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Abstract

We propose an explicit formula for the best L2 approximation to a multivariate
function by linear combinations of ridge functions over some set in Rn.

1 Introduction

A ridge function is a multivariate function of the form

g (a · x) = g (a1x1 + · · ·+ anxn) ,

where g : R → R and a = (a1, ..., an) is a fixed vector (direction) in Rn\ {0}. In other
words, it is a multivariate function constant on the parallel hyperplanes a·x = α, α ∈ R.
Ridge functions and their combinations arise in various contexts. They arise naturally
in problems of computerized tomography (see, e.g., [7, 10, 12]), statistics (see, e.g., [1,
5]), partial differential equations [6], neural networks (see, e.g., [2, 13, 15, 16]), and
approximation theory (see, e.g., [2, 3, 4, 8, 9, 11, 13, 14, 15]).

The term ”ridge function” is rather recent. It was coined by Logan and Shepp [10]
in one of the seminal papers on computerized tomography. However, these functions
have been considered for a long time under the name of plane waves (see, for example,
[6]).

In some applications (especially in tomography), one is interested in the set

R
(
a1, ..., ar

)
=

{
r∑

i=1

gi

(
ai · x

)
: gi : R → R, i = 1, ..., r

}
.

That is, we consider linear combinations of ridge functions with a finite number of fixed
directions. It is clear that this is a linear space.

Some problems of approximation from the set R
(
a1, ..., ar

)
were investigated by

a number of authors. For example, one essential approximation method, its defects
and advantages were discussed in [14]. Lin and Pinkus [9] characterized R

(
a1, ..., ar

)
,
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i.e. they found means of determining if a continuous function f (defined on Rn) is of
the form

∑r
i=1 gi

(
ai · x

)
for some given a1, ..., ar ∈ Rn\ {0}, but unknown continuous

g1, ..., gr. Two other characterizations of R
(
a1, ..., ar

)
in the uniform norm may be

found in Diaconis and Shahshahani [3].
Let D be the unit disk in R2. Logan and Shepp [10] gave a complicated, but ex-

plicitly determined expression for the best L2 approximation to a function f (x1, x2) ∈
L2 (D) from R

(
a1, ..., ar

)
with equally-spaced directions a1, ..., ar. We are not aware of

any result of this kind in n dimensional case. Our purpose is to consider the problem of
the best L2 approximation to a multivariate function f (x1, ..., xn) from R

(
a1, ..., ar

)

over some set in Rn. We use only the basic facts from the theory of Hilbert spaces to
characterize and then construct the best approximation. Unfortunately, the results of
the paper involve only cases in which the space dimension is equal to the number of
fixed directions. However, our formula for the best approximation is rather simple.

2 Construction of the Best Approximation

Let X be a subset of Rn with a finite Lebesgue measure. Consider the approximation
to a function f (x) = f (x1, ..., xn) in L2 (X) from the manifold R

(
a1, ..., an

)
. We

suppose that the functions gi

(
ai · x

)
, i = 1, ..., n, belong to the space L2 (X) and the

vectors a1, ..., an are linearly independent. We say that a function g0 =
∑n

i=1 g0
i

(
ai · x

)

in R
(
a1, ..., an

)
is the best approximation (or extremal) to f if

‖f − g0‖L2(X) = inf
g∈R(a1,...,an)

‖f − g‖L2(X) .

Consider the mapping J : X → Rn given by the formulas

yi = ai · x, i = 1, ..., n. (1)

Since the vectors ai =
(
ai
1, ..., a

i
n

)
, i = 1, ..., n, are linearly independent, it is an

injection. The Jacobian of this mapping is a constant different from zero:

det
[

∂yi

∂xj

]
= det

[
ai

j

]
6= 0.

Solving the system of linear equations (1) with respect to xi, i = 1, ..., n, we obtain
that

xi = bi · y, i = 1, ..., n,

where y = (y1, ..., yn), bi =
(
bi
1, ..., b

i
n

)
, i = 1, ..., n, and

[
bi
j

]
=
[
ai

j

]−1. Introduce the
notation

Y = J (X)

and
Yi =

{
yi ∈ R : yi = ai · x, x ∈ X

}
, i = 1, ..., n.
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For any function u ∈ L2 (X) , put

u∗ = u∗ (y)
def
= u

(
b1 · y, ...,bn · y

)
.

It is obvious that u∗ ∈ L2 (Y ) . Besides,
∫

Y

u∗ (y) dy =
∣∣det

[
ai

j

]∣∣ ·
∫

X

u (x) dx (2)

and
‖u∗‖L2(Y ) =

∣∣det
[
ai

j

]∣∣1/2 · ‖u‖L2(X) . (3)

From (3) we obtain that the following lemma is valid.
LEMMA 2.1. Let f (x) ∈ L2 (X). A function

∑n
i=1 g0

i

(
ai · x

)
is extremal to the

function f (x) if and only if
∑n

i=1 g0
i (yi) is extremal from the space L2(Y1)+...+L2(Yn)

to the function f∗ (y).
The following two lemmas are observations well known from functional analysis that

the best approximation of an element x in a Hilbert space H from a linear subspace
Z of H must be the image of x via the orthogonal projection onto Z (lemma 2.2) and
the sum of squares of norms of orthogonal vectors is equal to the square of the norm
of their sum (lemma 2.3).

LEMMA 2.2. Let f (x) ∈ L2 (X). A function
∑n

i=1 g0
i

(
ai · x

)
∈ R

(
a1, ..., an

)
is

extremal to the function f (x) if and only if

∫

X

(
f (x) −

n∑

i=1

g0
i

(
ai · x

)
)

h
(
aj · x

)
dx = 0

for any ridge function h
(
aj · x

)
∈ L2 (X) j = 1, ..., n.

LEMMA 2.3. The following formula is valid for the error of approximation to a
function f (x) in L2 (X) from R

(
a1, ..., an

)
:

E (f) =


‖f (x)‖2

L2(X) −

∥∥∥∥∥
n∑

i=1

g0
i

(
ai · x

)
∥∥∥∥∥

2

L2(X)




1
2

,

where
n∑

i=1

g0
i

(
ai · x

)
is the best approximation to f (x).

By Y (i), we denote the Cartesian product of the sets Y1, ..., Yn except for Yi, i =
1, ..., n. That is, Y (i) = Y1 × ...× Yi−1 × Yi+1 × ...× Yn, i = 1, ..., n.

THEOREM 2.4. Let Y be represented as the Cartesian product Y1 × ... × Yn. A
function

∑n
i=1 g0

i

(
ai · x

)
in R

(
a1, ..., an

)
is the best approximation to f (x) if and only

if

g0
j (yj) =

1∣∣Y (j)
∣∣
∫

Y (j)


f∗ (y) −

∑

i=1,...,n;i6=j

g0
i (yi)


 dy(j), j = 1, ..., n, (4)
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where
∣∣Y (j)

∣∣ is the Lebesgue measure of Y (j).

PROOF. Necessity. Let a function
∑n

i=1 g0
i

(
ai · x

)
is extremal to f . Then by

lemma 2.1, the function
n∑

i=1
g0

i (yi) in L2 (Y1) + ... + L2 (Yn) is extremal to f∗. By

lemma 2.2 and equality (2),

∫

Y

f∗ (y) h (yj) dy =
∫

Y

n∑

i=1

g0
i (yi) · h (yj) dy (5)

for any function h (yj) ∈ L2 (Yj) , j = 1, ..., n. Applying Fubini’s theorem to the
integrals in (5), we obtain that

∫

Yj

h (yj)



∫

Y (j)

f∗ (y) dy(j)


dyj =

∫

Yj

h (yj)



∫

Y (j)

n∑

i=1

g0
i (yi) dy(j)


dyj .

Since h (yj) is an arbitrary function in L2 (Yj),

∫

Y (j)

f∗ (y) dy(j) =
∫

Y (j)

n∑

i=1

g0
i (yi) dy(j), j = 1, ..., n.

Therefore,

∫

Y (j)

g0
j (yj) dy(j) =

∫

Y (j)


f∗ (y) −

∑

i=1,...,n;i6=j

g0
i (yi)


 dy(j), j = 1, ..., n.

Now, since yj /∈ Y (j), we obtain (4).
Sufficiency. The proof of the sufficiency is not difficult if note that all the equalities

in the proof of the necessity can be obtained in the reverse order. That is, (5) can be
obtained from (4). Then by (2) and lemma 2.2, we finally conclude that the element∑n

i=1 g0
i

(
ai · x

)
is extremal to f (x).

Our main result is the following theorem.
THEOREM 2.5. Let Y be represented as the Cartesian product Y1 × ...× Yn. Set

the functions

g0
1 (y1) =

1∣∣Y (1)
∣∣
∫

Y (1)

f∗ (y) dy(1) − (n − 1)
1
|Y |

∫

Y

f∗ (y) dy

and
g0

j (yj) =
1∣∣Y (j)
∣∣
∫

Y (j)

f∗ (y) dy(j) j = 2, ..., n.

Then the function
n∑

i=1
g0

i

(
ai · x

)
is the best approximation to f (x).
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PROOF. It is sufficient to verify that the functions g0
j (yj) , j = 1, ..., n, satisfy the

conditions (4) of Theorem 2.4. This becomes obvious if note that

∑

i=1,...,n;i6=j

1∣∣Y (j)
∣∣

1∣∣Y (i)
∣∣
∫

Y (j)



∫

Y (i)

f∗ (y) dy(i)


 dy(j) = (n − 1)

1
|Y |

∫

Y

f∗ (y) dy

for j = 1, ..., n.
REMARK. Using lemma 2.3 and theorem 2.5, one can obtain an efficient formula

for the error in approximating from the set R
(
a1, ..., an

)
.
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