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Abstract

We prove interior C**-regularity of minimizing displacement fields for a class
of nonlinear Hencky materials in the 2D-case.

Let € C R? denote a bounded open set on which the displacements u of an elastic
body are defined. If the case of linear elasticity is considered, then the elastic energy
of the deformation is given by

Jo[u] :/Q [%)\(divu)2+n|5(u)|2 dz, (1)

where A, £ > 0 denote physical constants and e(u) = 3(Vu + Vu”) is the symmetric
gradient of w. In order to model a nonlinear material behaviour, in particular the
nonlinear Hencky material, see [1], (1) is replaced by the energy

Ju) = /Q (G2 + (1P w)?) | (2)

for some nonlinear function . Here e (u) is the deviatoric part of e(u), i.e. eP(u) =
&(u)—%(divu)1. The purpose of our short note is to investigate the regularity properties
of local minimizers of the functional J under suitable assumptions on the function ¢.
To be precise and to have more flexibility, we replace the quantity ¢(|e?(u)|?) in the
expression (2) for the energy by F(eP(u)), where F: S? — [0,00) is a function of
class C? defined on the space S? of all symmetric (2 x 2)-matrices satisfying for some
exponent s € (1,00) and with positive constants a, A the ellipticity estimate

a(1+1e2) 7 Jol? < D*F(e)(0,0) < A(L+e2) 7 |o? (3)

forall e, o € S2.
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78 Energy Functionals

DEFINITION 1. A function u from the Sobolev class W ,.(€; R?) is called a local
minimizer of the functional

1[0, 9] := /Q [%(divv)2+F(sD(v)) dz (4)

iff I[u, Q] < oo and I[u, Q] < I[v, '] for all v € W}, .(Q; R?) such that spt(u — v) is
compactly contained in €, ' being an arbitrary subdomain with compact closure in
), spt denoting the support of a function.

Then we have

THEOREM 1. Let v denote a local minimizer of the functional I[-, Q] defined in
(4) with F satisfying (3). Then u is in the local Holder space C1(Q;R?) for any
0 < a < 1 provided that s € (1,4).

REMARK 1. In the case that s < 2 the result from Theorem 1 in principle is a
consequence of the work of Frehse and Seregin [2] on plastic materials with logarithmic
hardening. They consider the function F(g) = |¢|In(1 + |¢]) but it is not hard to show
that their arguments actually cover the case of exponents s < 2.

REMARK 2. For s € (1, 2] the functional I]-, 2] also serves as a model for plasticity
with power hardening, we refer to [3], [4] and [5]. It is worth remarking that Seregin
proved partial regularity in the 3D-case for the above mentioned range of exponents,
see e.g. [6], [7].

PROOF OF THEOREM 1. Let f(¢) := 3(tre)? + F(eP),e € S% Here tre is the
trace of the matrix ¢ and e = ¢ — Ltrel. Clearly f: S* — [0,00) is of class C? and
satisfies for all €, 0 € S?

D2f(e)(o,0) = A(tro)? + D*F(eP) (o, oP). (5)

If s > 2, then (3) and (5) imply with positive constants v and y

Vo2 < D)0, 0) < p(1+ [ef?) T Jof? (6)

for arbitrary matrices e, 0 € S2. If 1 < s < 2, then we observe (see (3) and (5))

s—2

D2f(e)(.0) = A1+ |e2) ™ (t10)? + a(1 + |ef2) T |oP?

which follows from (1+[¢]?)(*=2)/2 < 1 and (1+|¢]?)~2)/2 < (1+|P|?)(5=2/2, Thus,
for a suitable constant 7 > 0 we find that

—2

2

D*f()(0,0) 2 P(1+[el2) T [loP 2 + (0] > D(1+ o) 7 o,
and (see again (3))
D2f(£)(0,0) < A(tr0)? + AloP|? < Tlo?

for some 1z > 0. Putting together both cases by letting ¢ := max{2, s}, p := min{2, s}
we deduce from (6) and the calculations following (6) that

a(1+[e2) 7 |of2 < D?f(e)(0,0) < B+ |e?) 7 Jof? (7)
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is true for all e, 0 € S? with constants @, 8 > 0. But in [8] we showed that any local
minimizer u € W ;,.(Q; R?) of the energy [, f(e(v))dx with f satisfying (7) is of class
C® in the interior of  provided that the exponents p and g are related through the
condition
g < min(2p,p + 2). (8)
Recalling the definitions of p and ¢ it is immediate that the latter condition on p and
g holds for s € (1,4). The reader should note that in [8] all comparison functions
have to satisfy the incompressibility condition dive = 0 but of course the situation now
simplifies in comparison to [8] and all results remain valid if this condition is dropped.
REMARK 3. If Q is a domain in R? and if F satisfies (3), then local minimizers u
of the functional I[, Q2] are of class C1** on an open subset Qy of Q such that Q — Qg
is of Lebesgue measure zero, provided s < 10/3. This follows from the results in [9] if
again the incompressibility condition is neglected.

REMARK 4. If we replace the term 3 (divu)? in the functional (4) by an expression
like g(divu) with function g of growth rate r» € (1,00), then a regularity result like
Theorem 1 follows along the lines of [8] if we require (8) to hold with the choices
q := max{s,r}, p:= min{s,r}.

Let us now partially remove the restriction that s < 4.

THEOREM 2. Suppose that u € W, .(Q;R?) is a local minimizer of the energy
I[-, €] defined in (4), where F satisfies (3) for some exponent s > 4. Then the first
derivatives of u are a-continuous functions in the interior of Q for any a € (0,1),
provided we assume that divu € L7 ().

loc
PROOF. We define the class
V= {ve L* (4R : divv € L*(Q), ”(v) € L*((4S?)}

being the subspace of W ;,.(Q;R?) on which the functional I is well defined. If v € V
is compactly supported in £2, then it follows from

I[u, sptv] < Ifu + tv, spty], t € R,
that
/ [)\divu divv + DF (P (u)) : P (v) | dx = 0. (9)
Q
For h € R — {0} and k € {1,2} let
1
Apw(z) = E[w(x + hey) — w(z)]

denote the difference quotient of the function w. For ¢ € C§°(Q) it is easy to check that
v:i=A_p(p?Ap(u— Px)) is admissible in (9) for any constant matrix P. Following for
example the calculations carried out in [9], it is not hard to show that after passing to
the limit »~ — 0 the next inequality can be deduced (from now on summation w.r.t. k)

A D?*W (e(u))(Ope(u), Ope(u))p?dx

< - i D*W (g(u))(9ke(u), Vi © Oy[u — Px))dz, (10)
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where

W(o) := %(tra)2 + F(oP), 0 €§?,

©® being the symmetric product of tensors. In particular, all the derivatives of u occur-
ring in (10) exist in the weak sense. Let

=

H := (D*W(e(u))(0ke(u), Ope(u)))

and observe that H? € L} (£2) which can be justified in strength via difference quotient

loc
technique but can be made plausible as follows: since we assume divu € L$ (), we

loc
have

e(u) =P (u) + %(divu)l e L; (8%,

loc

hence Vu € Lj (2;R?*2) by Korn’s inequality. If we apply the Cauchy-Schwarz

loc

inequality to the bilinear form D?W (g(u)), we get

’DQW(E(U))(akE(u), Voo 3ku)’

< 2[D*W(e(u))(Oke(u), Ope(u))p?] 5 [D*W (£(u))(Ve © Opu, Vo © Gu)] ?.

Applying this estimate on the r.h.s. of (10) (choosing P = 0 for the moment) and using
Young’s inequality we obtain

/<p2H2d3: = /¢2D2W(5(u))(8k5(u),8k5(u))dx
Q

Q
< e / D2V (=) [V ?| Ve
Q

IN

c/ IVo]?(1 + |Vul?)2dr < 0o
Q

on account of our assumption. This “shows” the local integrability of the function H?2,
and a similar argument gives that the integral on the r.h.s. of (10) is well defined. Note
that H? € L} (Q) is equivalent to

loc
divogu € L2,(),  (1+]P(w)2) ™ |0pe? (w)] € L2, (5). (11)
In fact, the definition of W implies for any ¢, 7, o € S?
D*W (g)(1,0) = Atr7)(tro) + D*F(eP)(r7, oP),

thus
H? = \|Vdivu|? + D*F (P (u)) (0 (u), Ope® ()
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and therefore (11) is immediate. Moreover, we have
i |D*W ((u))(Ore(u), Vo ® Ok[u — Pa])|dx
< c/ﬂ [1Vdival| Vel [Vu— P| + (1+ e”(w)]?) = [V=P ()| |Vl [Vu— P|da
< c/Q (1+ |5D(u)|2)51_2|Vu— P||Vy|[|Vdivu| + (1 + |5D(u)|2)i_2|V5D(u)|]dx
< c/ﬂ (1+ |5D(u)|2)51_2|vu_ P|H|V|dz.
Letting h := (1 4 [P (u)|?)*=2)/* and returning to (10) it is shown that
H2dx g% hH|Vu — P|dz, (12)

Br Bar

provided we choose ¢ € C§°(Bar), ¢ = 1 on Bg, |Vy| < ¢/R, where Bap is any
open disc with compact closure in Q. Now (12) exactly corresponds to (2.4) in [§],
and with v := 4/3 we end up with (2.5) of [8], i.e. we deduce from (12) (choosing
P=4f By, VUAT)

1
5

L
H?dx < c ][ (Hh)"dx ][ |V2ul7dz| . (13)
Br Bar Bar

|V2u| < ¢|Ve(u)| < ¢(|Vdivu| + |VeP (u)|) < cHh,

Noting that

(13) turns into

[ BRH daj] Sc][BR(hH)’de. (14)

But (14) is the starting inequality for applying Lemma 1.2 of [8], provided we let
d:=2/v, f:= H", g := h” in the lemma. Note that as in Section 2 of [8] all the
assumptions of the lemma are satisfied since by (11)

o= (1+]PW)P)T e Wi,,.(Q)

and therefore

/ exp(Bh?)dx < c(p, B) < o
B

P

follows as outlined after (2.7) in [8]. We conclude from the lemma that (with a suitable
constant cp)

[ o et iy < (5.p) < o (15)
BP
is valid for any § > 0 and all p < 2R. Finally, let 0 := DW (e(u)). Then

s—2
IVo| < e[|Vdivu| + (1 + |eP (w)]?) = |VeP (u)]] < chH,
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and we may proceed as in [8] (see the calculations after (2.11)) to combine the latter
inequality with (15) in order to get

/ Vo 2log® (¢ + [Vo|)dz < (R, a) (16)
Br

for any a > 0 (compare (2.11) of [8]). By results outlined in [10] (in particular Example
5.3) (16) shows the continuity of o. Since e(u) = (DW)~!(o), the continuity of &(u)
follows as well. If v := Ogpu, k =1, 2, then

0= [ D*W(e(u))(e(v),e(p))da (17)
Q
for all ¢ € C§°(Q;R?), and (17) can be seen as an elliptic system with continuous
coefficients. Then we use Campanato-type estimates for systems with constant coef-
ficients (see, e.g. [11]) combined with a freezing argument to deduce v € C%*(Q; R?),
0 < a < 1. A detailed proof can be found for example in [12], Corollary 5.1, where of
course the incompressibility condition can be dropped.
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