On A Second-Order Differential Inclusion With Constraints*

Aurelian Cernea ${ }^{\dagger}$

Received 27 January 2006

Abstract

We prove the existence of viable solutions to the Cauchy problem $x^{\prime \prime} \in$ $F\left(x, x^{\prime}\right)+f\left(t, x, x^{\prime}\right), x(0)=x_{0}, x^{\prime}(0)=y_{0}, x(t) \in K$, where $K \subset R^{n}$ is a closed set, F is a set-valued map contained in the Fréchet subdifferential of a ϕ - convex function of order two and f is a Carathéodory map.

1 Introduction

In this note we consider the second order differential inclusions of the form

$$
\begin{equation*}
x^{\prime \prime} \in F\left(x, x^{\prime}\right)+f\left(t, x, x^{\prime}\right), \quad x(0)=x_{0}, x^{\prime}(0)=y_{0} \tag{1}
\end{equation*}
$$

where $F(.,):. D \subset R^{n} \times R^{n} \rightarrow \mathcal{P}\left(R^{n}\right)$ is a given set-valued map, $f(., .,):. D_{1} \subset$ $R \times R^{n} \times R^{n} \rightarrow \mathcal{P}\left(R^{n}\right)$ is a given function and $x_{0}, y_{0} \in R^{n}$.

Existence of solutions of problem (1.1) that satisfy a constraint of the form $x(t) \in K$, $\forall t$, well known as viable solutions, has been studied by many authors, mainly in the case when the multifunction is convex valued and $f \equiv 0$ ([2], [6], [8], [10] etc.).

Recently in [1], the situation when the multifunction is not convex valued is considered. More exactly, in [1] it is proved the existence of viable solutions of the problem (1) when $F(.,$.$) is an upper semicontinuous, compact valued multifunction contained$ in the subdifferential of a proper convex function. The result in [1] extends the result in [9] obtained for problems without constraints (i.e., $K=R^{n}$).

The aim of this note is to prove existence of viable solutions of the problem (1) in the case when the set-valued map $F(.,$.$) is upper semicontinuous compact valued and$ contained in the Fréchet subdifferential of a ϕ - convex function of order two.

On one hand, since the class of proper convex functions is strictly contained into the class of ϕ - convex functions of order two, our result generalizes the result in [1]. On the other hand, our result may be considered as an extension of our previous viability result for second-order nonconvex differential inclusions in [5] obtained for a problem without perturbations (i.e., $f \equiv 0$).

[^0]The proof of our result follows the general ideas in [1] and [5]. We note that in the proof we pointed out only the differences that appeared with respect to the other approaches.

The paper is organized as follows: in Section 2 we recall some preliminary facts that we need in the sequel and in Section 3 we prove our main result.

2 Preliminaries

We denote by $\mathcal{P}\left(R^{n}\right)$ the set of all subsets of R^{n} and by R_{+}the set of all positive real numbers. For $\epsilon>0$ we put $B(x, \epsilon)=\left\{y \in R^{n} ;\|y-x\|<\epsilon\right\}$ and $\bar{B}(x, \epsilon)=$ $\left\{y \in R^{n} ;\|y-x\| \leq \epsilon\right\}$. With B we denote the unit ball in R^{n}. By $\operatorname{cl}(A)$ we denote the closure of the set $A \subset R^{n}$, by $\operatorname{co}(A)$ we denote the convex hull of A and we put $\|A\|=\sup \{\|a\| ; a \in A\}$.

Let $\Omega \subset R^{n}$ be an open set and let $V: \Omega \rightarrow R \cup\{+\infty\}$ be a function with domain $D(V)=\left\{x \in R^{n} ; V(x)<+\infty\right\}$.

DEFINITION 2.1. The multifunction $\partial_{F} V: \Omega \rightarrow \mathcal{P}\left(R^{n}\right)$, defined as:

$$
\partial_{F} V(x)=\left\{\alpha \in R^{n}, \liminf _{y \rightarrow x} \frac{V(y)-V(x)-\langle\alpha, y-x\rangle}{\|y-x\|} \geq 0\right\} \text { if } V(x)<+\infty
$$

and $\partial_{F} V(x)=\emptyset$ if $V(x)=+\infty$ is called the Fréchet subdifferential of V.
According to [4] the values of $\partial_{F} V$ are closed and convex.
DEFINITION 2.2. Let $V: \Omega \rightarrow R \cup\{+\infty\}$ be a lower semicontinuous function. We say that V is a ϕ-convex of order 2 if there exists a continuous map $\phi_{V}:(D(V))^{2} \times R^{2} \rightarrow$ R_{+}such that for every $x, y \in D\left(\partial_{F} V\right)$ and every $\alpha \in \partial_{F} V(x)$ we have

$$
\begin{equation*}
V(y) \geq V(x)+\langle\alpha, x-y\rangle-\phi_{V}(x, y, V(x), V(y))\left(1+\|\alpha\|^{2}\right)\|x-y\|^{2} \tag{2}
\end{equation*}
$$

In [4], [7] there are several examples and properties of such maps. For example, according to [4], if $M \subset R^{2}$ is a closed and bounded domain, whose boundary is a C^{2} regular Jordan curve, the indicator function of M

$$
V(x)=I_{M}(x)= \begin{cases}0, & \text { if } x \in M \\ +\infty, & \text { otherwise }\end{cases}
$$

is ϕ - convex of order 2 .
In what follows we assume the next assumptions.
HYPOTHESIS 2.3. i) $\Omega=K \times 0$, where $K \subset R^{n}$ is a closed set and $O \subset R^{n}$ is a nonempty open set.
ii) $F(.,):. \Omega \rightarrow \mathcal{P}\left(R^{n}\right)$ is upper semicontinuous (i.e., $\forall z \in \Omega, \forall \epsilon>0$ there exists $\delta>0$ such that $\left\|z-z^{\prime}\right\|<\delta$ implies $\left.F\left(z^{\prime}\right) \subset F(z)+\epsilon B\right)$ with compact values.
iii) $f(., .,):. R \times \Omega \rightarrow R^{n}$ is a Carathèodory function, i.e., $\forall(x, y) \in \Omega, t \rightarrow f(t, x, y)$ is measurable, for all $t \in R f(t,$.$) is continuous and there exists m(.) \in L^{2}\left(R, R_{+}\right)$such that $\|f(t, x, y)\| \leq m(t) \forall(t, x, y) \in R \times \Omega$.
iv) For all $(t, x, v) \in R \times \Omega$, there exists $w \in F(x, v)$ such that

$$
\liminf _{h \rightarrow 0} \frac{1}{h^{2}} d\left(x+h v+\frac{h^{2}}{2} w+\int_{t}^{t+h} f(s, x, v) d s, K\right)=0
$$

v) There exists a proper lower semicontinuous ϕ - convex function of order two $V: R^{n} \rightarrow R \cup\{+\infty\}$ such that

$$
F(x, y) \subset \partial_{F} V(y), \quad \forall(x, y) \in \Omega
$$

3 The Mmain Result

In order to prove our result we need the following lemmas.
LEMMA 3.1 ([1]). Assume that Hypotheses 2.3 i)-iv) are satisfied. Consider $\left(x_{0}, y_{0}\right) \in \Omega, r>0$ such that $B\left(x_{0}, r\right) \subset O, M:=\sup \left\{\|F(t, x)\| ;(t, x) \in \Omega_{0}:=\right.$ $\left.\left[K \times \bar{B}\left(y_{0}, r\right)\right] \cap \bar{B}\left(\left(x_{0}, y_{0}\right), r\right)\right\}, T_{1}>0$ such that $\int_{0}^{T_{1}}(m(s)+M+1)<\frac{r}{3}, T_{2}=$ $\min \left\{\frac{r}{3(M+1)}, \frac{2 r}{3\left(\mid y_{0} \|+r\right)}\right\}$ and $T \in\left(0, \min \left\{T_{1}, T_{2}\right\}\right)$. Then for every $\epsilon>0$ there exists $\eta \in(0, \epsilon)$ and $p \geq 1$ such that for all $i=1, \ldots, p-1$ there exists $\left(h_{i},\left(x_{i}, y_{i}\right), w_{i}\right) \in$ $[\eta, \epsilon] \times \Omega_{0} \times R^{n}$ with the following properties

$$
\begin{gathered}
x_{i}=x_{i-1}+h_{i-1} y_{i-1}+\frac{h_{i-1}^{2}}{2} w_{i-1}+\int_{h_{i-2}}^{h_{i-2}+h_{i-1}} f\left(s, x_{i-1}, y_{i-1}\right) d s \in K \\
y_{i}=y_{i-1}+h_{i-1} w_{i-1}, \quad w_{i} \in F\left(x_{i}, y_{i}\right)+\frac{\epsilon}{T} B
\end{gathered}
$$

and

$$
\left(x_{i}, y_{i}\right) \in \Omega_{0}, \quad \sum_{i=0}^{p-1} h_{i}<T \leq \sum_{i=0}^{p} h_{i}
$$

Moreover, for $\epsilon>0$ sufficiently small we have $\sum_{i=0}^{p-1} \frac{h_{i}^{2}}{2} \leq \sum_{i=0}^{p-1} h_{i}<T$.
For $k \geq 1$ and $q=1, \ldots, p$ denote by h_{q}^{k} the real number associated to $\epsilon=\frac{1}{k}$ and $(t, x, y)=\left(h_{q-1}^{k}, x_{q}, y_{q}\right)$ given by Lemma 3.1. Define $t_{k}^{0}=0, t_{k}^{p}=T, t_{p}^{q}=h_{0}^{k}+\ldots+h_{q-1}^{k}$ and consider the sequence $x_{k}():.\left[t_{k}^{q-1}, t_{k}^{q}\right] \rightarrow R^{n}, k \geq 1$ defined by

$$
\begin{gathered}
x_{k}(0)=x_{0} \\
x_{k}(t)=x_{q-1}+\left(t-t_{k}^{q-1}\right) y_{q-1}+\frac{1}{2}\left(t-t_{k}^{q-1}\right)^{2} w_{q-1}+\int_{t_{k}^{q-1}}^{t}(t-s) f\left(s, x_{q-1}, y_{q-1}\right) d s
\end{gathered}
$$

LEMMA 3.2 ([1]). Assume that Hypotheses 2.3 i)-iv) are satisfied and consider $x_{k}($.$) the sequence constructed above. Then there exists a subsequence, still denoted$ by $x_{k}($.$) and an absolutely continuous function x():.[0, T] \rightarrow R^{n}$ such that
i) $x_{k}($.$) converges uniformly to x($.$) ,$
ii) $x_{k}^{\prime}($.$) converges uniformly to x^{\prime}($.$) ,$
iii) $x_{k}^{\prime \prime}($.$) converges weakly in L^{2}\left([0, T], R^{n}\right)$ to $x^{\prime \prime}($.$) ,$
iv) The sequence $\left(\sum_{q=1}^{p} \int_{t_{k}^{q-1}}^{t_{k}^{q}}<x_{k}^{\prime \prime}(s), f\left(s, x_{k}\left(t_{k}^{q-1}\right), x_{k}^{\prime}\left(t_{k}^{q-1}\right)\right)>d s\right)_{k}$ converges to $\int_{0}^{T}<x^{\prime \prime}(s), f\left(s, x(s), x^{\prime}(s)\right)>d s$,
v) For every $t \in(0, T)$ there exists $q \in\{1, \ldots, p\}$ such that

$$
\lim _{k \rightarrow \infty} d\left(\left(x_{k}(t), x_{k}^{\prime}(t), x_{k}^{\prime \prime}(t)-f\left(t, x_{k}\left(t_{k}^{q-1}\right), x_{k}^{\prime}\left(t_{k}^{q-1}\right)\right)\right), \operatorname{graph}(F)\right)=0
$$

vi) $x($.$) is a solution of the convexified problem$

$$
x^{\prime \prime} \in \operatorname{coF}\left(x, x^{\prime}\right)+f\left(t, x, x^{\prime}\right), \quad x(0)=x_{0}, x^{\prime}(0)=v_{0}
$$

We are now able to prove our result.
THEOREM 3.3. Assume that Hypothesis 2.3 is satisfied. Then, for every $\left(x_{0}, y_{0}\right) \in$ Ω there exist $T>0$ and $x():.[0, T] \rightarrow R^{n}$ a solution of problem (1) that satisfies $x(t) \in K \forall t \in[0, T]$.

PROOF. Let $\left(x_{0}, y_{0}\right) \in \Omega$ and consider $r>0, T>0$ as in Lemma 3.1 and $x_{k}():$. $[0, T] \rightarrow R^{n}, x():.[0, T] \rightarrow R^{n}$ as in Lemma 3.2. Let ϕ_{V} the continuous function appearing in Definition 2.2. Since $V($.$) is continuous on D(V)$ (e.g. [7]), by possibly decreasing r one can assume that for all $y \in B\left(y_{0}, r\right) \cap D(V)$

$$
\left|V(y)-V\left(y_{0}\right)\right| \leq 1
$$

Set

$$
S:=\sup \left\{\phi_{v}\left(y_{1}, y_{2}, z_{1}, z_{2}\right) ; y_{i} \in \bar{B}\left(y_{0}, r\right), z_{i} \in\left[V\left(y_{0}\right)-1, V\left(y_{0}\right)+1\right], i=1,2\right\} .
$$

From the statement vi) in Lemma 3.2 and Hypothesis 2.3 v) it follows that for almost all $t \in[0, T]$,

$$
\begin{equation*}
x^{\prime \prime}(t)-f\left(t, x(t), x^{\prime}(t)\right) \in \partial_{F} V\left(x^{\prime}(t)\right) \tag{3}
\end{equation*}
$$

Since the mapping $x($.$) is absolutely continuous, from (3) and Theorem 2.2$ in [4] we deduce that there exists $T_{3}>0$ such that the mapping $t \rightarrow V\left(x^{\prime}(t)\right)$ is absolutely continuous on $\left[0, \min \left\{T, T_{3}\right\}\right]$ and

$$
\begin{equation*}
\left(V\left(x^{\prime}(t)\right)\right)^{\prime}=\left\langle x^{\prime \prime}(t), x^{\prime \prime}(t)-f\left(t, x(t), x^{\prime}(t)\right)\right\rangle \quad \text { a.e. }\left[0, \min \left\{T, T_{3}\right\}\right] . \tag{4}
\end{equation*}
$$

Without loss of generality we may assume that $T=\min \left\{T, T_{3}\right\}$. From (4) we have

$$
\begin{equation*}
V\left(x^{\prime}(T)\right)-V\left(y_{0}\right)=\int_{0}^{T}\left\|x^{\prime \prime}(s)\right\|^{2} d s-\int_{0}^{T}\left\langle x^{\prime \prime}(s), f\left(s, x(s), x^{\prime}(s)\right\rangle d s\right. \tag{5}
\end{equation*}
$$

On the other hand, for $q=1, \ldots, p$ and $t \in\left[t_{k}^{q-1}, t_{k}^{q}\right)$

$$
x_{k}^{\prime \prime}(t)-f\left(t, x_{k}\left(t_{k}^{q-1}\right), x_{k}^{\prime}\left(t_{k}^{q-1}\right)\right) \in F\left(x_{k}\left(t_{k}^{q-1}\right), x_{k}^{\prime}\left(t_{k}^{q-1}\right)\right)+\frac{1}{k T} B
$$

and therefore

$$
x_{k}^{\prime \prime}(t)-f\left(t, x_{k}\left(t_{k}^{q-1}\right), x_{k}^{\prime}\left(t_{k}^{q-1}\right)\right) \in \partial_{F} V\left(x_{k}^{\prime}\left(t_{k}^{q-1}\right)\right)+\frac{1}{k T} B .
$$

We deduce the existence of $b_{k}^{q} \in B$ such that

$$
x_{k}^{\prime \prime}(t)-f\left(t, x_{k}\left(t_{k}^{q-1}\right), x_{k}^{\prime}\left(t_{k}^{q-1}\right)\right)-\frac{b_{k}^{q}}{k T} \in \partial_{F} V\left(x_{k}^{\prime}\left(t_{k}^{q-1}\right)\right)
$$

Taking into account Definition 2.2 we obtain

$$
\begin{aligned}
V\left(x_{k}^{\prime}\left(t_{k}^{q}\right)\right)-V\left(x_{k}^{\prime}\left(t_{k}^{q-1}\right)\right) \geq & \left\langle x_{k}^{\prime \prime}(t)-f\left(t, x_{k}\left(t_{k}^{q-1}\right), x_{k}^{\prime}\left(t_{k}^{q-1}\right)\right)-\frac{b_{k}^{q}}{k T}, \int_{t_{k}^{q-1}}^{t_{k}^{q}} x_{k}^{\prime \prime}(s) d s\right\rangle \\
& -\phi_{V}\left(x_{k}^{\prime}\left(t_{k}^{q}\right), x_{k}^{\prime}\left(t_{k}^{q-1}\right), V\left(x_{k}^{\prime}\left(t_{k}^{q}\right)\right), V\left(x_{k}^{\prime}\left(t_{k}^{q-1}\right)\right)\right) \\
& \times\left(1+\left\|x_{k}^{\prime \prime}(t)-f\left(t, x_{k}\left(t_{k}^{q-1}\right), x_{k}^{\prime}\left(t_{k}^{q-1}\right)\right)-\frac{b_{k}^{q}}{k T}\right\|^{2}\right) \\
& \times\left\|x_{k}^{\prime}\left(t_{k}^{q}\right)-x_{k}^{\prime}\left(t_{k}^{q-1}\right)\right\|^{2} .
\end{aligned}
$$

Using the fact that $x_{k}^{\prime \prime}($.$) is constant on \left[t_{k}^{q-1}, t_{k}^{q}\right]$ one may write

$$
\begin{aligned}
V\left(x_{k}^{\prime}\left(t_{k}^{q}\right)\right)-V\left(x_{k}^{\prime}\left(t_{k}^{q-1}\right)\right) \geq & \int_{t_{k}^{q-1}}^{t_{k}^{q}}\left\langle x_{k}^{\prime \prime}(s), x_{k}^{\prime \prime}(s)\right\rangle d s-\int_{t_{k}^{q-1}}^{t_{k}^{q}}\left\langle x_{k}^{\prime \prime}(s), \frac{b_{k}^{q}}{k T}\right\rangle d s \\
& -\int_{t_{k}^{q-1}}^{t_{k}^{q}}\left\langle x_{k}^{\prime \prime}(s), f\left(s, x_{k}\left(t_{k}^{q-1}\right), x_{k}^{\prime}\left(t_{k}^{q-1}\right)\right)\right\rangle d s \\
& -\phi_{V}\left(x_{k}^{\prime}\left(t_{k}^{q}\right), x_{k}^{\prime}\left(t_{k}^{q-1}\right), V\left(x_{k}^{\prime}\left(t_{k}^{q}\right)\right), V\left(x_{k}^{\prime}\left(t_{k}^{q-1}\right)\right)\right) \\
& \times\left(1+\left\|x_{k}^{\prime \prime}(t)-f\left(t, x_{k}\left(t_{k}^{q-1}\right), x_{k}^{\prime}\left(t_{k}^{q-1}\right)\right)-\frac{b_{k}^{q}}{k T}\right\|^{2}\right) \\
& \times\left\|x_{k}^{\prime}\left(t_{k}^{q}\right)-x_{k}^{\prime}\left(t_{k}^{q-1}\right)\right\|^{2}
\end{aligned}
$$

By adding on q the last inequalities we get

$$
\begin{align*}
V\left(x_{k}^{\prime}(T)\right)-V\left(y_{0}\right) \geq & \int_{0}^{T}\left\|x_{k}^{\prime \prime}(s)\right\|^{2} d s+a(k)+b(k) \\
& -\sum_{q=1}^{p} \int_{t_{k}^{q-1}}^{t_{k}^{q}}\left\langle x_{k}^{\prime \prime}(s), f\left(s, x_{k}\left(t_{k}^{q-1}\right), x_{k}^{\prime}\left(t_{k}^{q-1}\right)\right)\right\rangle d s \tag{6}
\end{align*}
$$

where

$$
\begin{gathered}
a(k)=-\sum_{q=1}^{p} \frac{1}{k T} \int_{t_{k}^{q-1}}^{t_{k}^{q}}\left\langle x_{k}^{\prime \prime}(s), b_{k}^{q}\right\rangle d s \\
b(k)=-\sum_{q=1}^{p} \phi_{V}\left(x_{k}^{\prime}\left(t_{k}^{q}\right), x_{k}^{\prime}\left(t_{k}^{q-1}\right), V\left(x_{k}^{\prime}\left(t_{k}^{q}\right)\right)\right), V\left(x_{k}^{\prime}\left(t_{k}^{q-1}\right)\right) \\
\\
\times\left(1+\left\|x_{k}^{\prime \prime}(t)-f\left(t, x_{k}\left(t_{k}^{q-1}\right), x_{k}^{\prime}\left(t_{k}^{q-1}\right)\right)-\frac{b_{k}^{q}}{k T}\right\|^{2}\right)\left\|x_{k}^{\prime}\left(t_{k}^{q}\right)-x_{k}^{\prime}\left(t_{k}^{q-1}\right)\right\|^{2}
\end{gathered}
$$

On the other hand, one has

$$
\begin{aligned}
|a(k)| & \leq \frac{1}{k T} \sum_{q=1}^{p}\left\|b_{k}^{q}\right\| \cdot \int_{t_{k}^{q-1}}^{t_{k}^{q}}\left\|x_{k}^{\prime \prime}(s)\right\| d s \\
& \leq \frac{1}{k T} \int_{0}^{T}\left\|x_{k}^{\prime \prime}(s)\right\| d s \leq \frac{1}{k T} \int_{0}^{T}\left[M+\frac{1}{T}+m(s)\right] d s
\end{aligned}
$$

and

$$
\begin{aligned}
|b(k)| & \leq \sum_{q=1}^{p} S\left(1+M^{2}\right)\left\|\int_{t_{k}^{q-1}}^{t_{k}^{q}} x_{k}^{\prime \prime}(s) d s\right\|^{2} \\
& \leq S\left(1+M^{2}\right) \sum_{q=1}^{p} \frac{1}{k} \int_{t_{k}^{p-1}}^{t_{k}^{p}}\left\|x_{k}^{\prime \prime}(s)\right\|^{2} d s \leq S\left(1+M^{2}\right) \frac{1}{k} \int_{0}^{T}\left\|x_{k}^{\prime \prime}(s)\right\|^{2} d s \\
& \leq \frac{1}{k} S\left(1+M^{2}\right) \int_{0}^{T}\left[M+\frac{1}{T}+m(s)\right]^{2} d s
\end{aligned}
$$

We infer that

$$
\lim _{k \rightarrow \infty} a(k)=\lim _{k \rightarrow \infty} b(k)=0
$$

Hence using also statement iv) in Lemma 3.2 and the continuity of the function $V($. by passing to the limit as $k \rightarrow \infty$ in (6) we obtain

$$
\begin{equation*}
\left.V\left(x^{\prime}(T)\right)-V\left(y_{0}\right) \geq \limsup _{k \rightarrow \infty} \int_{0}^{T}\left\|x_{k}^{\prime \prime}(s)\right\|^{2} d s-\int_{0}^{T}\left\langle x^{\prime \prime}(s), f\left(s, x_{(} s\right), x^{\prime}(s)\right)\right\rangle d s \tag{7}
\end{equation*}
$$

Using (4) we infer that

$$
\limsup _{k \rightarrow \infty} \int_{0}^{T}\left\|x_{k}^{\prime}(t)\right\|^{2} d t \leq \int_{0}^{T}\left\|x^{\prime \prime}(t)\right\|^{2} d t
$$

and, since $x_{k}^{\prime \prime}($.$) converges weakly in L^{2}\left([0, T], R^{n}\right)$ to $x^{\prime \prime}($.$) , by the lower semicontinuity$ of the norm in $L^{2}\left([0, T], R^{n}\right)$ (e.g. Prop. III. 30 in [3]) we obtain that

$$
\lim _{k \rightarrow \infty} \int_{0}^{T}\left\|x_{k}^{\prime \prime}(t)\right\|^{2} d t=\int_{0}^{T}\left\|x^{\prime \prime}(t)\right\|^{2} d t
$$

i.e., $x_{k}^{\prime \prime}($.$) converges strongly in L^{2}\left([0, T], R^{n}\right)$. Hence, there exists a subsequence (still denoted) $x_{k}^{\prime \prime}($.$) that converges pointwise to x^{\prime \prime}($.$) . From the statement v) in Lemma 3.2$ it follows that

$$
d\left(\left(x(t), x^{\prime}(t), x^{\prime \prime}(t)-f\left(t, x(t), x^{\prime}(t)\right)\right), \operatorname{graph}(F)\right)=0 \quad \text { a.e. }[0, T] .
$$

and since by Hypothesis $2.4 \operatorname{graph}(F)$ is closed we obtain

$$
x^{\prime \prime}(t) \in F\left(x(t), x^{\prime}(t)\right)+f\left(t, x(t), x^{\prime}(t)\right) \quad \text { a.e. }[0, T] .
$$

In order to prove the viability constraint satisfied by $x($.$) fix t \in[0, T]$. There exists a sequence $\left(t_{k}^{q}\right)_{k}$ such that $t=\lim _{k \rightarrow \infty} t_{k}^{q}$. But $\lim _{k \rightarrow \infty}\left\|x(t)-x_{k}\left(t_{k}^{q}\right)\right\|=0$ and $x_{k}\left(t_{k}^{q}\right) \in K$. So the fact that K is closed gives $x(t) \in K$ and the proof is complete.

REMARK 3.4. If $V():. R^{n} \rightarrow R$ is a proper lower semicontinuous convex function then (e.g. [7]) $\partial_{F} V(x)=\partial V(x)$, where $\partial V($.$) is the subdifferential in the sense of$ convex analysis of $V($.$) , and Theorem 3.3$ yields the result in [1]. At the same time if in Theorem $3.3 f \equiv 0$ then Theorem 3.3 yields the result in [5].

References

[1] S. Amine, R. Morchadi and S. Sajid, Carathéodory perturbation of a second-order differential inclusions with constraints, Electronic J. Diff. Eq., 2005(2005), No. 114, 1-11.
[2] A. Auslender and J. Mechler, Second order viability problems for differential inclusions, J. Math. Anal. Appl., 181(1984), 205-218.
[3] H. Brezis, Analyse fonctionelle, theorie et applications, Masson, Paris, 1983.
[4] T. Cardinali, G. Colombo, F. Papalini and M. Tosques, On a class of evolution equations without convexity, Nonlinear Anal., 28(1996), 217-234.
[5] A. Cernea, On the existence of viable solutions for a class of second-order differential inclusions, Discuss. Math. Diff. Incl. Control Optim., 22(2002), 67-78.
[6] B. Cornet, B. Haddad, Théoreme de viabilité pour inclusions differentielles du second order, Israel J. Math., 57(1987), 225-238.
[7] M. Degiovanni, A. Marino and M. Tosques, Evolution equations with lack of convexity, Nonlinear Anal., 9(1995), 1401-1443.
[8] T. X. D. Ha and M. Marques, Nonconvex second order differential inclusions with memory, Set-valued Anal., 5(1995), 71-86.
[9] V. Lupulescu, Existence of solutions for nonconvex second-order differential inclusions, Appl. Math. E-Notes, 3(2003), 115-123.
[10] L. Marco and J. A. Murillo, Viability theorems for higher-order differential inclusions, Set-valued Anal., 6(1998), 21-37.
[11] M. Tosques, Quasi-autonomus parabolic evolution equations associated with a class of non linear operators, Ricerche Mat., 38(1989), 63-92.

[^0]: *Mathematics Subject Classifications: 34A60
 \dagger Faculty of Mathematics and Informatics, University of Bucharest, Academiei 14, 010014 Bucharest, Romania

