Global Attraction In A Rational Recursive Relation^{*}

Liang Zhang[†], Hai-Feng Huo[‡], Li-Ming Miao[§], Sui Sun Cheng[¶]

Received 20 May 2007

Abstract

A real sequence $\{y_i\}_{i=-m}^{\infty}$ defined by any $y_{-m}, y_{-m+1}, ..., y_{-1} \in (0, \infty)$ and the rational recursive relation (1) will converge to 1.

In [1], a question is raised as to whether a real sequence $\{y_i\}_{i=-m}^{\infty}$ that satisfies (any) $y_{-m}, y_{-m+1}, \dots, y_{-1} \in (0, \infty)$ and

$$y_n = \frac{y_{n-k}y_{n-l}y_{n-m} + y_{n-k} + y_{n-l} + y_{n-m}}{y_{n-k}y_{n-l} + y_{n-k}y_{n-m} + y_{n-l}y_{n-m} + 1}, \quad n \in N_0 = \{0, 1, 2, ...\},$$
(1)

where k, l, m are positive integers such that $1 \le k < l < m$, will converge to 1. Two different affirmative proofs are given in [2] and [3]. In this note, we offer another simple proof based on analysis of properties of subsequences of solutions of (1) (see e.g. [4] for another demonstration of such a technique). Since no unifying theory is available for rational recursive relations yet, such an addition may be of interest in future developments.

Consider a slightly more general rational recursive relation

$$y_n = \frac{y_{n-k}y_{n-l}y_{n-m} + y_{n-k} + y_{n-l} + y_{n-m} + a}{y_{n-k}y_{n-l} + y_{n-k}y_{n-m} + y_{n-l}y_{n-m} + 1 + a}, \ n \in N_0$$
(2)

where $a \geq 0$ and k, l, m are positive integers such that $1 \leq k < l < m$. Given $y_{-m}, y_{-m+1}, ..., y_{-1} \in (0, \infty)$, we may calculate $y_0, y_1, ...$ from (2) in a unique manner. The resulting positive sequence $\{y_n\}_{n=-m}^{\infty}$ will be called a solution of (2). For instance, the constant sequence $\overline{y} = \{1\}_{n=-m}^{\infty}$ is a solution (which is easily seen to be the unique positive equilibrium solution of (2)). Given a solution $\{y_n\}_{n=-m}^{\infty}$, the (positive) subsequences $\{y_{tm+i}\}_{t=-1}^{\infty}, i = 0, 1, ..., m-1$, will be denoted by $\Psi^{(i)}, i = 0, 1, ..., m-1$, respectively.

^{*}Mathematics Subject Classifications: 40A05

 $^{^\}dagger \mathrm{Institute}$ of Applied Mathematics, Lanzhou University of Technology, Lanzhou, Gansu 730050, P. R. China

 $^{^{\}ddagger}$ Institute of Applied Mathematics, Lanzhou University of Technology, Lanzhou, Gansu 730050, P. R. China

 $^{^{\$}}$ Institute of Applied Mathematics, Lanzhou University of Technology, Lanzhou, Gansu 730050, P. R. China

[¶]Department of Mathematics, Tsing Hua University, Hsinchu, Taiwan 30043, R. O. China

Zhang et al.

We first make the observation that if $\Psi_{t-1}^{(0)} = 1$ for some $t \ge 0$, then $\Psi_s^{(0)} = 1$ for $s \ge t$. Indeed,

$$\Psi_{t}^{(0)} = \frac{y_{tm-k}y_{tm-l}\Psi_{t-1}^{(0)} + y_{tm-k} + y_{tm-l} + \Psi_{t-1}^{(0)} + a}{y_{tm-k}y_{tm-l} + y_{tm-k}\Psi_{t-1}^{(0)} + y_{tm-l}\Psi_{t-1}^{(0)} + 1 + a}$$

$$= \frac{y_{tm-k}y_{tm-l} + y_{tm-k} + y_{tm-l} + 1 + a}{y_{tm-k}y_{tm-l} + y_{tm-k} + y_{tm-l} + 1 + a}$$

$$= 1,$$

and by induction, $\Psi_s^{(0)} = 1$ for $s \ge t + 1$. The same reason is valid for the other sequences $\Psi^{(i)}$.

LEMMA 1. For each $i \in \{0, ..., m-1\}$, if $\Psi_{t-1}^{(i)} = 1$ for some $t \ge 0$, then $\Psi_n^{(i)} = 1$ for $n \ge t$.

Before stating the next result, recall that two real sequences $\{a_n\}$ and $\{b_n\}$ are said to be asymptotically equal if $a_n = b_n$ for all large n.

LEMMA 2. Let $\{y_n\}_{n=-m}^{\infty}$ be a solution of (2) and $\delta = \min\{y_{-m}, y_{-m+1}, \dots, y_{-1}\}$. Then, for any $\varepsilon \in (0, \delta)$, there exist positive integers M_0, \dots, M_{m-1} and positive numbers $\Phi_0, \dots, \Phi_{m-1}$ such that

$$n > M_i \Rightarrow \left| \Psi_n^{(i)} - \Phi_i \right| < \varepsilon \text{ or } \left| \Psi_n^{(i)} - \frac{1}{\Phi_i} \right| < \varepsilon$$

$$\tag{3}$$

for i = 0, ..., m - 1.

PROOF. We will assume that i = 0, since the other cases are similar. If $\Psi^{(0)}$ is asymptotically equal to $\{1\}$, then our assertion is true. Suppose $\Psi^{(0)}$ is not asymptotically equal to $\{1\}$. Then by Lemma 1, the sequence $\Psi_n^{(0)} \neq 1$ for all large *n*. Hence the sequence $\Psi^{(0)} - \overline{y}$ is either eventually positive, or eventually negative, or oscillatory (i.e. neither eventually positive nor eventually negative). In the first case, we may assume without loss of generality that $\Psi_t^{(0)} > 1$ for all $t \geq -1$. A direct calculation then shows that

$$y_n - y_{n-m} = \frac{(1 - y_{n-m})\left[(1 + y_{n-m})\left(y_{n-k} + y_{n-l}\right) + a\right]}{y_{n-k}y_{n-l} + y_{n-k}y_{n-m} + y_{n-l}y_{n-m} + 1 + a}, \quad n \ge 0,$$

from which we get

$$(y_n - y_{n-m})(y_{n-m} - 1) < 0, \quad n \ge 0.$$
(4)

Hence

 $\Psi_{-1}^{(0)} > \Psi_0^{(0)} > \Psi_1^{(0)} > \dots > 1,$

which shows that $\Psi^{(0)}$ is a decreasing sequence bounded below by 1. If we take $\Phi_0 = \lim_{t\to\infty} \Psi_t^{(0)}$, then (3) is true for i = 0.

Similarly, we may show that in the second case, $\Psi^{(0)}$ is an (eventually) increasing sequence bounded above by 1 and (3) is true by taking $\Phi_0 = \lim_{t \to \infty} \Psi_t^{(0)}$.

In the case where $\Psi^{(0)} - \overline{y}$ is oscillatory, we may assume without loss of generality that $\Psi^{(0)}_{-1} > 1$. Then we may build an integer sequence $\{s_1, s_2, s_3, ...\}$ where s_1 denotes the number of first consecutive positive terms of $\Psi^{(0)} - \overline{y}$, s_2 is number of first

consecutive negative terms of $\Psi^{(0)} - \overline{y}$, etc. In view of (4), we may then see that

$$\Psi_{-1}^{(0)} > \Psi_{0}^{(0)} > \dots > \Psi_{s_{1}-2}^{(0)} > 1,$$
(5)

$$\Psi_{s_1-1}^{(0)} < \Psi_{s_1}^{(0)} < \dots < \Psi_{s_1+s_2-2}^{(0)} < 1,$$
(6)

and inductively,

$$\Psi_{s_1+s_2+\dots+s_p-1}^{(0)} > \Psi_{s_1+s_2+\dots+s_p}^{(0)} > \dots > \Psi_{s_1+s_2+\dots+s_p+s_{p+1}-2}^{(0)} > 1,$$

$$\Psi_{s_1+s_2+\dots+s_{p+1}-1}^{(0)} < \Psi_{s_1+s_2+\dots+s_{p+1}}^{(0)} < \dots < \Psi_{s_1+s_2+\dots+s_{p+2}-2}^{(0)} < 1,$$

for $p \ge 1$. In view of (2) and (5),

$$\Psi_{s_{1}-1}^{(0)} = \frac{y_{-m+s_{1}m-k}y_{-m+s_{1}m-l}\Psi_{s_{1}-2}^{(0)} + y_{-m+s_{1}m-k} + y_{-m+s_{1}m-l} + \Psi_{s_{1}-2}^{(0)} + a}{y_{-m+s_{1}m-k}y_{-m+s_{1}m-l} + y_{-m+s_{1}m-k}\Psi_{s_{1}-2}^{(0)} + y_{-m+s_{1}m-l}\Psi_{s_{1}-2}^{(0)} + 1 + a} \\
> \frac{y_{-m+s_{1}m-k}y_{-m+s_{1}m-l}\Psi_{s_{1}-2}^{(0)} + y_{-m+s_{1}m-k} + y_{-m+s_{1}m-l} + \Psi_{s_{1}-2}^{(0)} + a}{\Psi_{s_{1}-2}^{(0)}\left(y_{-m+s_{1}m-k}y_{-m+s_{1}m-l}\Psi_{s_{1}-2}^{(0)} + y_{-m+s_{1}m-k} + y_{-m+s_{1}m-l} + \Psi_{s_{1}-2}^{(0)} + a}\right)}{\frac{1}{\Psi_{s_{1}-2}^{(0)}}.$$
(7)

Similarly, by (2) and (6),

$$\Psi_{s_1+s_2-1}^{(0)} < \frac{1}{\Psi_{s_1+s_2-2}^{(0)}}.$$
(8)

By induction, we may then show that

$$\Psi_{s_1+s_2+\dots+s_{2q+1}-1}^{(0)}\Psi_{s_1+s_2+\dots+s_{2q+1}-2}^{(0)}>1,$$

and

$$\Psi^{(0)}_{s_1+s_2+\dots+s_{2q+2}-1}\Psi^{(0)}_{s_1+s_2+\dots+s_{2q+2}-2}<1,$$

for $q \ge 0$. As a consequence,

$$\begin{split} \Psi_{-1}^{(0)} &> \Psi_{0}^{(0)} > \dots > \Psi_{s_{1}-2}^{(0)} \\ &> \frac{1}{\Psi_{s_{1}-1}^{(0)}} > \frac{1}{\Psi_{s_{1}}^{(0)}} > \dots > \frac{1}{\Psi_{s_{1}+s_{2}-2}^{(0)}} \\ &> \dots \\ &> \Psi_{s_{1}+s_{2}+\dots+s_{2r}-1}^{(0)} > \Psi_{s_{1}+s_{2}+\dots+s_{2r}}^{(0)} > \dots > \Psi_{s_{1}+s_{2}+\dots+s_{2r+1}-2}^{(0)} \\ &> \frac{1}{\Psi_{s_{1}+s_{2}+\dots+s_{2r+1}-1}^{(0)}} > \frac{1}{\Psi_{s_{1}+s_{2}+\dots+s_{2r+1}}^{(0)}} > \dots > \frac{1}{\Psi_{s_{1}+s_{2}+\dots+s_{2r+2}-2}^{(0)}} \\ &> \dots \end{split}$$

Zhang et al.

which shows that

$$\Psi_{s_1+s_2+\dots+s_{2r}-1}^{(0)} > \frac{1}{\Psi_{s_1+s_2+\dots+s_{2r+1}-1}^{(0)}} > \Psi_{s_1+s_2+\dots+s_{2r+2}-1}^{(0)}$$
(9)

for $r \geq 1$ and that $\Psi^{(0)}$, when restricted to the positive support of $\Psi^{(0)} - \overline{y}$ is decreasing and bounded below by 1, and when restricted to the negative support of $\Psi^{(0)} - \overline{y}$ is increasing and bounded above by 1. Let Φ'_0 and Φ''_0 be the limit of $\Psi^{(0)}$ restricted to the positive and respectively the negative support of $\Psi^{(0)} - \overline{y}$. Then in view of (9), we see by taking limits that $\Phi'_0 \geq \frac{1}{\Phi''_0} \geq \Phi'_0$, which shows $\Phi'_0 = \frac{1}{\Phi''_0}$ as required. The proof is complete.

LEMMA 3. Let $\{y_n\}_{n=-m}^{\infty}$ be a solution of Eq. (2). Then, $\{y_n\}_{n=-m}^{\infty}$ converges to 1.

PROOF. It suffices to show that for each $i \in \{0, 1, ..., m-1\}, \Psi^{(i)}$ converges to 1. We will prove that $\Psi^{(0)}$ tends to 1, since the other $\Psi^{(i)}$ can be shown to converge to 1 in similar manners. By Lemma 2, for any $\varepsilon \in (0, \delta)$, where $\delta = \min\{y_{-m}, y_{-m+1}, ..., y_{-1}\}$, there are positive integers $M_0, ..., M_{m-1}$ and positive numbers $\Phi_0, ..., \Phi_{m-1}$ such that for $n > \{M_0, M_1, ..., M_{m-1}\} + m$, the following statements hold:

$$\begin{split} \left| \Psi_{n-1}^{(0)} - \Phi_0 \right| < \varepsilon \text{ or } \left| \Psi_{n-1}^{(0)} - \frac{1}{\Phi_0} \right| < \varepsilon, \\ \left| \Psi_n^{(0)} - \Phi_0 \right| < \varepsilon \text{ or } \left| \Psi_n^{(0)} - \frac{1}{\Phi_0} \right| < \varepsilon, \\ \\ \left| \Psi_{n-1}^{(m-k)} - \Phi_{m-k} \right| = |y_{nm-k} - \Phi_{m-k}| < \varepsilon \text{ or } \left| \Psi_{n-1}^{(m-k)} - \frac{1}{\Phi_{m-k}} \right| < \varepsilon, \end{split}$$

and

$$\left|\Psi_{n-1}^{(m-l)} - \Phi_{n-l}\right| < \varepsilon \text{ or } \left|\Psi_{n-1}^{(m-l)} - \frac{1}{\Phi_{m-l}}\right| < \varepsilon.$$

Consider the case where $\left|\Psi_{n-1}^{(0)} - \Phi_{0}\right| < \varepsilon$, $\left|\Psi_{n}^{(0)} - \Phi_{0}\right| < \varepsilon$, $\left|\Psi_{n-1}^{(m-k)} - \Phi_{m-k}\right| < \varepsilon$ and $\left|\Psi_{n-1}^{(m-l)} - \Phi_{n-l}\right| < \varepsilon$ hold. Then in view of (2),

$$\Psi_{n}^{(0)} = \frac{\Psi_{n-1}^{(m-k)}\Psi_{n-1}^{(m-l)}\Psi_{n-1}^{(0)} + \Psi_{n-1}^{(m-k)} + \Psi_{n-1}^{(m-l)} + \Psi_{n-1}^{(0)} + a}{\Psi_{n-1}^{(m-k)}\Psi_{n-1}^{(m-l)} + \Psi_{n-1}^{(m-k)}\Psi_{n-1}^{(0)} + \Psi_{n-1}^{(m-l)}\Psi_{n-1}^{(0)} + 1 + a}$$

so that

$$\begin{aligned}
\Phi_{0} &-\varepsilon \\
&< \Psi_{n}^{(0)} \\
&< \frac{\left(\Phi_{m-k}+\varepsilon\right)\left(\Phi_{m-l}+\varepsilon\right)\left(\Phi_{0}+\varepsilon\right)+\left(\Phi_{m-k}+\varepsilon\right)+\left(\Phi_{m-l}+\varepsilon\right)+\left(\Phi_{0}+\varepsilon\right)+a}{\left(\Phi_{m-k}-\varepsilon\right)\left(\Phi_{m-l}-\varepsilon\right)+\left(\Phi_{m-k}-\varepsilon\right)\left(\Phi_{0}-\varepsilon\right)+\left(\Phi_{m-l}-\varepsilon\right)\left(\Phi_{0}-\varepsilon\right)+1+a}
\end{aligned}$$

and

$$\begin{aligned} & \Phi_{0} + \varepsilon \\ & > \Psi_{n}^{(0)} \\ & > \frac{\left(\Phi_{m-k} - \varepsilon\right)\left(\Phi_{m-l} - \varepsilon\right)\left(\Phi_{0} - \varepsilon\right) + \left(\Phi_{m-k} - \varepsilon\right) + \left(\Phi_{m-l} - \varepsilon\right) + \left(\Phi_{0} - \varepsilon\right) + a}{\left(\Phi_{m-k} + \varepsilon\right)\left(\Phi_{m-l} + \varepsilon\right) + \left(\Phi_{m-k} + \varepsilon\right)\left(\Phi_{0} + \varepsilon\right) + \left(\Phi_{m-l} + \varepsilon\right)\left(\Phi_{0} + \varepsilon\right) + 1 + a} \end{aligned}$$

By taking limits as $\varepsilon \to 0$ on both sides of the above two chain of inequalities, we see that

$$\Phi_0 = \frac{\Phi_{m-k}\Phi_{m-l}\Phi_0 + \Phi_{m-k} + \Phi_{m-l} + \Phi_0 + a}{\Phi_{m-k}\Phi_{m-l} + \Phi_{m-k}\Phi_0 + \Phi_{m-l}\Phi_0 + 1 + a}$$

or

$$(\Phi_0 - 1) \{ (\Phi_0 + 1)(\Phi_{m-k} + \Phi_{m-l}) + a \} = 0$$

Since $\Phi_0, \Phi_{m-k}, \Phi_{m-l}, a > 0$, we see that $\Phi_0 = 1$. The other cases can be handled in similar manners to yield $\Phi_0 = 1$. The proof is complete.

Lemma 3 can be rephrased as follows:

THEOREM 1. A real sequence $\{y_i\}_{i=-m}^{\infty}$ defined by any $y_{-m}, y_{-m+1}, ..., y_{-1} \in (0, \infty)$ and the rational recursive relation (2) will converge to 1.

Acknowledgment. This work was supported by the Doctor's Foundation of Lanzhou University of Technology.

References

- [1] K. S. Berenhaut, J. D. Foley and S. Stević, The global attractivity of the rational difference equation $y_n = \frac{y_{n-k} + y_{n-m}}{1 + y_{n-k} y_{n-m}}$, Appl. Math. Lett., 20(2007), 54–58.
- [2] K. S. Berenhaut and S. Stević, The global attractivity of a higher order rational difference equation, J. Math. Anal. Appl., 326(2007), 940–944.
- [3] T. X. Sun and H. J. Xi, The global attractivity of a higher order rational difference equation, J. Math. Anal. Appl., to appear.
- [4] Z. Li and D. M. Zhu, Global asymptotic stability of a higher order nonlinear difference equation, Appl. Math. Letters, 19(2006), 926–930.

158