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Abstract

In the present paper we obtain a saturation theorem for the linear combination
of modified Beta operators.

1 Introduction

For f ∈ Lp[0,∞), p ≥ 1, Gupta and Ahmad [1] introduced an interesting sequence
of linear positive operators and termed it as modified Beta operators. The sequence
which is the combination of Beta and Baskakov basis functions is defined as

Bn(f ; x) =
n − 1

n

∞∑

v=0

bn,v(x)
∫ ∞

0

pn,v(t)f(t)dt, x ∈ [0,∞) (1)

where

bn,v(t) =
1

B(n, v + 1)
xv

(1 + x)n+v+1
, pn,v(t) =

(
n + v − 1

v

)
tv

(1 + t)n+v
(2)

and B(v + 1, n) being the Beta function given by v!(n−1)!
(n+v)! .

It is easily verified that the operators Bn defined above are linear positive operators
and Bn reproduce every constant function. One can see that as such the summation
type operators are not Lp-approximation methods. However for obvious reasons the
summation type operators are appropriately modified to become Lp-approximation
methods. These operators Bn can also be used to approximate Lebesgue integrable
functions. In approximation theory related to the linear positive operators lot of contri-
bution is due to Gupta and collaborators, for some examples of similar type of operators
we mention the recent papers due to Gupta and Ispir [4] and Srivastava and Gupta [5].

The order of approximation for the operators (1) is at best O(n−1) howsoever
smooth the function may be, with the aim of bettering the order of approximation, we
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have to slack the positive condition of these operators for which we may take appropri-
ate linear combination of the operators (1). Now we consider the linear combination
Bn(f, k, x) of the operators Bdjn(f, x) as

Bn(f, k, x) =
k∑

j=0

C(j, k)Bdjn(f, x) (3)

where
C(j, k) =

∏

i=0,...,k;i6=j

dj

dj − di
, C(0, 0) = 1. (4)

and d0, d1, ..., dk are k+1 arbitrary but fixed distinct positive integers. Throughout the
present paper we consider 0 < a1 < a2 < a3 < b3 < b2 < b1 < ∞ and Ii = [ai, bi], i =
1, 2, 3, The space A.C.[a, b] denotes the class of absolutely continuous functions on [a, b]
for every a, b satisfying 0 < a < b < ∞.

The present paper is the extension of the previous papers [2] and [3], in which direct
and inverse theorems for the linear combinations are established in Lp-norm, only in
ordinary approximation. In this paper we state and prove a saturation theorem for the
linear combinations (3) of the operators (1) in ordinary approximation.

2 Auxiliary Results

In this section, we give some lemmas, which are essential to prove our main theorem.
LEMMA 1 [1]. Let m-th order central moment Tn,m(x), m ∈ N , be defined as

Tn,m(x) = Bn

(
(t − x)m, x

)
=

n − 1
n

∞∑

v=0

bn,v(x)
∫ ∞

0

pn,v(t)(t − x)mdt,

then Tn,0(x) = 1, Tn,1 = 3x+1
n−2 , and for each n > m + 2, there holds the recurrence

relation

(n − m − 2)Tn,m+1(x) = x(1 + x)[T (1)
n,m(x) + 2mTn,m−1(x)]

+[(1 + 2x)(m + 1) + x]Tn,m(x)

Consequently for each x ∈ [0,∞)

Tn,m(x) = O
(
n−[(m+1)/2]

)
.

LEMMA 2. For p ∈ N and n sufficiently large, there holds

Bn((t − x)p, k, x) = n−(k+1){Q(p, k, x) + o(1)},

where (Q(p, k, x) are certain polynomials in x of degree p/2.

PROOF. From Lemma 1, for sufficiently large n, we can write

Bn((t − x)p, x) =
P0(x)

n[p+1]/2
+

P1(x)
n[p+1]/2+1

+ · · ·+
P[p/2](x)

np
,
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where P ′
is are certain polynomials in x of degree at most i. Using the above in (4), we

obtain the required result.

LEMMA 3. Let f ∈ C2k+2(I1) have a compact support, then there holds

Bn(f, k, x)− f(x) = n−(k+1)

{
2k+2∑

i=1

P (i, k, x)f (i)(x) + o(1)

}
, n → ∞, (5)

uniformly in x ∈ I1, where P (i, k, x) is a polynomial in x of degree i and does not
vanish for all i = 1, 2, 3, ...2k + 2 and C2k+2(I1) denotes the class of (2k + 2)-times
continuously differentiable functions on the interval I1.

PROOF. The assumed smoothness of f implies that

f(t) − f(x) =
2k+2∑

i=1

(t − x)i

i!
f (i)(x) +

(t − x)2k+2

(2k + 2)!
(f (2k+2)(ξ) − f (2k+2)(x)), (6)

for some ξ lying between t and x. For a given ε > 0 such that |f (2k+2)(x1)−f (2k+2)(y1)| <
ε, whenever |x1 − y1| < δ, x1, y1 ∈ I1 Therefore for all t, x belonging to I1, we have

|(t − x)2k+2(f (2k+2)(ξ) − f (2k+2)(x))| < ε(t − x)2k+2 +
2
δ2

||f (2k+2)||C(I1)(t − x)2k+4.

Hence by positivity of Bn(f, x) and Lemma 1 it follows that

|Bn((t − x)2k+2(f (2k+2)(ξ) − f (2k+2)(x)), x)| < Mn−(k+1)(ε + n−1). (7)

Also from Lemma 2, we have

Bn((t − x)i/i!, k, x) = n−(k+1){Q(i, k, x) + o(1)}, n → ∞, (8)

for every i = 1, 2, 3, ...2k + 2 and the o-term holds uniformly in x ∈ I1. Applying the
operators (3) to (6), we obtain

Bn(f, k, x)− f(x) =
2k+2∑

i=1

f (i)(x)
i!

Bn((t − x)i, k, x)

+
1

(2k + 2)!
Bn((t − x)2k+2(f (2k+2)(ξ) − f (2k+2)(x)), k, x). (9)

Now since ε > 0 is arbitrary, combining (7), (8) and (9), the required result follows.

LEMMA 4 ([2]). Let 0 < α < 2k + 2, f ∈ Lp[0,∞), p ≥ 1 and

||Bn(f, k, .)− f ||Lp(I1) = O(n−α/2), n → ∞

then
ω2k+2(f, τ, p, I2) = O(τα), τ → 0.
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3 Saturation Result

This section deals with the following saturation theorem.
THEOREM 1. Let 1 ≤ p < ∞, f ∈ Lp[0,∞) and 0 < a1 < a2 < a3 < b3 < b2 <

b1 < ∞, then in the following statements, the implications (i) ⇒ (ii) ⇒ (iii) and
(iv) ⇒ (v) ⇒ (vi) hold

(i)||Bn(f, k, .) − f ||Lp(I1) = O(n−(k+1)), n → ∞;
(ii) f coincides a.e. with a function F on I2 having (2k + 2)-th derivative such that

(a) when p > 1, F (2k+1) ∈ A.C.(I2) and F (2k+2) ∈ Lp(I2), and (b) when p = 1, F (2k) ∈
A.C.(I2) and F (2k+1) ∈ Lp(I2);

(iii) ||Bn(f, k, .)− f ||Lp(I2) = O(n−(k+1)), n → ∞;
(iv) ||Bn(f, k, .)− f ||Lp(I1) = o(n−(k+1)), n → ∞;
(v) f coincides a.e. with a function F on I2, where F is (2k + 2) times continu-

ously differentiable on I2 and satisfies
∑2k+2

i=1 P (i, k, x)F (i)(x) = 0 where P (i, k, x) are
polynomial occurring in (5);

(vi)||Bn(f, k, .)− f ||Lp(I2) = o(n−(k+1)), n → ∞.

PROOF. We choose pairs of points x1, x2 and y1, y2 such that a1 < x1 < x2 <
a2 < b2 < y2 < y1 < b1, it follows from Lemma 4 that f coincides a.e. on (x1, y1)
with a function F such that F (2k) is absolutely continuous and F (2k+1) ∈ Lp[x1, y1].
We choose a function q ∈ C2k+2

0 with supp q ⊂ (a1, b1) such that q = 1 on the closed
interval [x1, y1]. We denote f = Fq. Now

||Bn(f , k, .)− f ||Lp[x2,y2] ≤ ||Bn(f, k, .) − f ||Lp[x2,y2] + ||Bn(f − f, k, .)||Lp[x2,y2]

Since f = f on [x2, y2], the contribution of second term can be made arbitrarily small.
Hence, using (i), it follows that

||Bn(f , k, .)− f ||Lp[x2,y2] = O(n−(k+1)), n → ∞

Now if p > 1, it follows by Alaoglu’s theorem that there exists a function h(x) ∈
Lp[x2, y2] such that for some subsequence {nj} and for every g ∈ C2k+2

0 with supp
g ⊂ (a1, b1), we have

lim
nj→∞

nk+1
j 〈Bnj (f , k, .)− f , g〉 = 〈h, g〉. (10)

When p = 1, the function φn(x) defined by φn(x) =
∫ x2

x1
nk+1(Bn(f, k, x) − f (x))dx

are uniformly bounded and of bounded variation. Making use of Alaoglu’s theorem, it
follows that there exists a function φ0(x) of bounded variation such that

lim
nj→∞

nk+1
j 〈Bnj (f , k, .)− f , g〉 = −〈φ0, g

′〉. (11)

Also it is obvious to show that 〈Bn(f , k, .) − f , g〉 = 〈Bn(g, k, .) − g, f 〉. Hence using
Lemma 3, we have

lim
nj→∞

nk+1
j 〈Bnj (f , k, .)− f , g〉 = lim

nj→∞
nk+1

j 〈 lim
nj→∞

nk+1
j 〈Bnj (g, k, .)− g, f〉



36 Saturation Theorem

= 〈
2k+2∑

i=1

P (i, k, x)Dif , g〉 = 〈g,

2k+2∑

i=1

P ∗(i, k, .)Dif 〉, (D =
∂

∂x
) (12)

where P ∗
2k+2(D) =

∑ 2k+2
i=1 P ∗(i, k, .)Di denotes the differentiable operator adjoint to

P2k+2(D) =
∑ 2k+2

i=1 P (i, k, .)Di. Comparing (10) and (12), we get

h = P ∗
2k+2(D)f (13)

as generalized functions. Now following Lemma 3, we have P (2k + 2, k, x) 6= 0. Hence
regarding (13) as generalized first order linear differentiable equation for f

(2k+1)
with

the non homogeneous terms linearly depending on f
(i)

, 0 ≤ i ≤ 2k and h with poly-
nomial coefficients, as f

(i) ∈ C[x2, y2], 0 ≤ i ≤ 2k and h ∈ Lp[x2, y2], we conclude

that f
(2k+1) ∈ A.C.[x2, y2] and therefore f

(2k+2) ∈ Lp[x2, y2]. Since f coincides with
F on [x1, y1], it follows that F (2k+1) ∈ A.C.(I2) and that F (2k+2) ∈ Lp(I2). When
p = 1, proceeding in the similar way as in the case p > 1 with (10) replaced by
(11), we find that F (2k) ∈ A.C.(I2) and F (2k+1) ∈ B.V.(I2). This completes the
proof of implication (i) ⇒ (ii). The implication (ii) ⇒ (ii) follow from Theorems
1 and 2 of [3], for the case p > 1 and p = 1 respectively. Assuming (iv), since
nk+1

∥∥Bn(f , k, .)− f
∥∥

Lp(I1)
→ 0 as n → ∞ proceeding as in the proof of (i) ⇒ (ii) it

follows that, nk+1
∥∥Bn(f , k, .)− f

∥∥
Lp[x2,y2]

→ 0, n → ∞ and hence we find that h(x)

and φ0(x) are zero functions. Thus P ∗
2k+2(D)f (x) = 0. This implies that f is (2k + 2)

times continuously differentiable function. Now applying Lemma 3 for the function f,
we get

lim
nj→∞

nk+1
j 〈Bnj (f , k, .)− f, g〉 = 〈P2k+2(D)f , g〉 (14)

Comparing (12) and (14), we have P2k+2(D)f (x) = 0. Hence for I2, F is (2k +2) times
continuously differentiable function and P2k+2(D)F (x) = 0. Finally, (v) ⇒ (vi) follows
from Lemma 3. This completes the proof of theorem.
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