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Abstract

A real sequence {yi}∞i=−m defined by any y−m, y−m+1, ..., y−1 ∈ (0,∞) and
the rational recursive relation (1) will converge to 1.

In [1], a question is raised as to whether a real sequence {yi}∞i=−m that satisfies
(any) y−m, y−m+1, ..., y−1 ∈ (0,∞) and

yn =
yn−kyn−lyn−m + yn−k + yn−l + yn−m

yn−kyn−l + yn−kyn−m + yn−lyn−m + 1
, n ∈ N0 = {0, 1, 2, ...} , (1)

where k, l, m are positive integers such that 1 ≤ k < l < m, will converge to 1. Two
different affirmative proofs are given in [2] and [3]. In this note, we offer another
simple proof based on analysis of properties of subsequences of solutions of (1) (see
e.g. [4] for another demonstration of such a technique). Since no unifying theory is
available for rational recursive relations yet, such an addition may be of interest in
future developments.

Consider a slightly more general rational recursive relation

yn =
yn−kyn−lyn−m + yn−k + yn−l + yn−m + a

yn−kyn−l + yn−kyn−m + yn−lyn−m + 1 + a
, n ∈ N0 (2)

where a ≥ 0 and k, l, m are positive integers such that 1 ≤ k < l < m. Given
y−m, y−m+1, ..., y−1 ∈ (0,∞), we may calculate y0, y1, ... from (2) in a unique manner.
The resulting positive sequence {yn}∞n=−m will be called a solution of (2). For instance,
the constant sequence y = {1}∞n=−m is a solution (which is easily seen to be the unique
positive equilibrium solution of (2)). Given a solution {yn}∞n=−m , the (positive) sub-
sequences {ytm+i}∞t=−1 , i = 0, 1, ...,m− 1, will be denoted by Ψ(i), i = 0, 1, ..., m− 1,
respectively.
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We first make the observation that if Ψ(0)
t−1 = 1 for some t ≥ 0, then Ψ(0)

s = 1 for
s ≥ t. Indeed,

Ψ(0)
t =

ytm−kytm−lΨ
(0)
t−1 + ytm−k + ytm−l + Ψ(0)

t−1 + a

ytm−kytm−l + ytm−kΨ(0)
t−1 + ytm−lΨ

(0)
t−1 + 1 + a

=
ytm−kytm−l + ytm−k + ytm−l + 1 + a

ytm−kytm−l + ytm−k + ytm−l + 1 + a

= 1,

and by induction, Ψ(0)
s = 1 for s ≥ t + 1. The same reason is valid for the other

sequences Ψ(i).

LEMMA 1. For each i ∈ {0, ..., m− 1}, if Ψ(i)
t−1 = 1 for some t ≥ 0, then Ψ(i)

n = 1
for n ≥ t.

Before stating the next result, recall that two real sequences {an} and {bn} are said
to be asymptotically equal if an = bn for all large n.

LEMMA 2. Let {yn}∞n=−m be a solution of (2) and δ = min{y−m, y−m+1, ... , y−1}.
Then, for any ε ∈ (0, δ), there exist positive integers M0, ..., Mm−1 and positive num-
bers Φ0, ..., Φm−1 such that

n > Mi ⇒
∣∣∣Ψ(i)

n − Φi

∣∣∣ < ε or
∣∣∣∣Ψ(i)

n − 1
Φi

∣∣∣∣ < ε (3)

for i = 0, ..., m− 1.

PROOF. We will assume that i = 0, since the other cases are similar. If Ψ(0) is
asymptotically equal to {1} , then our assertion is true. Suppose Ψ(0) is not asymptot-
ically equal to {1} . Then by Lemma 1, the sequence Ψ(0)

n 6= 1 for all large n. Hence the
sequence Ψ(0)−y is either eventually positive, or eventually negative, or oscillatory (i.e.
neither eventually positive nor eventually negative). In the first case, we may assume
without loss of generality that Ψ(0)

t > 1 for all t ≥ −1. A direct calculation then shows
that

yn − yn−m =
(1 − yn−m) [(1 + yn−m) (yn−k + yn−l) + a]
yn−kyn−l + yn−kyn−m + yn−lyn−m + 1 + a

, n ≥ 0,

from which we get
(yn − yn−m) (yn−m − 1) < 0, n ≥ 0. (4)

Hence
Ψ(0)

−1 > Ψ(0)
0 > Ψ(0)

1 > · · · > 1,

which shows that Ψ(0) is a decreasing sequence bounded below by 1. If we take Φ0 =
limt→∞ Ψ(0)

t , then (3) is true for i = 0.
Similarly, we may show that in the second case, Ψ(0) is an (eventually) increasing

sequence bounded above by 1 and (3) is true by taking Φ0 = limt→∞ Ψ(0)
t .

In the case where Ψ(0) − y is oscillatory, we may assume without loss of generality
that Ψ(0)

−1 > 1. Then we may build an integer sequence {s1, s2, s3, ...} where s1 de-
notes the number of first consecutive positive terms of Ψ(0) − y, s2 is number of first
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consecutive negative terms of Ψ(0) − y, etc. In view of (4), we may then see that

Ψ(0)
−1 > Ψ(0)

0 > ... > Ψ(0)
s1−2 > 1, (5)

Ψ(0)
s1−1 < Ψ(0)

s1
< ... < Ψ(0)

s1+s2−2 < 1, (6)

and inductively,

Ψ(0)
s1+s2+···+sp−1 > Ψ(0)

s1+s2+···+sp
> · · · > Ψ(0)

s1+s2+···+sp+sp+1−2 > 1,

Ψ(0)
s1+s2+···+sp+1−1 < Ψ(0)

s1+s2+···+sp+1
< · · · < Ψ(0)

s1+s2+···+sp+2−2 < 1,

for p ≥ 1. In view of (2) and (5),

Ψ(0)
s1−1

=
y−m+s1m−ky−m+s1m−lΨ

(0)
s1−2 + y−m+s1m−k + y−m+s1m−l + Ψ(0)

s1−2 + a

y−m+s1m−ky−m+s1m−l + y−m+s1m−kΨ(0)
s1−2 + y−m+s1m−lΨ

(0)
s1−2 + 1 + a

>
y−m+s1m−ky−m+s1m−lΨ

(0)
s1−2 + y−m+s1m−k + y−m+s1m−l + Ψ(0)

s1−2 + a

Ψ(0)
s1−2

(
y−m+s1m−ky−m+s1m−lΨ

(0)
s1−2 + y−m+s1m−k + y−m+s1m−l + Ψ(0)

s1−2 + a
)

=
1

Ψ(0)
s1−2

. (7)

Similarly, by (2) and (6),

Ψ(0)
s1+s2−1 <

1

Ψ(0)
s1+s2−2

. (8)

By induction, we may then show that

Ψ(0)
s1+s2+···+s2q+1−1Ψ

(0)
s1+s2+···+s2q+1−2 > 1,

and
Ψ(0)

s1+s2+···+s2q+2−1Ψ
(0)
s1+s2+···+s2q+2−2 < 1,

for q ≥ 0. As a consequence,

Ψ(0)
−1 > Ψ(0)

0 > · · · > Ψ(0)
s1−2

>
1

Ψ(0)
s1−1

>
1

Ψ(0)
s1

> · · · > 1

Ψ(0)
s1+s2−2

> · · ·
> Ψ(0)

s1+s2+···+s2r−1 > Ψ(0)
s1+s2+···+s2r

> · · · > Ψ(0)
s1+s2+···s2r+1−2

>
1

Ψ(0)
s1+s2+···s2r+1−1

>
1

Ψ(0)
s1+s2+···s2r+1

> · · · > 1

Ψ(0)
s1+s2+···s2r+2−2

> · · ·
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which shows that

Ψ(0)
s1+s2+···+s2r−1 >

1

Ψ(0)
s1+s2+···+s2r+1−1

> Ψ(0)
s1+s2+···+s2r+2−1 (9)

for r ≥ 1 and that Ψ(0), when restricted to the positive support of Ψ(0)−y is decreasing
and bounded below by 1, and when restricted to the negative support of Ψ(0) − y is
increasing and bounded above by 1. Let Φ′

0 and Φ′′
0 be the limit of Ψ(0) restricted to

the positive and respectively the negative support of Ψ(0) − y. Then in view of (9), we
see by taking limits that Φ′

0 ≥ 1
Φ′′

0
≥ Φ′

0, which shows Φ′
0 = 1

Φ′′
0

as required. The proof
is complete.

LEMMA 3. Let {yn}∞n=−m be a solution of Eq. (2). Then, {yn}∞n=−m converges to
1.

PROOF. It suffices to show that for each i ∈ {0, 1, ...,m−1}, Ψ(i) converges to 1. We
will prove that Ψ(0) tends to 1, since the other Ψ(i) can be shown to converge to 1 in sim-
ilar manners. By Lemma 2, for any ε ∈ (0, δ), where δ = min{y−m, y−m+1, ... , y−1},
there are positive integers M0, ..., Mm−1 and positive numbers Φ0, ..., Φm−1 such that
for n > {M0, M1, ... , Mm−1} + m, the following statements hold:

∣∣∣Ψ(0)
n−1 − Φ0

∣∣∣ < ε or
∣∣∣∣Ψ

(0)
n−1 −

1
Φ0

∣∣∣∣ < ε,

∣∣∣Ψ(0)
n − Φ0

∣∣∣ < ε or
∣∣∣∣Ψ(0)

n − 1
Φ0

∣∣∣∣ < ε,

∣∣∣Ψ(m−k)
n−1 − Φm−k

∣∣∣ = |ynm−k − Φm−k| < ε or
∣∣∣∣Ψ

(m−k)
n−1 − 1

Φm−k

∣∣∣∣ < ε,

and ∣∣∣Ψ(m−l)
n−1 − Φn−l

∣∣∣ < ε or
∣∣∣∣Ψ

(m−l)
n−1 − 1

Φm−l

∣∣∣∣ < ε.

Consider the case where
∣∣∣Ψ(0)

n−1 − Φ0

∣∣∣ < ε,
∣∣∣Ψ(0)

n − Φ0

∣∣∣ < ε,
∣∣∣Ψ(m−k)

n−1 − Φm−k

∣∣∣ < ε and∣∣∣Ψ(m−l)
n−1 − Φn−l

∣∣∣ < ε hold. Then in view of (2),

Ψ(0)
n =

Ψ(m−k)
n−1 Ψ(m−l)

n−1 Ψ(0)
n−1 + Ψ(m−k)

n−1 + Ψ(m−l)
n−1 + Ψ(0)

n−1 + a

Ψ(m−k)
n−1 Ψ(m−l)

n−1 + Ψ(m−k)
n−1 Ψ(0)

n−1 + Ψ(m−l)
n−1 Ψ(0)

n + 1 + a

so that

Φ0 − ε

< Ψ(0)
n

<
(Φm−k + ε) (Φm−l + ε) (Φ0 + ε) + (Φm−k + ε) + (Φm−l + ε) + (Φ0 + ε) + a

(Φm−k − ε) (Φm−l − ε) + (Φm−k − ε) (Φ0 − ε) + (Φm−l − ε) (Φ0 − ε) + 1 + a
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and

Φ0 + ε

> Ψ(0)
n

>
(Φm−k − ε) (Φm−l − ε) (Φ0 − ε) + (Φm−k − ε) + (Φm−l − ε) + (Φ0 − ε) + a

(Φm−k + ε) (Φm−l + ε) + (Φm−k + ε) (Φ0 + ε) + (Φm−l + ε) (Φ0 + ε) + 1 + a
.

By taking limits as ε → 0 on both sides of the above two chain of inequalities, we see
that

Φ0 =
Φm−kΦm−lΦ0 + Φm−k + Φm−l + Φ0 + a

Φm−kΦm−l + Φm−kΦ0 + Φm−lΦ0 + 1 + a

or
(Φ0 − 1) {(Φ0 + 1)(Φm−k + Φm−l) + a} = 0.

Since Φ0, Φm−k, Φm−l, a > 0, we see that Φ0 = 1. The other cases can be handled in
similar manners to yield Φ0 = 1. The proof is complete.

Lemma 3 can be rephrased as follows:
THEOREM 1. A real sequence {yi}∞i=−m defined by any y−m, y−m+1, ..., y−1 ∈

(0,∞) and the rational recursive relation (2) will converge to 1.
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