Global Attraction In A Rational Recursive Relation*

Liang Zhang ${ }^{\dagger}$, Hai-Feng Huo ${ }^{\ddagger}$, Li-Ming Miao ${ }^{\S}$, Sui Sun Cheng ${ }^{〔}$

Received 20 May 2007

Abstract

A real sequence $\left\{y_{i}\right\}_{i=-m}^{\infty}$ defined by any $y_{-m}, y_{-m+1}, \ldots, y_{-1} \in(0, \infty)$ and the rational recursive relation (1) will converge to 1 .

In [1], a question is raised as to whether a real sequence $\left\{y_{i}\right\}_{i=-m}^{\infty}$ that satisfies (any) $y_{-m}, y_{-m+1}, \ldots, y_{-1} \in(0, \infty)$ and

$$
\begin{equation*}
y_{n}=\frac{y_{n-k} y_{n-l} y_{n-m}+y_{n-k}+y_{n-l}+y_{n-m}}{y_{n-k} y_{n-l}+y_{n-k} y_{n-m}+y_{n-l} y_{n-m}+1}, \quad n \in N_{0}=\{0,1,2, \ldots\}, \tag{1}
\end{equation*}
$$

where k, l, m are positive integers such that $1 \leq k<l<m$, will converge to 1 . Two different affirmative proofs are given in [2] and [3]. In this note, we offer another simple proof based on analysis of properties of subsequences of solutions of (1) (see e.g. [4] for another demonstration of such a technique). Since no unifying theory is available for rational recursive relations yet, such an addition may be of interest in future developments.

Consider a slightly more general rational recursive relation

$$
\begin{equation*}
y_{n}=\frac{y_{n-k} y_{n-l} y_{n-m}+y_{n-k}+y_{n-l}+y_{n-m}+a}{y_{n-k} y_{n-l}+y_{n-k} y_{n-m}+y_{n-l} y_{n-m}+1+a}, n \in N_{0} \tag{2}
\end{equation*}
$$

where $a \geq 0$ and k, l, m are positive integers such that $1 \leq k<l<m$. Given $y_{-m}, y_{-m+1}, \ldots, y_{-1} \in(0, \infty)$, we may calculate y_{0}, y_{1}, \ldots from (2) in a unique manner. The resulting positive sequence $\left\{y_{n}\right\}_{n=-m}^{\infty}$ will be called a solution of (2). For instance, the constant sequence $\bar{y}=\{1\}_{n=-m}^{\infty}$ is a solution (which is easily seen to be the unique positive equilibrium solution of (2)). Given a solution $\left\{y_{n}\right\}_{n=-m}^{\infty}$, the (positive) subsequences $\left\{y_{t m+i}\right\}_{t=-1}^{\infty}, i=0,1, \ldots, m-1$, will be denoted by $\Psi^{(i)}, i=0,1, \ldots, m-1$, respectively.

[^0]We first make the observation that if $\Psi_{t-1}^{(0)}=1$ for some $t \geq 0$, then $\Psi_{s}^{(0)}=1$ for $s \geq t$. Indeed,

$$
\begin{aligned}
\Psi_{t}^{(0)} & =\frac{y_{t m-k} y_{t m-l} \Psi_{t-1}^{(0)}+y_{t m-k}+y_{t m-l}+\Psi_{t-1}^{(0)}+a}{y_{t m-k} y_{t m-l}+y_{t m-k} \Psi_{t-1}^{(0)}+y_{t m-l} \Psi_{t-1}^{(0)}+1+a} \\
& =\frac{y_{t m-k} y_{t m-l}+y_{t m-k}+y_{t m-l}+1+a}{y_{t m-k} y_{t m-l}+y_{t m-k}+y_{t m-l}+1+a} \\
& =1
\end{aligned}
$$

and by induction, $\Psi_{s}^{(0)}=1$ for $s \geq t+1$. The same reason is valid for the other sequences $\Psi^{(i)}$.

LEMMA 1. For each $i \in\{0, \ldots, m-1\}$, if $\Psi_{t-1}^{(i)}=1$ for some $t \geq 0$, then $\Psi_{n}^{(i)}=1$ for $n \geq t$.

Before stating the next result, recall that two real sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are said to be asymptotically equal if $a_{n}=b_{n}$ for all large n.

LEMMA 2. Let $\left\{y_{n}\right\}_{n=-m}^{\infty}$ be a solution of (2) and $\delta=\min \left\{y_{-m}, y_{-m+1}, \ldots, y_{-1}\right\}$. Then, for any $\varepsilon \in(0, \delta)$, there exist positive integers M_{0}, \ldots, M_{m-1} and positive numbers $\Phi_{0}, \ldots, \Phi_{m-1}$ such that

$$
\begin{equation*}
n>M_{i} \Rightarrow\left|\Psi_{n}^{(i)}-\Phi_{i}\right|<\varepsilon \text { or }\left|\Psi_{n}^{(i)}-\frac{1}{\Phi_{i}}\right|<\varepsilon \tag{3}
\end{equation*}
$$

for $i=0, \ldots, m-1$.
PROOF. We will assume that $i=0$, since the other cases are similar. If $\Psi^{(0)}$ is asymptotically equal to $\{1\}$, then our assertion is true. Suppose $\Psi^{(0)}$ is not asymptotically equal to $\{1\}$. Then by Lemma 1 , the sequence $\Psi_{n}^{(0)} \neq 1$ for all large n. Hence the sequence $\Psi^{(0)}-\bar{y}$ is either eventually positive, or eventually negative, or oscillatory (i.e. neither eventually positive nor eventually negative). In the first case, we may assume without loss of generality that $\Psi_{t}^{(0)}>1$ for all $t \geq-1$. A direct calculation then shows that

$$
y_{n}-y_{n-m}=\frac{\left(1-y_{n-m}\right)\left[\left(1+y_{n-m}\right)\left(y_{n-k}+y_{n-l}\right)+a\right]}{y_{n-k} y_{n-l}+y_{n-k} y_{n-m}+y_{n-l} y_{n-m}+1+a}, \quad n \geq 0
$$

from which we get

$$
\begin{equation*}
\left(y_{n}-y_{n-m}\right)\left(y_{n-m}-1\right)<0, \quad n \geq 0 \tag{4}
\end{equation*}
$$

Hence

$$
\Psi_{-1}^{(0)}>\Psi_{0}^{(0)}>\Psi_{1}^{(0)}>\cdots>1
$$

which shows that $\Psi^{(0)}$ is a decreasing sequence bounded below by 1 . If we take $\Phi_{0}=$ $\lim _{t \rightarrow \infty} \Psi_{t}^{(0)}$, then (3) is true for $i=0$.

Similarly, we may show that in the second case, $\Psi^{(0)}$ is an (eventually) increasing sequence bounded above by 1 and (3) is true by taking $\Phi_{0}=\lim _{t \rightarrow \infty} \Psi_{t}^{(0)}$.

In the case where $\Psi^{(0)}-\bar{y}$ is oscillatory, we may assume without loss of generality that $\Psi_{-1}^{(0)}>1$. Then we may build an integer sequence $\left\{s_{1}, s_{2}, s_{3}, \ldots\right\}$ where s_{1} denotes the number of first consecutive positive terms of $\Psi^{(0)}-\bar{y}, s_{2}$ is number of first
consecutive negative terms of $\Psi^{(0)}-\bar{y}$, etc. In view of (4), we may then see that

$$
\begin{gather*}
\Psi_{-1}^{(0)}>\Psi_{0}^{(0)}>\ldots>\Psi_{s_{1}-2}^{(0)}>1, \tag{5}\\
\Psi_{s_{1}-1}^{(0)}<\Psi_{s_{1}}^{(0)}<\ldots<\Psi_{s_{1}+s_{2}-2}^{(0)}<1, \tag{6}
\end{gather*}
$$

and inductively,

$$
\begin{aligned}
& \Psi_{s_{1}+s_{2}+\cdots+s_{p}-1}^{(0)}>\Psi_{s_{1}+s_{2}+\cdots+s_{p}}^{(0)}>\cdots>\Psi_{s_{1}+s_{2}+\cdots+s_{p}+s_{p+1}-2}^{(0)}>1 \\
& \Psi_{s_{1}+s_{2}+\cdots+s_{p+1}-1}^{(0)}<\Psi_{s_{1}+s_{2}+\cdots+s_{p+1}}^{(0)}<\cdots<\Psi_{s_{1}+s_{2}+\cdots+s_{p+2}-2}^{(0)}<1
\end{aligned}
$$

for $p \geq 1$. In view of (2) and (5),

$$
\begin{align*}
& \Psi_{s_{1}-1}^{(0)} \\
= & \frac{y_{-m+s_{1} m-k} y_{-m+s_{1} m-l} \Psi_{s_{1}-2}^{(0)}+y_{-m+s_{1} m-k}+y_{-m+s_{1} m-l}+\Psi_{s_{1}-2}^{(0)}+a}{y_{-m+s_{1} m-k} y_{-m+s_{1} m-l}+y_{-m+s_{1} m-k} \Psi_{s_{1}-2}^{(0)}+y_{-m+s_{1} m-l} \Psi_{s_{1}-2}^{(0)}+1+a} \\
> & \frac{y_{-m+s_{1} m-k} y_{-m+s_{1} m-l} \Psi_{s_{1}-2}^{(0)}+y_{-m+s_{1} m-k}+y_{-m+s_{1} m-l}+\Psi_{s_{1}-2}^{(0)}+a}{\Psi_{s_{1}-2}^{(0)}\left(y_{-m+s_{1} m-k} y_{-m+s_{1} m-l} \Psi_{s_{1}-2}^{(0)}+y_{-m+s_{1} m-k}+y_{-m+s_{1} m-l}+\Psi_{s_{1}-2}^{(0)}+a\right)} \\
= & \frac{1}{\Psi_{s_{1}-2}^{(0)}} . \tag{7}
\end{align*}
$$

Similarly, by (2) and (6),

$$
\begin{equation*}
\Psi_{s_{1}+s_{2}-1}^{(0)}<\frac{1}{\Psi_{s_{1}+s_{2}-2}^{(0)}} \tag{8}
\end{equation*}
$$

By induction, we may then show that

$$
\Psi_{s_{1}+s_{2}+\cdots+s_{2 q+1}-1}^{(0)} \Psi_{s_{1}+s_{2}+\cdots+s_{2 q+1}-2}^{(0)}>1
$$

and

$$
\Psi_{s_{1}+s_{2}+\cdots+s_{2 q+2}-1}^{(0)} \Psi_{s_{1}+s_{2}+\cdots+s_{2 q+2}-2}^{(0)}<1
$$

for $q \geq 0$. As a consequence,

$$
\begin{aligned}
& \Psi_{-1}^{(0)}>\Psi_{0}^{(0)}>\cdots>\Psi_{s_{1}-2}^{(0)} \\
& >\frac{1}{\Psi_{s_{1}-1}^{(0)}}>\frac{1}{\Psi_{s_{1}}^{(0)}}>\cdots>\frac{1}{\Psi_{s_{1}+s_{2}-2}^{(0)}} \\
& >\ldots \\
& >\Psi_{s_{1}+s_{2}+\cdots+s_{2 r}-1}^{(0)}>\Psi_{s_{1}+s_{2}+\cdots+s_{2 r}}^{(0)}>\cdots>\Psi_{s_{1}+s_{2}+\cdots s_{2 r+1}-2}^{(0)} \\
& >\frac{1}{\Psi_{s_{1}+s_{2}+\cdots s_{2 r+1}-1}^{(0)}}>\frac{1}{\Psi_{s_{1}+s_{2}+\cdots s_{2 r+1}}^{(0)}}>\cdots>\frac{1}{\Psi_{s_{1}+s_{2}+\cdots s_{2 r+2}-2}^{(0)}} \\
& >\ldots
\end{aligned}
$$

which shows that

$$
\begin{equation*}
\Psi_{s_{1}+s_{2}+\cdots+s_{2 r}-1}^{(0)}>\frac{1}{\Psi_{s_{1}+s_{2}+\cdots+s_{2 r+1}-1}^{(0)}}>\Psi_{s_{1}+s_{2}+\cdots+s_{2 r+2}-1}^{(0)} \tag{9}
\end{equation*}
$$

for $r \geq 1$ and that $\Psi^{(0)}$, when restricted to the positive support of $\Psi^{(0)}-\bar{y}$ is decreasing and bounded below by 1 , and when restricted to the negative support of $\Psi^{(0)}-\bar{y}$ is increasing and bounded above by 1 . Let Φ_{0}^{\prime} and $\Phi_{0}^{\prime \prime}$ be the limit of $\Psi^{(0)}$ restricted to the positive and respectively the negative support of $\Psi^{(0)}-\bar{y}$. Then in view of (9), we see by taking limits that $\Phi_{0}^{\prime} \geq \frac{1}{\Phi_{0}^{\pi}} \geq \Phi_{0}^{\prime}$, which shows $\Phi_{0}^{\prime}=\frac{1}{\Phi_{0}^{\prime \prime}}$ as required. The proof is complete.

LEMMA 3. Let $\left\{y_{n}\right\}_{n=-m}^{\infty}$ be a solution of Eq. (2). Then, $\left\{y_{n}\right\}_{n=-m}^{\infty}$ converges to 1.

PROOF. It suffices to show that for each $i \in\{0,1, \ldots, m-1\}, \Psi^{(i)}$ converges to 1 . We will prove that $\Psi^{(0)}$ tends to 1 , since the other $\Psi^{(i)}$ can be shown to converge to 1 in similar manners. By Lemma 2, for any $\varepsilon \in(0, \delta)$, where $\delta=\min \left\{y_{-m}, y_{-m+1}, \ldots, y_{-1}\right\}$, there are positive integers M_{0}, \ldots, M_{m-1} and positive numbers $\Phi_{0}, \ldots, \Phi_{m-1}$ such that for $n>\left\{M_{0}, M_{1}, \ldots, M_{m-1}\right\}+m$, the following statements hold:

$$
\begin{gathered}
\left|\Psi_{n-1}^{(0)}-\Phi_{0}\right|<\varepsilon \text { or }\left|\Psi_{n-1}^{(0)}-\frac{1}{\Phi_{0}}\right|<\varepsilon \\
\left|\Psi_{n}^{(0)}-\Phi_{0}\right|<\varepsilon \text { or }\left|\Psi_{n}^{(0)}-\frac{1}{\Phi_{0}}\right|<\varepsilon \\
\left|\Psi_{n-1}^{(m-k)}-\Phi_{m-k}\right|=\left|y_{n m-k}-\Phi_{m-k}\right|<\varepsilon \text { or }\left|\Psi_{n-1}^{(m-k)}-\frac{1}{\Phi_{m-k}}\right|<\varepsilon
\end{gathered}
$$

and

$$
\left|\Psi_{n-1}^{(m-l)}-\Phi_{n-l}\right|<\varepsilon \text { or }\left|\Psi_{n-1}^{(m-l)}-\frac{1}{\Phi_{m-l}}\right|<\varepsilon
$$

Consider the case where $\left|\Psi_{n-1}^{(0)}-\Phi_{0}\right|<\varepsilon,\left|\Psi_{n}^{(0)}-\Phi_{0}\right|<\varepsilon,\left|\Psi_{n-1}^{(m-k)}-\Phi_{m-k}\right|<\varepsilon$ and $\left|\Psi_{n-1}^{(m-l)}-\Phi_{n-l}\right|<\varepsilon$ hold. Then in view of (2),

$$
\Psi_{n}^{(0)}=\frac{\Psi_{n-1}^{(m-k)} \Psi_{n-1}^{(m-l)} \Psi_{n-1}^{(0)}+\Psi_{n-1}^{(m-k)}+\Psi_{n-1}^{(m-l)}+\Psi_{n-1}^{(0)}+a}{\Psi_{n-1}^{(m-k)} \Psi_{n-1}^{(m-l)}+\Psi_{n-1}^{(m-k)} \Psi_{n-1}^{(0)}+\Psi_{n-1}^{(m-l)} \Psi_{n}^{(0)}+1+a}
$$

so that

$$
\begin{aligned}
& \Phi_{0}-\varepsilon \\
< & \Psi_{n}^{(0)} \\
< & \frac{\left(\Phi_{m-k}+\varepsilon\right)\left(\Phi_{m-l}+\varepsilon\right)\left(\Phi_{0}+\varepsilon\right)+\left(\Phi_{m-k}+\varepsilon\right)+\left(\Phi_{m-l}+\varepsilon\right)+\left(\Phi_{0}+\varepsilon\right)+a}{\left(\Phi_{m-k}-\varepsilon\right)\left(\Phi_{m-l}-\varepsilon\right)+\left(\Phi_{m-k}-\varepsilon\right)\left(\Phi_{0}-\varepsilon\right)+\left(\Phi_{m-l}-\varepsilon\right)\left(\Phi_{0}-\varepsilon\right)+1+a}
\end{aligned}
$$

and

$$
\begin{aligned}
& \Phi_{0}+\varepsilon \\
> & \Psi_{n}^{(0)} \\
> & \frac{\left(\Phi_{m-k}-\varepsilon\right)\left(\Phi_{m-l}-\varepsilon\right)\left(\Phi_{0}-\varepsilon\right)+\left(\Phi_{m-k}-\varepsilon\right)+\left(\Phi_{m-l}-\varepsilon\right)+\left(\Phi_{0}-\varepsilon\right)+a}{\left(\Phi_{m-k}+\varepsilon\right)\left(\Phi_{m-l}+\varepsilon\right)+\left(\Phi_{m-k}+\varepsilon\right)\left(\Phi_{0}+\varepsilon\right)+\left(\Phi_{m-l}+\varepsilon\right)\left(\Phi_{0}+\varepsilon\right)+1+a} .
\end{aligned}
$$

By taking limits as $\varepsilon \rightarrow 0$ on both sides of the above two chain of inequalities, we see that

$$
\Phi_{0}=\frac{\Phi_{m-k} \Phi_{m-l} \Phi_{0}+\Phi_{m-k}+\Phi_{m-l}+\Phi_{0}+a}{\Phi_{m-k} \Phi_{m-l}+\Phi_{m-k} \Phi_{0}+\Phi_{m-l} \Phi_{0}+1+a}
$$

or

$$
\left(\Phi_{0}-1\right)\left\{\left(\Phi_{0}+1\right)\left(\Phi_{m-k}+\Phi_{m-l}\right)+a\right\}=0
$$

Since $\Phi_{0}, \Phi_{m-k}, \Phi_{m-l}, a>0$, we see that $\Phi_{0}=1$. The other cases can be handled in similar manners to yield $\Phi_{0}=1$. The proof is complete.

Lemma 3 can be rephrased as follows:
THEOREM 1. A real sequence $\left\{y_{i}\right\}_{i=-m}^{\infty}$ defined by any $y_{-m}, y_{-m+1}, \ldots, y_{-1} \in$ $(0, \infty)$ and the rational recursive relation (2) will converge to 1 .

Acknowledgment. This work was supported by the Doctor's Foundation of Lanzhou University of Technology.

References

[1] K. S. Berenhaut, J. D. Foley and S. Stević, The global attractivity of the rational difference equation $y_{n}=\frac{y_{n-k}+y_{n-m}}{1+y_{n-k} y_{n-m}}$, Appl. Math. Lett., 20(2007), 54-58.
[2] K. S. Berenhaut and S. Stević, The global attractivity of a higher order rational difference equation, J. Math. Anal. Appl., 326(2007), 940-944.
[3] T. X. Sun and H. J. Xi, The global attractivity of a higher order rational difference equation, J. Math. Anal. Appl., to appear.
[4] Z. Li and D. M. Zhu, Global asymptotic stability of a higher order nonlinear difference equation, Appl. Math. Letters, 19(2006), 926-930.

[^0]: *Mathematics Subject Classifications: 40A05
 ${ }^{\dagger}$ Institute of Applied Mathematics, Lanzhou University of Technology, Lanzhou, Gansu 730050, P. R. China
 \ddagger Institute of Applied Mathematics, Lanzhou University of Technology, Lanzhou, Gansu 730050, P. R. China
 §Institute of Applied Mathematics, Lanzhou University of Technology, Lanzhou, Gansu 730050, P. R. China

 『 Department of Mathematics, Tsing Hua University, Hsinchu, Taiwan 30043, R. O. China

