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Abstract

We prove the existence of viable solutions to the Cauchy problem z” €
F(x,z') + f(t,x,z'),x(0) = x0,2'(0) = yo,x(t) € K, where K C R" is a closed
set, F' is a set-valued map contained in the Fréchet subdifferential of a ¢- convex
function of order two and f is a Carathéodory map.

1 Introduction
In this note we consider the second order differential inclusions of the form
2 e Flz,2")+ f(t,z,2"), x(0) = zo,2'(0) = yo, (1)

where F(.,.) : D C R" x R™ — P(R") is a given set-valued map, f(.,.,.) : Dy C
R x R™ x R" — P(R") is a given function and zg,yo € R".

Existence of solutions of problem (1.1) that satisfy a constraint of the form z(t) € K,
vt, well known as viable solutions, has been studied by many authors, mainly in the
case when the multifunction is convex valued and f = 0 ([2], [6], [8], [10] etc.).

Recently in [1], the situation when the multifunction is not convex valued is consid-
ered. More exactly, in [1] it is proved the existence of viable solutions of the problem
(1) when F(.,.) is an upper semicontinuous, compact valued multifunction contained
in the subdifferential of a proper convex function. The result in [1] extends the result
in [9] obtained for problems without constraints (i.e., K = R™).

The aim of this note is to prove existence of viable solutions of the problem (1) in
the case when the set-valued map F'(.,.) is upper semicontinuous compact valued and
contained in the Fréchet subdifferential of a ¢- convex function of order two.

On one hand, since the class of proper convex functions is strictly contained into
the class of ¢- convex functions of order two, our result generalizes the result in [1]. On
the other hand, our result may be considered as an extension of our previous viability
result for second-order nonconvex differential inclusions in [5] obtained for a problem
without perturbations (i.e., f = 0).
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The proof of our result follows the general ideas in [1] and [5]. We note that in
the proof we pointed out only the differences that appeared with respect to the other
approaches.

The paper is organized as follows: in Section 2 we recall some preliminary facts
that we need in the sequel and in Section 3 we prove our main result.

2 Preliminaries

We denote by P(R™) the set of all subsets of R™ and by R4 the set of all positive
real numbers. For e > 0 we put B(x,¢) = {y € R"||ly — z|| < ¢} and B(z,¢) =
{y € R™; ||y — z|| < €}. With B we denote the unit ball in R™. By cl(A) we denote
the closure of the set A C R™, by co(A) we denote the convex hull of A and we put
[|A]] = sup{]|al[; a € A}.

Let © C R™ be an open set and let V' : 2 — RU {400} be a function with domain
D(V)={z € R";V(z) < +o0}.

DEFINITION 2.1. The multifunction 9pV :  — P(R"), defined as:

Viy —V(z) —(a,y—x)
|y — |

OrV(z) = {a € R",liminf >0}ifV(z) < 400
Yy—x

and OpV (z) = 0 if V(z) = +oo is called the Fréchet subdifferential of V.
According to [4] the values of 9V are closed and convex.

DEFINITION 2.2. Let V : Q — RU{+00} be a lower semicontinuous function. We
say that V is a ¢-convex of order 2 if there exists a continuous map ¢y : (D(V))2xR? —
R such that for every x,y € D(OpV) and every a € OpV (x) we have

V(y) 2 V(z)+ {2 —y) — ov(z,y,V(z), V()1 +[lal*)|lz -yl (2)

In [4], [7] there are several examples and properties of such maps. For example,
according to [4], if M C R? is a closed and bounded domain, whose boundary is a C?
regular Jordan curve, the indicator function of M

0, if zeM
Vi(z) = Iu(z) = { +00, otherwise

is ¢- convex of order 2.
In what follows we assume the next assumptions.

HYPOTHESIS 2.3. i) 2 = K x 0, where K C R" is a closed set and O C R" is a
nonempty open set.

ii) F(.,.): Q@ — P(R"™) is upper semicontinuous (i.e., Vz € Q,Ve > 0 there exists
d > 0 such that ||z — 2’|| < § implies F(2') C F(z) 4+ eB) with compact values.

iii) f(.,.,.) : RxQ — R™ is a Caratheodory function, i.e., V(z,y) € Q, t — f(t,z,y)
is measurable, for all t € R f(t,.) is continuous and there exists m(.) € L?(R, R, ) such
that [|f(t, z,y)|| < m(t) V(¢,z,y) € R x Q.
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iv) For all (¢,z,v) € R x Q, there exists w € F'(z,v) such that

2

1 h t+h
11£rilélfﬁd(x+hv+ ?w—k/t f(s,z,v)ds, K) =0.

v) There exists a proper lower semicontinuous ¢- convex function of order two
V :R" — RU {400} such that

F(z,y) COrV(y), V(z,y) €.

3 The Mmain Result

In order to prove our result we need the following lemmas.

LEMMA 3.1 ([1]). Assume that Hypotheses 2.3 i)-iv) are satisfied. Consider
(xo,y0) € Q, r > 0 such that B(zo,r) C O, M = sup{||F(t,2)||; (t,z) € Qo :=
[K x Blyo, )] N B((x0,50),7)}, Ti > 0 such that [, (m(s) + M +1) < & T =
min{ 57, 3(|Iy?>TI+T)} and T € (0,min{T},T5}). Then for every € > 0 there exists
n € (0,€¢) and p > 1 such that for all ¢ = 1,...,p — 1 there exists (h;, (z;,y:), w;) €
[, €] x Qo x R™ with the following properties

h2 L hi—o+hi_1
Ty = X1+ hiaYi—1 + ; W;—1 +/ f(s,xi—1,yi—1)ds € K,
h

i—2

€
Yi = Yi—1 + hicqwi—1,  w; € F(x,y:) + TB’

and
p—1 p
1=0 1=0

Moreover, for € > 0 sufficiently small we have Zf;ol ];—2 < Zf;ol hy <T.

For £ > 1 and ¢ = 1, ..., p denote by h’; the real number associated to € = % and
(t,z,y) = (hk_,, x4, yq) given by Lemma 3.1. Define tf = 0,¢) =T, t§ = hi+...+hi_,
and consider the sequence z(.) : [t #/] — R" k > 1 defined by

2x(0) = xo,

t
() = wgo1+ (= 1] yg-1 + %(t — 1) wg +/ (= 9)f(s,24-1,Yg-1)ds.
ti”

LEMMA 3.2 ([1]). Assume that Hypotheses 2.3 i)-iv) are satisfied and consider
2k (.) the sequence constructed above. Then there exists a subsequence, still denoted
by xj(.) and an absolutely continuous function z(.) : [0, 7] — R™ such that

i) 2k (.) converges uniformly to z(.),

ii) . (.) converges uniformly to z’(.),

iii) 27/(.) converges weakly in L?([0,T], R"™) to 2”(.),
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P th
=1 q—1
q t,

Jo < a"(s), f(s,2(s).'(s)) > ds,
v) For every ¢ € (0,T) there exists ¢ € {1, ..., p} such that

lim d((ap(t), 25(), 2} (1) = f(tan(t] ), 2t ))), graph(F)) =0,

k—o00

< @(s), f(s,x (tTH), 2, (t171) > ds) converges to

iv) The sequence (
k

vi) z(.) is a solution of the convexified problem
2" € coF(xz,2') + f(t,x,2"), x(0) = xo,2'(0) = vo.

We are now able to prove our result.

THEOREM 3.3. Assume that Hypothesis 2.3 is satisfied. Then, for every (xg,yo) €
Q) there exist T > 0 and z(.) : [0,7] — R™ a solution of problem (1) that satisfies
z(t) € KVt € [0,T].

PROOF. Let (zo,y0) €  and consider » > 0, T' > 0 as in Lemma 3.1 and z(.) :
[0, 7] - R", z(.) : [0,T] — R™ as in Lemma 3.2. Let ¢y the continuous function
appearing in Definition 2.2. Since V'(.) is continuous on D(V') (e.g. [7]), by possibly
decreasing r one can assume that for all y € B(yo,r) N D(V)

V(y) = V()| < 1.
Set
S = SUP{¢’v(ylay2, 21, ZQ)ayl € F(yQ,T), Zi € [V(yO) - 15 V(yo) + 1]aZ: 15 2}

From the statement vi) in Lemma 3.2 and Hypothesis 2.3 v) it follows that for almost
all t € [0, T,
a"(t) = f(t, x(t), (1)) € OpV (2'(1)). (3)

Since the mapping z(.) is absolutely continuous, from (3) and Theorem 2.2 in [4]
we deduce that there exists T5 > 0 such that the mapping ¢ — V(2/(t)) is absolutely
continuous on [0, min{7, T5}] and

(V(@'(1)) = ("(1),2"(t) = f(t, x(t),2'())  a.e. [0, min{T, T5}]. (4)
Without loss of generality we may assume that 7' = min{7,73}. From (4) we have

T T
Vi'(T)) -V = 2" (s)||?ds — z"(s s.x(s), 2’ (s)) ds. 5
(#'(T)) - V(30) /0|| ()l /0<<>,f<,<>,<>> (5)

On the other hand, for g=1,...,pand t € [tzfl, 1)

R(0) — F(t (i), 2 (007) € Flan(l™), a4 (t7) + 1B

and therefore

oy (t) — f (), 2h (7)) € OpV (2h(t71)) + %B,
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We deduce the existence of bz € B such that

bq
@il (t) = f(t,au (b)), 2k (t) — o € OrV (it 1))

Taking into account Definition 2.2 we obtain

V() - Viah(t) = <x;;<t>—f<t,xk<tz1>,x;<tzl>>—,f—;, I xz<s>d5>

-1
th
2)

—ov (2t 2k (), Vi), V(a(t))

bq
X <1+ k

20 = Fan (bl (1) -
e (et) — a7

kT
Using the fact that #7/(.) is constant on [t{™", ] one may write

d

tq

) s = [ (a0 gk s

- /ttz <$Z(S), £s, CCk(tzil)’ x;(tﬁ’l))> ds

q—1
k

q
tk

V(@ (D) - V() > /

q—1
tk

—ov (2 (1), 2 () Vi), V)

bq
X <1+ k

(1) — (), (1) —
(1) — a7

By adding on ¢ the last inequalities we get

)

d

T
V(i (T)) = Vi) = /O |27 (s)l|*ds + a(k) + b(k)

_i/tz <$Z(S)af(S,xk(tzfl),x;(tzfl)»ds, (6)

where
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On the other hand, one has

(k)| < kTZII ||/ e s)1 s

< 1/T|| vellds < - [ e+ L v ()l
— S — — mi\s S
= %1 ), "ERENEE=0r ) T
and
P
b < YS 1+M2||/ (5)ds]
<

1 e
saeany L[ C lafe))i2ds < S0+ M%) JRE IR
q=1 ko Jog kJo
1 r 1
< ZS(1+ M2)/ [M + = +m(s)]*ds.

k 0 T
We infer that
lim a(k) = lim b(k) = 0.

k—oo k—o00

Hence using also statement iv) in Lemma 3.2 and the continuity of the function V'(.)
by passing to the limit as k — oo in (6) we obtain

T T
V(@/(T)) — V(yo) > limsup / 2(s)*ds — / (&(s), (s, 25),2'(s))) ds.  (T)
k—oo 0 0
Using (4) we infer that
T T
lim sup / 2(8)]2dt < / (8|2t
k—oo 0 0

and, since z/(.) converges weakly in L*([0,T], R") to 2”'(.), by the lower semicontinuity
of the norm in L%([0,77], R") (e.g. Prop. I11.30 in [3]) we obtain that

T
hrn / |2 (t)||2dt = / |2 (t)||2dt
0

ie., z}(.) converges strongly in L?([0, T, R") Hence, there exists a subsequence (still
denoted) 17(.) that converges pointwise to z”/(.). From the statement v) in Lemma 3.2
it follows that

d((z(t), 2’ (t), 2" (t) — f(t,z(t),2'())), graph(F)) =0 a.e. [0,T).

and since by Hypothesis 2.4 graph(F) is closed we obtain

2(t) € F(z(t),2'(t)) + f(t,z(t),2'(t)) a.e.[0,T).
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In order to prove the viability constraint satisfied by z(.) fix ¢ € [0,7]. There
exists a sequence (t7); such that ¢ = limg_, t7. But limy_ ||2(t) — 2% (t7)]| = 0 and
z(t]) € K. So the fact that K is closed gives z(t) € K and the proof is complete.

REMARK 3.4. If V(.) : R" — R is a proper lower semicontinuous convex function
then (e.g. [7]) OrV(xz) = OV (x), where OV (.) is the subdifferential in the sense of
convex analysis of V(.), and Theorem 3.3 yields the result in [1]. At the same time if
in Theorem 3.3 f = 0 then Theorem 3.3 yields the result in [5].
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