$ is a local minimizer of the energy $I[\cdot, \Omega]$ defined in (4), where F satisfies (3) for some exponent $s \geq 4$. Then the first derivatives of u are α-continuous functions in the interior of Ω for any $\alpha \in(0,1)$, provided we assume that $\operatorname{div} u \in L_{l o c}^{s}(\Omega)$.

PROOF. We define the class

$$
V:=\left\{v \in L^{2}\left(\Omega ; \mathbb{R}^{2}\right): \operatorname{div} v \in L^{2}(\Omega), \quad \varepsilon^{D}(v) \in L^{s}\left(\Omega ; \mathbb{S}^{2}\right)\right\}
$$

being the subspace of $W_{1, l o c}^{1}\left(\Omega ; \mathbb{R}^{2}\right)$ on which the functional I is well defined. If $v \in V$ is compactly supported in Ω, then it follows from

$$
I[u, \operatorname{spt} v] \leq I[u+t v, \operatorname{spt} v], t \in \mathbb{R}
$$

that

$$
\begin{equation*}
\int_{\Omega}\left[\lambda \operatorname{div} u \operatorname{div} v+D F\left(\varepsilon^{D}(u)\right): \varepsilon^{D}(v)\right] d x=0 \tag{9}
\end{equation*}
$$

For $h \in \mathbb{R}-\{0\}$ and $k \in\{1,2\}$ let

$$
\Delta_{h} w(x):=\frac{1}{h}\left[w\left(x+h e_{k}\right)-w(x)\right]
$$

denote the difference quotient of the function w. For $\varphi \in C_{0}^{\infty}(\Omega)$ it is easy to check that $v:=\Delta_{-h}\left(\varphi^{2} \Delta_{h}(u-P x)\right)$ is admissible in (9) for any constant matrix P. Following for example the calculations carried out in [9], it is not hard to show that after passing to the limit $h \rightarrow 0$ the next inequality can be deduced (from now on summation w.r.t. k)

$$
\begin{align*}
& \int_{\Omega} D^{2} W(\varepsilon(u))\left(\partial_{k} \varepsilon(u), \partial_{k} \varepsilon(u)\right) \varphi^{2} d x \\
& \quad \leq \quad-\int_{\Omega} D^{2} W(\varepsilon(u))\left(\partial_{k} \varepsilon(u), \nabla \varphi^{2} \odot \partial_{k}[u-P x]\right) d x \tag{10}
\end{align*}
$$

where

$$
W(\sigma):=\frac{\lambda}{2}(\operatorname{tr} \sigma)^{2}+F\left(\sigma^{D}\right), \sigma \in \mathbb{S}^{2},
$$

\odot being the symmetric product of tensors. In particular, all the derivatives of u occurring in (10) exist in the weak sense. Let

$$
H:=\left(D^{2} W(\varepsilon(u))\left(\partial_{k} \varepsilon(u), \partial_{k} \varepsilon(u)\right)\right)^{\frac{1}{2}}
$$

and observe that $H^{2} \in L_{l o c}^{1}(\Omega)$ which can be justified in strength via difference quotient technique but can be made plausible as follows: since we assume $\operatorname{div} u \in L_{\text {loc }}^{s}(\Omega)$, we have

$$
\varepsilon(u)=\varepsilon^{D}(u)+\frac{1}{2}(\operatorname{div} u) \mathbf{1} \in L_{l o c}^{s}\left(\Omega ; \mathbb{S}^{2}\right),
$$

hence $\nabla u \in L_{\text {loc }}^{s}\left(\Omega ; \mathbb{R}^{2 \times 2}\right)$ by Korn's inequality. If we apply the Cauchy-Schwarz inequality to the bilinear form $D^{2} W(\varepsilon(u))$, we get

$$
\begin{aligned}
& \left|D^{2} W(\varepsilon(u))\left(\partial_{k} \varepsilon(u), \nabla \varphi^{2} \odot \partial_{k} u\right)\right| \\
& \quad \leq \quad 2\left[D^{2} W(\varepsilon(u))\left(\partial_{k} \varepsilon(u), \partial_{k} \varepsilon(u)\right) \varphi^{2}\right]^{\frac{1}{2}}\left[D^{2} W(\varepsilon(u))\left(\nabla \varphi \odot \partial_{k} u, \nabla \varphi \odot \partial_{k} u\right)\right]^{\frac{1}{2}} .
\end{aligned}
$$

Applying this estimate on the r.h.s. of (10) (choosing $P=0$ for the moment) and using Young's inequality we obtain

$$
\begin{aligned}
\int_{\Omega} \varphi^{2} H^{2} d x & =\int_{\Omega} \varphi^{2} D^{2} W(\varepsilon(u))\left(\partial_{k} \varepsilon(u), \partial_{k} \varepsilon(u)\right) d x \\
& \leq c \int_{\Omega}\left|D^{2} W(\varepsilon(u))\right||\nabla \varphi|^{2}|\nabla u|^{2} d x \\
& \leq c \int_{\Omega}|\nabla \varphi|^{2}\left(1+|\nabla u|^{2} \frac{s}{\frac{s}{2}} d x<\infty\right.
\end{aligned}
$$

on account of our assumption. This "shows" the local integrability of the function H^{2}, and a similar argument gives that the integral on the r.h.s. of (10) is well defined. Note that $H^{2} \in L_{\text {loc }}^{1}(\Omega)$ is equivalent to

$$
\begin{equation*}
\operatorname{div} \partial_{k} u \in L_{l o c}^{2}(\Omega), \quad\left(1+\left|\varepsilon^{D}(u)\right|^{2}\right)^{\frac{s-2}{4}}\left|\partial_{k} \varepsilon^{D}(u)\right| \in L_{l o c}^{2}(\Omega) . \tag{11}
\end{equation*}
$$

In fact, the definition of W implies for any $\varepsilon, \tau, \sigma \in \mathbb{S}^{2}$

$$
D^{2} W(\varepsilon)(\tau, \sigma)=\lambda(\operatorname{tr} \tau)(\operatorname{tr} \sigma)+D^{2} F\left(\varepsilon^{D}\right)\left(\tau^{D}, \sigma^{D}\right)
$$

thus

$$
H^{2}=\lambda|\nabla \operatorname{div} u|^{2}+D^{2} F\left(\varepsilon^{D}(u)\right)\left(\partial_{k} \varepsilon^{D}(u), \partial_{k} \varepsilon^{D}(u)\right)
$$

and therefore (11) is immediate. Moreover, we have

$$
\begin{aligned}
& \int_{\Omega}\left|D^{2} W(\varepsilon(u))\left(\partial_{k} \varepsilon(u), \nabla \varphi^{2} \odot \partial_{k}[u-P x]\right)\right| d x \\
& \quad \leq c \int_{\Omega}\left[\left.|\nabla \operatorname{div} u||\nabla \varphi||\nabla u-P|+\left(1+\left|\varepsilon^{D}(u)\right|^{2}\right)^{\frac{s-2}{2}}\left|\nabla \varepsilon^{D}(u)\right||\nabla \varphi| \right\rvert\, \nabla u-P\right] d x \\
& \quad \leq c \int_{\Omega}\left(1+\left|\varepsilon^{D}(u)\right|^{2}\right)^{\frac{s-2}{4}}|\nabla u-P||\nabla \varphi|\left[|\nabla \operatorname{div} u|+\left(1+\left|\varepsilon^{D}(u)\right|^{2}\right)^{\frac{s-2}{4}}\left|\nabla \varepsilon^{D}(u)\right|\right] d x \\
& \quad \leq c \int_{\Omega}\left(1+\left|\varepsilon^{D}(u)\right|^{2}\right)^{\frac{s-2}{4}}|\nabla u-P| H|\nabla \varphi| d x .
\end{aligned}
$$

Letting $h:=\left(1+\left|\varepsilon^{D}(u)\right|^{2}\right)^{(s-2) / 4}$ and returning to (10) it is shown that

$$
\begin{equation*}
\int_{B_{R}} H^{2} d x \leq \frac{c}{R} \int_{B_{2 R}} h H|\nabla u-P| d x \tag{12}
\end{equation*}
$$

provided we choose $\varphi \in C_{0}^{\infty}\left(B_{2 R}\right), \varphi \equiv 1$ on $B_{R},|\nabla \varphi| \leq c / R$, where $B_{2 R}$ is any open disc with compact closure in Ω. Now (12) exactly corresponds to (2.4) in [8], and with $\gamma:=4 / 3$ we end up with (2.5) of [8], i.e. we deduce from (12) (choosing $\left.P=f_{B_{2 R}} \nabla u d x\right)$

$$
\begin{equation*}
f_{B_{R}} H^{2} d x \leq c\left[f_{B_{2 R}}(H h)^{\gamma} d x\right]^{\frac{1}{\gamma}}\left[f_{B_{2 R}}\left|\nabla^{2} u\right|^{\gamma} d x\right]^{\frac{1}{\gamma}} \tag{13}
\end{equation*}
$$

Noting that

$$
\left|\nabla^{2} u\right| \leq c|\nabla \varepsilon(u)| \leq c\left(|\nabla \operatorname{div} u|+\left|\nabla \varepsilon^{D}(u)\right|\right) \leq c H h,
$$

(13) turns into

$$
\begin{equation*}
\left[f_{B_{R}} H^{2} d x\right]^{\frac{\gamma}{2}} \leq c f_{B_{R}}(h H)^{\gamma} d x \tag{14}
\end{equation*}
$$

But (14) is the starting inequality for applying Lemma 1.2 of [8], provided we let $d:=2 / \gamma, f:=H^{\gamma}, g:=h^{\gamma}$ in the lemma. Note that as in Section 2 of [8] all the assumptions of the lemma are satisfied since by (11)

$$
\Phi:=\left(1+\left|\varepsilon^{D}(u)\right|^{2}\right)^{\frac{s}{4}} \in W_{2, l o c}^{1}(\Omega)
$$

and therefore

$$
\int_{B_{\rho}} \exp \left(\beta h^{2}\right) d x \leq c(\rho, \beta)<\infty
$$

follows as outlined after (2.7) in [8]. We conclude from the lemma that (with a suitable constant c_{0})

$$
\begin{equation*}
\int_{B_{\rho}} H^{2} \log ^{c_{0} \beta}(e+H) d x \leq c(\beta, \rho)<\infty \tag{15}
\end{equation*}
$$

is valid for any $\beta>0$ and all $\rho<2 R$. Finally, let $\sigma:=D W(\varepsilon(u))$. Then

$$
|\nabla \sigma| \leq c\left[|\nabla \operatorname{div} u|+\left(1+\left|\varepsilon^{D}(u)\right|^{2}\right)^{\frac{s-2}{2}}\left|\nabla \varepsilon^{D}(u)\right|\right] \leq c h H
$$

and we may proceed as in [8] (see the calculations after (2.11)) to combine the latter inequality with (15) in order to get

$$
\begin{equation*}
\int_{B_{R}}|\nabla \sigma|^{2} \log ^{\alpha}(e+|\nabla \sigma|) d x \leq c(R, \alpha) \tag{16}
\end{equation*}
$$

for any $\alpha>0$ (compare (2.11) of [8]). By results outlined in [10] (in particular Example 5.3) (16) shows the continuity of σ. Since $\varepsilon(u)=(D W)^{-1}(\sigma)$, the continuity of $\varepsilon(u)$ follows as well. If $v:=\partial_{k} u, k=1,2$, then

$$
\begin{equation*}
0=\int_{\Omega} D^{2} W(\varepsilon(u))(\varepsilon(v), \varepsilon(\varphi)) d x \tag{17}
\end{equation*}
$$

for all $\varphi \in C_{0}^{\infty}\left(\Omega ; \mathbb{R}^{2}\right)$, and (17) can be seen as an elliptic system with continuous coefficients. Then we use Campanato-type estimates for systems with constant coefficients (see, e.g. [11]) combined with a freezing argument to deduce $v \in C^{0, \alpha}\left(\Omega ; \mathbb{R}^{2}\right)$, $0<\alpha<1$. A detailed proof can be found for example in [12], Corollary 5.1, where of course the incompressibility condition can be dropped.

References

[1] E. Zeidler, Nonlinear Functional Analysis and its Applications, vol. IV, Springer, Berlin, 1987.
[2] J. Frehse and G. Seregin, Regularity for solutions of variational problems in the deformation theory of plasticity with logarithmic hardening. Proc. St. Petersburg Math. Soc. 5(1998), 184-222 (in Russian). English translation: Transl. Amer. Math. Soc., II, 193(1999), 127-152.
[3] L.M. Kachanov, Foundations of the Theory of Plasticity, North-Holland Publishing Company, Amsterdam-London, 1971.
[4] V. D. Klyushnikov, The Mathematical Theory of Plasticity, Izd. Moskov Gos. Univ., Moscov, 1979.
[5] J. Necǎs and I. Hlaváček, Mathematical theory of elastic and elasto-plastic bodies: an introduction, Elsevier Publishing Company, Amsterdam-Oxford-New York, 1981.
[6] G. Seregin, On the regularity of weak solutions of variational problems in plasticity theory, Algebra i Analiz 2 (1990), 121-140 (in Russian). English translation: Leningrad Math. J. 2(1991), 321-338.
[7] G. Seregin, On the regularity of minimizers of certain variational problems in plasticity theory, Algebra i Analiz 4(1992), 181-218 (in Russian). English translation: St. Petersburg Math. J. 4(1993), 989-1020.
[8] M. Bildhauer, M. Fuchs and X. Zhong, A lemma on the higher integrability of functions with applications to the regularity theory of two-dimensional generalized Newtonian fluids, Manus. Math. 116(2005), 135-156.
[9] M. Bildhauer, M. Fuchs, M., Variants of the Stokes Problem: the case of anisotropic potentials. J. Math. Fluid Mech. 5(2003), 364-402.
[10] J. Kauhanen, P. Koskela and J. Malý: On functions with derivatives in a Lorentz space, Manus. Math. 100(1999), 87-101.
[11] M. Giaquinta and G. Modica, Nonlinear systems of the type of the stationary Navier-Stokes system, J. Reine Angew. Math. 330(1982), 173-214.
[12] D. Apushkinskaya, M. Bildhauer and M. Fuchs, Steady states of anisotropic generalized Newtonian fluids, J. Math. Fluid Mech. 7(2005), 261-297.

[^0]: *Mathematics Subject Classifications: 74B20, 49N60, 74G40, 74G65.
 ${ }^{\dagger}$ Department of Mathematics, Saarland University, P.O. Box 151150, D-66041 Saarbrücken, Germany
 \ddagger Department of Mathematics, Saarland University, P.O. Box 151150, D-66041 Saarbrücken, Germany

