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Abstract

We prove the existence of viable solutions to the Cauchy problem x′′ ∈
F (x,x′) + f(t, x, x′), x(0) = x0, x

′(0) = y0, x(t) ∈ K, where K ⊂ Rn is a closed
set, F is a set-valued map contained in the Fréchet subdifferential of a φ- convex
function of order two and f is a Carathéodory map.

1 Introduction

In this note we consider the second order differential inclusions of the form

x′′ ∈ F (x, x′) + f(t, x, x′), x(0) = x0, x
′(0) = y0, (1)

where F (., .) : D ⊂ Rn × Rn → P(Rn) is a given set-valued map, f(., ., .) : D1 ⊂
R × Rn × Rn → P(Rn) is a given function and x0, y0 ∈ Rn.

Existence of solutions of problem (1.1) that satisfy a constraint of the form x(t) ∈ K,
∀t, well known as viable solutions, has been studied by many authors, mainly in the
case when the multifunction is convex valued and f ≡ 0 ([2], [6], [8], [10] etc.).

Recently in [1], the situation when the multifunction is not convex valued is consid-
ered. More exactly, in [1] it is proved the existence of viable solutions of the problem
(1) when F (., .) is an upper semicontinuous, compact valued multifunction contained
in the subdifferential of a proper convex function. The result in [1] extends the result
in [9] obtained for problems without constraints (i.e., K = Rn).

The aim of this note is to prove existence of viable solutions of the problem (1) in
the case when the set-valued map F (., .) is upper semicontinuous compact valued and
contained in the Fréchet subdifferential of a φ- convex function of order two.

On one hand, since the class of proper convex functions is strictly contained into
the class of φ- convex functions of order two, our result generalizes the result in [1]. On
the other hand, our result may be considered as an extension of our previous viability
result for second-order nonconvex differential inclusions in [5] obtained for a problem
without perturbations (i.e., f ≡ 0).
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10 Differential Inclusion with Constraints

The proof of our result follows the general ideas in [1] and [5]. We note that in
the proof we pointed out only the differences that appeared with respect to the other
approaches.

The paper is organized as follows: in Section 2 we recall some preliminary facts
that we need in the sequel and in Section 3 we prove our main result.

2 Preliminaries

We denote by P(Rn) the set of all subsets of Rn and by R+ the set of all positive
real numbers. For ε > 0 we put B(x, ε) = {y ∈ Rn; ||y − x|| < ε} and B(x, ε) =
{y ∈ Rn; ||y − x|| ≤ ε}. With B we denote the unit ball in Rn. By cl(A) we denote
the closure of the set A ⊂ Rn, by co(A) we denote the convex hull of A and we put
||A|| = sup{||a||; a ∈ A}.

Let Ω ⊂ Rn be an open set and let V : Ω → R ∪ {+∞} be a function with domain
D(V ) = {x ∈ Rn; V (x) < +∞}.

DEFINITION 2.1. The multifunction ∂F V : Ω → P(Rn), defined as:

∂F V (x) = {α ∈ Rn, lim inf
y→x

V (y) − V (x) − 〈α, y − x〉
||y − x|| ≥ 0} ifV (x) < +∞

and ∂F V (x) = ∅ if V (x) = +∞ is called the Fréchet subdifferential of V .

According to [4] the values of ∂F V are closed and convex.

DEFINITION 2.2. Let V : Ω → R∪{+∞} be a lower semicontinuous function. We
say that V is a φ-convex of order 2 if there exists a continuous map φV : (D(V ))2×R2 →
R+ such that for every x, y ∈ D(∂F V ) and every α ∈ ∂F V (x) we have

V (y) ≥ V (x) + 〈α, x− y〉 − φV (x, y, V (x), V (y))(1 + ||α||2)||x− y||2. (2)

In [4], [7] there are several examples and properties of such maps. For example,
according to [4], if M ⊂ R2 is a closed and bounded domain, whose boundary is a C2

regular Jordan curve, the indicator function of M

V (x) = IM (x) =
{

0, if x ∈ M
+∞, otherwise

is φ- convex of order 2.
In what follows we assume the next assumptions.

HYPOTHESIS 2.3. i) Ω = K × 0, where K ⊂ Rn is a closed set and O ⊂ Rn is a
nonempty open set.

ii) F (., .) : Ω → P(Rn) is upper semicontinuous (i.e., ∀z ∈ Ω, ∀ε > 0 there exists
δ > 0 such that ||z − z′|| < δ implies F (z′) ⊂ F (z) + εB) with compact values.

iii) f(., ., .) : R×Ω → Rn is a Carathèodory function, i.e., ∀(x, y) ∈ Ω, t → f(t, x, y)
is measurable, for all t ∈ R f(t, .) is continuous and there exists m(.) ∈ L2(R, R+) such
that ||f(t, x, y)|| ≤ m(t) ∀(t, x, y) ∈ R × Ω.
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iv) For all (t, x, v) ∈ R × Ω, there exists w ∈ F (x, v) such that

lim inf
h→0

1
h2

d(x + hv +
h2

2
w +

∫ t+h

t

f(s, x, v)ds, K) = 0.

v) There exists a proper lower semicontinuous φ- convex function of order two
V : Rn → R ∪ {+∞} such that

F (x, y) ⊂ ∂F V (y), ∀(x, y) ∈ Ω.

3 The Mmain Result

In order to prove our result we need the following lemmas.
LEMMA 3.1 ([1]). Assume that Hypotheses 2.3 i)-iv) are satisfied. Consider

(x0, y0) ∈ Ω, r > 0 such that B(x0, r) ⊂ O, M := sup{||F (t, x)||; (t, x) ∈ Ω0 :=
[K × B(y0, r)] ∩ B((x0, y0), r)}, T1 > 0 such that

∫ T1

0
(m(s) + M + 1) < r

3 , T2 =
min{ r

3(M+1) ,
2r

3(||y0||+r)} and T ∈ (0, min{T1, T2}). Then for every ε > 0 there exists
η ∈ (0, ε) and p ≥ 1 such that for all i = 1, ..., p − 1 there exists (hi, (xi, yi), wi) ∈
[η, ε]× Ω0 × Rn with the following properties

xi = xi−1 + hi−1yi−1 +
h2

i−1

2
wi−1 +

∫ hi−2+hi−1

hi−2

f(s, xi−1, yi−1)ds ∈ K,

yi = yi−1 + hi−1wi−1, wi ∈ F (xi, yi) +
ε

T
B,

and

(xi, yi) ∈ Ω0,

p−1∑

i=0

hi < T ≤
p∑

i=0

hi.

Moreover, for ε > 0 sufficiently small we have
∑p−1

i=0
h2

i

2 ≤
∑p−1

i=0 hi < T .
For k ≥ 1 and q = 1, ..., p denote by hk

q the real number associated to ε = 1
k and

(t, x, y) = (hk
q−1, xq, yq) given by Lemma 3.1. Define t0k = 0, tpk = T , tqp = hk

0 + ...+hk
q−1

and consider the sequence xk(.) : [tq−1
k , tqk] → Rn, k ≥ 1 defined by

xk(0) = x0,

xk(t) = xq−1 + (t − tq−1
k )yq−1 +

1
2
(t − tq−1

k )2wq−1 +
∫ t

tq−1
k

(t − s)f(s, xq−1, yq−1)ds.

LEMMA 3.2 ([1]). Assume that Hypotheses 2.3 i)-iv) are satisfied and consider
xk(.) the sequence constructed above. Then there exists a subsequence, still denoted
by xk(.) and an absolutely continuous function x(.) : [0, T ] → Rn such that

i) xk(.) converges uniformly to x(.),
ii) x′

k(.) converges uniformly to x′(.),
iii) x′′

k(.) converges weakly in L2([0, T ], Rn) to x′′(.),
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iv) The sequence
(∑p

q=1

∫ tq
k

tq−1
k

< x′′
k(s), f(s, xk(tq−1

k ), x′
k(tq−1

k )) > ds
)

k
converges to

∫ T

0
< x′′(s), f(s, x(s), x′(s)) > ds,
v) For every t ∈ (0, T ) there exists q ∈ {1, ..., p} such that

lim
k→∞

d((xk(t), x′
k(t), x′′

k(t) − f(t, xk(tq−1
k ), x′

k(tq−1
k ))), graph(F )) = 0,

vi) x(.) is a solution of the convexified problem

x′′ ∈ coF (x, x′) + f(t, x, x′), x(0) = x0, x
′(0) = v0.

We are now able to prove our result.
THEOREM 3.3. Assume that Hypothesis 2.3 is satisfied. Then, for every (x0, y0) ∈

Ω there exist T > 0 and x(.) : [0, T ] → Rn a solution of problem (1) that satisfies
x(t) ∈ K ∀t ∈ [0, T ].

PROOF. Let (x0, y0) ∈ Ω and consider r > 0, T > 0 as in Lemma 3.1 and xk(.) :
[0, T ] → Rn, x(.) : [0, T ] → Rn as in Lemma 3.2. Let φV the continuous function
appearing in Definition 2.2. Since V (.) is continuous on D(V ) (e.g. [7]), by possibly
decreasing r one can assume that for all y ∈ B(y0, r)∩ D(V )

|V (y) − V (y0)| ≤ 1.

Set

S := sup{φv(y1, y2, z1, z2); yi ∈ B(y0, r), zi ∈ [V (y0) − 1, V (y0) + 1], i = 1, 2}.

From the statement vi) in Lemma 3.2 and Hypothesis 2.3 v) it follows that for almost
all t ∈ [0, T ],

x′′(t) − f(t, x(t), x′(t)) ∈ ∂F V (x′(t)). (3)

Since the mapping x(.) is absolutely continuous, from (3) and Theorem 2.2 in [4]
we deduce that there exists T3 > 0 such that the mapping t → V (x′(t)) is absolutely
continuous on [0, min{T, T3}] and

(V (x′(t)))′ = 〈x′′(t), x′′(t) − f(t, x(t), x′(t))〉 a.e. [0, min{T, T3}]. (4)

Without loss of generality we may assume that T = min{T, T3}. From (4) we have

V (x′(T )) − V (y0) =
∫ T

0

||x′′(s)||2ds −
∫ T

0

〈x′′(s), f(s, x(s), x′(s)〉 ds. (5)

On the other hand, for q = 1, ..., p and t ∈ [tq−1
k , tqk)

x′′
k(t) − f(t, xk(tq−1

k ), x′
k(tq−1

k )) ∈ F (xk(tq−1
k ), x′

k(tq−1
k )) +

1
kT

B

and therefore

x′′
k(t) − f(t, xk(tq−1

k ), x′
k(t

q−1
k )) ∈ ∂F V (x′

k(tq−1
k )) +

1
kT

B.



A. Cernea 13

We deduce the existence of bq
k ∈ B such that

x′′
k(t) − f(t, xk(tq−1

k ), x′
k(tq−1

k )) −
bq
k

kT
∈ ∂F V (x′

k(tq−1
k )).

Taking into account Definition 2.2 we obtain

V (x′
k(tqk)) − V (x′

k(tq−1
k )) ≥

〈
x′′

k(t) − f(t, xk(tq−1
k ), x′

k(tq−1
k )) −

bq
k

kT
,

∫ tq
k

tq−1
k

x′′
k(s)ds

〉

−φV

(
x′

k(tqk), x′
k(tq−1

k ), V (x′
k(tqk)), V (x′

k(tq−1
k ))

)

×

(
1 +

∥∥∥∥x′′
k(t) − f(t, xk(tq−1

k ), x′
k(tq−1

k )) − bq
k

kT

∥∥∥∥
2
)

×
∥∥∥x′

k(tqk) − x′
k(tq−1

k )
∥∥∥

2

.

Using the fact that x′′
k(.) is constant on [tq−1

k , tqk] one may write

V (x′
k(tqk)) − V (x′

k(tq−1
k )) ≥

∫ tq
k

tq−1
k

〈x′′
k(s), x′′

k(s)〉 ds −
∫ tq

k

tq−1
k

〈
x′′

k(s),
bq
k

kT

〉
ds

−
∫ tq

k

tq−1
k

〈
x′′

k(s), f(s, xk(tq−1
k ), x′

k(tq−1
k ))

〉
ds

−φV

(
x′

k(tqk), x′
k(tq−1

k ), V (x′
k(tqk)), V (x′

k(tq−1
k ))

)

×

(
1 +

∥∥∥∥x′′
k(t) − f(t, xk(tq−1

k ), x′
k(tq−1

k )) −
bq
k

kT

∥∥∥∥
2
)

×
∥∥∥x′

k(tqk) − x′
k(tq−1

k )
∥∥∥

2

.

By adding on q the last inequalities we get

V (x′
k(T )) − V (y0) ≥

∫ T

0

||x′′
k(s)||2ds + a(k) + b(k)

−
p∑

q=1

∫ tq
k

tq−1
k

〈
x′′

k(s), f(s, xk(tq−1
k ), x′

k(tq−1
k ))

〉
ds, (6)

where

a(k) = −
p∑

q=1

1
kT

∫ tq
k

tq−1
k

〈x′′
k(s), bq

k〉 ds,

b(k) = −
p∑

q=1

φV

(
x′

k(tqk), x′
k(tq−1

k ), V (x′
k(tqk))), V (x′

k(tq−1
k )

)

×

(
1 +

∥∥∥∥x′′
k(t) − f(t, xk(tq−1

k ), x′
k(tq−1

k )) −
bq
k

kT

∥∥∥∥
2
)∥∥∥x′

k(tqk) − x′
k(tq−1

k )
∥∥∥

2

.
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On the other hand, one has

|a(k)| ≤ 1
kT

p∑

q=1

||bq
k||.
∫ tq

k

tq−1
k

||x′′
k(s)||ds

≤ 1
kT

∫ T

0

||x′′
k(s)||ds ≤ 1

kT

∫ T

0

[M +
1
T

+ m(s)]ds

and

|b(k)| ≤
p∑

q=1

S(1 + M2)||
∫ tq

k

tq−1
k

x′′
k(s)ds||2

≤ S(1 + M2)
p∑

q=1

1
k

∫ tp
k

tp−1
k

||x′′
k(s)||2ds ≤ S(1 + M2)

1
k

∫ T

0

||x′′
k(s)||2ds

≤ 1
k

S(1 + M2)
∫ T

0

[M +
1
T

+ m(s)]2ds.

We infer that
lim

k→∞
a(k) = lim

k→∞
b(k) = 0.

Hence using also statement iv) in Lemma 3.2 and the continuity of the function V (.)
by passing to the limit as k → ∞ in (6) we obtain

V (x′(T )) − V (y0) ≥ lim sup
k→∞

∫ T

0

||x′′
k(s)||2ds −

∫ T

0

〈
x′′(s), f(s, x(s), x′(s))

〉
ds. (7)

Using (4) we infer that

lim sup
k→∞

∫ T

0

||x′
k(t)||2dt ≤

∫ T

0

||x′′(t)||2dt

and, since x′′
k(.) converges weakly in L2([0, T ], Rn) to x′′(.), by the lower semicontinuity

of the norm in L2([0, T ], Rn) (e.g. Prop. III.30 in [3]) we obtain that

lim
k→∞

∫ T

0

||x′′
k(t)||2dt =

∫ T

0

||x′′(t)||2dt

i.e., x′′
k(.) converges strongly in L2([0, T ], Rn). Hence, there exists a subsequence (still

denoted) x′′
k(.) that converges pointwise to x′′(.). From the statement v) in Lemma 3.2

it follows that

d((x(t), x′(t), x′′(t) − f(t, x(t), x′(t))), graph(F )) = 0 a.e. [0, T ].

and since by Hypothesis 2.4 graph(F ) is closed we obtain

x′′(t) ∈ F (x(t), x′(t)) + f(t, x(t), x′(t)) a.e. [0, T ].
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In order to prove the viability constraint satisfied by x(.) fix t ∈ [0, T ]. There
exists a sequence (tqk)k such that t = limk→∞ tqk. But limk→∞ ||x(t)− xk(tqk)|| = 0 and
xk(tqk) ∈ K. So the fact that K is closed gives x(t) ∈ K and the proof is complete.

REMARK 3.4. If V (.) : Rn → R is a proper lower semicontinuous convex function
then (e.g. [7]) ∂F V (x) = ∂V (x), where ∂V (.) is the subdifferential in the sense of
convex analysis of V (.), and Theorem 3.3 yields the result in [1]. At the same time if
in Theorem 3.3 f ≡ 0 then Theorem 3.3 yields the result in [5].
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