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Abstract

Using variational principle and Riccati technique, new oscillation criteria for
forced second order nonlinear differential equation are established to handle cases
that cannot be dealt with by results in recent papers by Li and Cheng [1] and
Cakmak and Tiryaki [3].

1 Introduction

In [1], a question is raised whether Leighton’s variational principles for the oscillation
of linear second order nonhomogeneous differential equations in [2] can be extended to
nonhomogeneous half-linear differential equations of the form

(
p(t)|y′(t)|α−1y′(t)

)′ + q(t)|y(t)|α−1y(t) = e(t), t ≥ t0, (1)

where α is a positive constant, p, q, e ∈ C([t0,∞), R) with p(t) > 0. A result is derived
to answer this question [1, Theorem 2].

THEOREM 1.1. Suppose that for any T ≥ t0, there exist T ≤ s1 < t1 ≤ s2 < t2
such that e(t) ≤ 0 for t ∈ [s1, t1] and e(t) ≥ 0 for t ∈ [s2, t2]. If there exist H ∈
D(si, ti) = {u ∈ C1[si, ti] : u(t) 6≡ 0, u(si) = u(ti) = 0} and a positive, nondecreasing
function ρ ∈ C1([t0,∞), R) such that

∫ ti

si

H2(t)ρ(t)q(t)dt >

(
1

α + 1

)α+1 ∫ ti

si

p(t)ρ(t)
|H(t)|α−1

(
2|H ′(t)| + |H(t)|ρ

′(t)
ρ(t)

)α+1

dt

(2)
for i = 1, 2. Then Equation (1) is oscillatory.

Later in [3], Cakmak and Tiryaki consider a more general equation
(
p(t)Ψ(y(t))|y′(t)|α−1y′(t)

)′ + q(t)f(y(t)) = e(t), t ≥ t0, (3)

where α is a positive constant, p, q, e ∈ C([t0,∞), R) with p(t) > 0, Ψ ∈ C(R, (0,∞)),
f ∈ C(R, R) satisfying uf(u) > 0 for u 6= 0, and obtain a result as follows.

∗Mathematics Subject Classifications: 34A30, 34C10.
†Department of Mathematics, Qufu Normal University, Qufu 273165, P. R. China
‡Department of Mathematics, Tsing Hua University, Hsinchu, Taiwan 30043, R. O. China

247



248 Variational Oscillation Criteria

THEOREM 1.2. Suppose that

f ′(u)

[Ψ(u)|f(u)|α−1]1/α
≥ γ > 0 for u 6= 0.

Suppose further that for any T ≥ t0, there exist T ≤ s1 < t1 ≤ s2 < t2 such that
e(t) ≤ 0 for t ∈ [s1, t1] and e(t) ≥ 0 for t ∈ [s2, t2]. If there exist H ∈ D(si, ti) = {u ∈
C1[si, ti] : u(t) 6≡ 0, u(si) = u(ti) = 0} and a positive function ρ ∈ C1([t0,∞), R) such
that

∫ ti

si

H2(t)ρ(t)q(t)dt >

(
1

α + 1

)α+1(
α

γ

)α

×
∫ ti

si

H2(t)ρ(t)p(t)
∣∣∣∣
2H ′(t)
H(t)

+
ρ′(t)
ρ(t)

∣∣∣∣
α+1

dt (4)

for i = 1, 2. Then Equation (3) is oscillatory.

It is not difficult to see that Theorem 1.2 is an extension of Theorem 1.1, and that
no restriction is made on the monotonicity of the function ρ.

Unfortunately, neither Theorem 1.1 nor Theorem 1.2 can be applied to the case
when α > 1, since for ρ(t) ≡ 1, the term |H(t)|α−1 will appear as a denominator in (2)
and (4) so that the requirement H(si) = H(ti) = 0 will cause trouble. This certainly
calls for investigation of oscillation criteria that can handle such cases.

In this paper, we are concerned with the nonhomogeneous equation (3). By a
solution of Equation (3), we mean a function y ∈ C1[Ty,∞), Ty ≥ t0, where Ty ≥ t0
depends on the particular solution, which has the property p(t)Ψ(y(t))|y′(t)|α−1y′(t) ∈
C1[Ty,∞) and satisfies Equation (3). A nontrivial solution of Equation (3) is called
oscillatory if it has arbitrarily large zeros, otherwise, it is said to be non-oscillatory.
Equation (3) is said to be oscillatory if all its solutions are oscillatory.

The purpose of this paper is to obtain new oscillation criteria for Equation (3)
based on variational principles. Roughly, if the existence of a ‘positive’ solution of
a functional relation implies the ‘positivity’ of an associated functional over a set of
‘admissible’ functions, then we say that a variational oscillation principle is valid. For
instance, in Theorem 1.1, H ∈ D(si, ti) is admissible, and the functional is

∫ ti

si

{(
1

α + 1

)α+1
p(t)ρ(t)
|H(t)|α−1

(
2|H ′(t)| + |H(t)|ρ

′(t)
ρ(t)

)α+1

− H2(t)ρ(t)q(t)

}
dt.

Our emphasis will be directed towards oscillation criteria that are closely related
to the (α + 1)-degree energy functional for half-linear equations (see [4,5,6,7] for more
details on these functionals), which are improvements of Theorem 1.1 and Theorem 1.2
for the case where β = α, and are generalizations for the case where β > α. Examples
will also be given to illustrate the effectiveness of our main results.

Before going into the main results, let us state three sets of conditions commonly
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used in the literature which we rely on:

(S1) 0 < Ψ(u) ≤ M, and f ′(u) ≥ K |f(u)|
β−1

β > 0 for u 6= 0; (5)

(S2)
f ′(u)

[Ψ(u)|f(u)|β−1]1/β
≥ γ > 0 for u 6= 0; (6)

(S3) 0 < Ψ(u) ≤ M, and
f(u)

|u|β sgnu
≥ δ > 0 for u 6= 0. (7)

Here, M, K > 0, 0 < α ≤ β and γ, δ > 0 are constants. It is clear that assumption
(S1) implies (S2), but not conversely. For example, the function f(u) = u3, Ψ(u) = u2

and β = 1 do not satisfy (S1), but (S2) holds. In (S1) and (S2), we need f to be
differentiable. Clearly, this condition is not required in (S3). These differences force us
to study equation (3) under the assumptions (S1), (S2) and (S3) in separate manners.

2 The Case Where β = α

First we recall a well known inequality, which is a transformation of Young’s inequality.
LEMMA 2.1. (see [8]) Suppose X and Y are nonnegative. Then

λXY λ−1 − Xλ ≤ (λ − 1)Y λ, λ > 1, (8)

where equality holds if and only if X = Y .
For a, b ∈ R such that a < b, let

D(a, b) =
{
u ∈ C1[a, b] : uα+1(t) > 0 for t ∈ (a, b), and u(a) = u(b) = 0

}
.

Let ρ ∈ C1([t0,∞), R) be a positive function. For given f ∈ C([t0,∞), R), as in [3], we
define an integral operator Ab

a in terms of H ∈ D(a, b) and ρ as

Ab
a(f ; t) =

∫ b

a

Hα+1(t)ρ(t)f(t)dt, a ≤ t ≤ b. (9)

Recall from [3] that Ab
a has the following properties:

Ab
a(α1f1 + α2f2; t) = α1A

b
a(f1; t) + α2A

b
a(f2; t); (10)

Ab
a(f ; t) ≥ 0 whenever f ≥ 0; (11)

Ab
a(g′; t) = −(α + 1)Ab

a

([
H ′

H
+

ρ′

(α + 1)ρ

]
g; t
)

≥ −(α + 1)Ab
a

(∣∣∣∣
H ′

H
+

ρ′

(α + 1)ρ

∣∣∣∣ |g|; t
)

, (12)

where f1, f2, f ∈ C([t0,∞), R), g ∈ C1([t0,∞), R), and α1, α2 are real numbers.
THEOREM 2.2. Assume (S2) holds. Suppose further that for any T ≥ t0, there

exist T ≤ s1 < t1 ≤ s2 < t2 such that e(t) ≤ 0 for t ∈ [s1, t1] and e(t) ≥ 0 for t ∈ [s2, t2].
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If there exist H ∈ D(si, ti) and a positive function ρ ∈ C1([t0,∞), R) such that

Ati
si

(q; t) >

(
α

γ

)α

Ati
si

(
p

∣∣∣∣
H ′

H
+

ρ′

(α + 1)ρ

∣∣∣∣
α+1

; t

)
(13)

for i = 1, 2. Then Equation (3) is oscillatory.

PROOF. Suppose to the contrary that there is a non-oscillatory solution y of (3).
We may then assume that y(t) 6= 0 on [T0,∞) for some T0 ≥ t0. Set

w(t) =
p(t)Ψ(y(t))|y′(t)|α−1y′(t)

f(y(t))
, t ≥ T0. (14)

Then differentiating (14) and making use of Equation (3), it follows that for all t ≥ T0,
we have

w′(t) = −q(t) +
e(t)

f(y(t))
− |w(t)|(α+1)/αf ′(y(t))

[p(t)Ψ(y(t))|f(y(t))|α−1]1/α
. (15)

By our assumptions, we can choose si, ti ≥ T0 for i = 1, 2 so that e(t) ≤ 0 on the
interval I1 = [s1, t1], with s1 < t1 and y(t) ≥ 0, or e(t) ≥ 0 on the interval I2 = [s2, t2],
with s2 < t2 and y(t) ≤ 0. On the intervals I1 and I2, in view of (6) and (15), w(t)
satisfies the inequality

q(t) ≤ −w′(t) − γ
|w(t)|(α+1)/α

p1/α(t)
. (16)

Applying the operator Ati
si

for i = 1, 2 to (15), using the fact that H(si) = H(ti) = 0
and (12), we obtain

Ati
si

(q; t) ≤ Ati
si

(
−w′ − γ

|w|(α+1)/α

p1/α
; t
)

≤ Ati
si

(
(α + 1)

∣∣∣∣
H ′

H
+

ρ′

(α + 1)ρ

∣∣∣∣ |w| − γ
|w|(α+1)/α

p1/α
; t
)

. (17)

Let

X =
γα/(α+1)

p1/(α+1)
|w|, λ = 1 +

1
α

,

and

Y =
ααpα/(α+1)

γα2/(α+1)

∣∣∣∣
H ′

H
+

ρ′

(α + 1)ρ

∣∣∣∣
α

.

By Lemma 2.1, we obtain

(α + 1)
∣∣∣∣
H ′

H
+

ρ′

(α + 1)ρ

∣∣∣∣ |w| − γ
|w|(α+1)/α

p1/α
≤
(

α

γ

)α

p

∣∣∣∣
H ′

H
+

ρ′

(α + 1)ρ

∣∣∣∣
α+1

. (18)

Then in view of (17), (18) and the properties (10) as well as (11), we see that

Ati
si

(q; t) ≤
(

α

γ

)α

Ati
si

(
p

∣∣∣∣
H ′

H
+

ρ′

(α + 1)ρ

∣∣∣∣
α+1

; t

)
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for i = 1, 2, which is contrary to (13). This completes our proof.
We remark that the assumption that e(t) ≤ 0 for t ∈ [s1, t1] and e(t) ≥ 0 for

t ∈ [s2, t2] can be replaced by e(t) ≥ 0 for t ∈ [s1, t1] and e(t) ≤ 0 for t ∈ [s2, t2].
Similar remarks hold for the other results that follow.

COROLLARY 2.3. If ρ(t) ≡ 1 in Theorem 2, and (13) is replaced by

Qi(H) :=
∫ ti

si

[
q(t)Hα+1(t) −

(
α

γ

)α

p(t)|H ′(t)|α+1

]
dt > 0 (19)

for i = 1, 2, then Equation (3) is oscillatory. If ρ(t) ≡ 1 in Theorem 2, and (13) is
replaced by

Q̄i(H) :=
∫ ti

si

[
q(t)Hα+1(t) − p(t)|H ′(t)|α+1

]
dt > 0 (20)

for i = 1, 2, then Equation (1) is oscillatory.

We remark that Corollary 2 is closely related to the (α + 1)-degree functional for
half-linear differential equations. Furthermore, in Theorem 2.2, there is no additional
restriction on the positive constant α.

THEOREM 2.4. Assume (S3) holds. Suppose further that for any T ≥ t0, there
exist T ≤ s1 < t1 ≤ s2 < t2 such that e(t) ≤ 0 for t ∈ [s1, t1] and e(t) ≥ 0 for t ∈ [s2, t2].
If there exist H ∈ D(si, ti) and a positive function ρ ∈ C1([t0,∞), R) such that

Ati
si

(δq; t) > M · Ati
si

(
p

∣∣∣∣
H ′

H
+

ρ′

(α + 1)ρ

∣∣∣∣
α+1

; t

)
(21)

for i = 1, 2. Then Equation (3) is oscillatory.

PROOF. Suppose to the contrary that there is a non-oscillatory solution y. We
assume that y(t) 6= 0 on [T0,∞) for some T0 ≥ t0. Set

w(t) =
p(t)Ψ(y(t))|y′(t)|α−1y′(t)

|y(t)|α−1y(t)
, t ≥ T0. (22)

Then differentiating (14) and making use of Equation (3) and (S3), we see that for all
t ≥ T0, we have

w′(t) = − q(t)
f(y(t))

|y(t)|α−1y(t)
+

e(t)
|y(t)|α−1y(t)

− α
|w(t)|(α+1)/α

[p(t)Ψ(y(t))]1/α

≤− δq(t) +
e(t)

|y(t)|α−1y(t)
− α

M1/α

|w(t)|(α+1)/α

p1/α(t)
. (23)

By our assumptions, we can choose si, ti ≥ T0 for i = 1, 2 so that e(t) ≤ 0 on the
interval I1 = [s1, t1], with s1 < t1 and y(t) ≥ 0, or e(t) ≥ 0 on the interval I2 = [s2, t2],
with s2 < t2 and y(t) ≤ 0. On the intervals I1 and I2, (23) implies that w(t) satisfies
the inequality

δq(t) ≤ −w′(t) − α

M1/α

|w(t)|(α+1)/α

p1/α(t)
. (24)
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The remaining proof is similar to that of Theorem 2.2. The proof is complete.
EXAMPLE 2.5. Consider the following forced half-linear differential equation

(
tλ|y′(t)|α−1y′(t)

)′
+ Ktλ|y(t)|α−1y(t) = − sin t, (25)

for t ≥ 1, where K, λ > 0 are constants and α = 5/3 > 1, so neither Theorem 1.1
nor Theorem 1.2 can be applied to this case. However, we may show that Equation
(25) is oscillatory for K > 3

4 (1 + 3
8λ)8/3π. Indeed, since the zeros of the forcing term

− sin t are nπ, the constant γ in (6) is α, i.e., γ = α. Let H(t) = sin t and ρ(t) = t−λ.
For any T ≥ 1, choose n sufficiently large so that nπ = 2kπ ≥ T and s1 = 2kπ and
t1 = (2k + 1)π. It is easy to verify that

At1
s1

(q; t) =K

∫ (2k+1)π

2kπ

sin8/3 tdt

>K

∫ (2k+1)π

2kπ

sin3 tdt = K

∫ π

0

sin3 tdt =
4
3
K,

At1
s1

(
p

∣∣∣∣
H ′

H
+

ρ′

(α + 1)ρ

∣∣∣∣
α+1

; t

)
=
∫ (2k+1)π

2kπ

∣∣∣∣cos t − 3λ sin t

8t

∣∣∣∣
8/3

dt

<

∫ (2k+1)π

2kπ

(1 +
3
8
λ)8/3dt = (1 +

3
8
λ)8/3π.

So (13) is true for i = 1. Similarly, for s2 = (2k + 1)π and t2 = (2k + 2)π, we can
show (13) is true for i = 2. So Equation (25) is oscillatory for K > 3

4 (1 + 3
8λ)8/3π by

Theorem 2.2.

EXAMPLE 2.6. Consider the following forced half-linear differential equation
[
(2 + cos t)|y′(t)|α−1y′(t)

]′ + K|y(t)|α−1y(t) = sin t, t ≥ 1, (26)

where α = 1/3, with H(t) = sin t and ρ(t) ≡ 1, Li and Cheng in [1] obtain oscillation
for Equation (26) when K ≥ 5(3

2)4/3 .= 8.585. Using Corollary 2.3, we obtain the
oscillation of Equation (26) when K > 2. In fact, for any T ≥ 1, choose n sufficiently
large so that nπ = 2kπ ≥ T and s1 = 2kπ and t1 = (2k + 1)π. It is easy to verify that

Q̄1(H) =
∫ t1

s1

[q(t)Hα+1(t) − p(t)|H ′(t)|α+1]dt

=
∫ (2k+1)π

2kπ

[
K sin4/3 t − (2 + cos t)| cos t|4/3

]
dt

=
∫ (2k+1)π

2kπ

(K − 2) sin4/3 tdt > 0

for K > 2. Similarly, for s2 = (2k + 1)π and t2 = (2k + 2)π, we can show that the
integral inequality Q̄2(H) > 0. So Equation (26) is oscillatory by Corollary 2.3 for
K > 2.
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EXAMPLE 2.7. Consider the following forced nonlinear differential equation
[
et|y(t)|3−α|y′(t)|α−1y′(t)

]′
+ 5Kety3(t) = cos t, t ≥ 1, (27)

where α is a quotient of positive odd integers such that 0 < α < 3, the zeros of the
forcing term cos t are nπ + π/2, n ∈ Z with H(t) = cos t and ρ(t) = e−t, Cakmak and
Tiryaki in [3] obtain oscillation for Equation (27) when K ≥ K0 = (3/(α + 1))α+1. By
Theorem 2.2, for any T ≥ 1, choose n sufficiently large so that (2k + 1)π/2 ≥ T and
s1 = (2k + 1)π/2 and t1 = (2k + 3)π/2. It is easy to verify that

At1
s1

(q; t) = 5K

∫ (2k+3)π/2

(2k+1)π/2

cosα+1 tdt

≥

{
5K
∫ (2k+3)π/2

(2k+1)π/2
cos2 tdt = 5

2
Kπ 0 < α ≤ 1

5K
∫ (2k+3)π/2

(2k+1)π/2
cos4 tdt = 15

4
K 1 < α < 3

;

and
(

α

γ

)α

At1
s1

(
p

∣∣∣∣
H ′

H
+

ρ′

(α + 1)ρ

∣∣∣∣
α+1

; t

)
=
(α

3

)α
∫ (2k+3)π/2

(2k+1)π/2

∣∣∣∣sin t +
1

α + 1

∣∣∣∣
α+1

dt

<
(α

3

)α
∫ (2k+3)π/2

(2k+1)π/2

(
1 +

1
α + 1

)α+1

dt

=
(α

3

)α
(

α + 2
α + 1

)α+1

π.

When 0 < α ≤ 1 and K > K1 = 2
5

(
α
3

)α (α+2
α+1

)α+1

, or when 1 < α < 3 and K > K2 =

4
15

(
α
3

)α (α+2
α+1

)α+1

π, we have (13) is true for i = 1. Similarly, for s2 = (2k + 3)π/2
and t2 = (2k + 5)π/2, we can show that (13) is also true for i = 2. So Equation (27)
is oscillatory by Theorem 2.2 for K > K1 in case of 0 < α ≤ 1, and K > K2 in case
of 1 < α < 3. Moreover, we note that K0 > K1, so our results are better than that of
Cakmak and Tiryaki [3].

3 The Case Where β > α

We now handle the case where β > α.

THEOREM 3.1. Assume (S3) holds. Suppose further that for any T ≥ t0, there
exist T ≤ s1 < t1 ≤ s2 < t2 such that e(t) ≤ 0 for t ∈ [s1, t1] and e(t) ≥ 0 for t ∈ [s2, t2].
If there exist H ∈ D(si, ti) and a positive function ρ ∈ C1([t0,∞), R) such that

Ati
si

(Qe; t) > M · Ati
si

(
p

∣∣∣∣
H ′

H
+

ρ′

(α + 1)ρ

∣∣∣∣
α+1

; t

)
(28)

for i = 1, 2, where

Qe(t) = α−α/ββ(β − α)(α−β)/β[δq(t)]α/β|e(t)|(β−α)/β. (29)
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Then Equation (3) is oscillatory.

PROOF. Suppose to the contrary that there is a nontrivial non-oscillatory solution.
We assume that y(t) > 0 on [T0,∞) for some T0 ≥ t0. Set

w(t) =
p(t)Ψ(y(t))|y′(t)|α−1y′(t)

|y(t)|α−1y(t)
, t ≥ T0. (30)

Then differentiating (30) and making use of Equation (3), it follows that for all t ≥ T0,
we have

w′(t) = −
[
q(t)

f(y(t))
|y(t)|α−1y(t)

− e(t)
|y(t)|α−1y(t)

]
− α

|w(t)|(α+1)/α

[p(t)Ψ(y(t))]1/α

= −
[
q(t)

f(y(t))
|y(t)|β−1y(t)

|y(t)|β−α − e(t)
|y(t)|α−1y(t)

]
− α

|w(t)|(α+1)/α

[p(t)Ψ(y(t))]1/α

≤−
[
δq(t)|y(t)|β−α − e(t)

|y(t)|α−1y(t)

]
− α

M1/α

|w(t)|(α+1)/α

p1/α(t)
. (31)

By our assumption, we can choose t1 > s1 ≥ T0 so that e(t) ≤ 0 on the interval
I1 = [s1, t1]. For given t ∈ I1, set F (x) = δq(t)xβ−α − e(t)

xα , we have F ′(x∗) = 0,

F ′′(x∗) > 0, where x∗ =
[

−αe(t)
(β−α)δq(t)

]1/β

. So F (x) attains its minimum at x∗ and

F (x) ≥ F (x∗) = Qe(t). (32)

So (31) and (32) imply that w(t) satisfies

Qe(t) ≤ −w′(t) − α

M1/α

|w(t)|(α+1)/α

p1/α(t)
. (33)

The remaining argument is the same as the proof of Theorem 2.2, so we obtain a
desired contradiction with (28) when y(t) > 0 eventually. On the other hand, if y(t) is
a negative solution for t ≥ T0 > t0, we define the Riccati transformation (30) to yield
(31). In this case, we choose t2 > s2 ≥ T0 so that e(t) ≥ 0 on the interval I2 = [s2, t2].
For given t ∈ I2, set F (x) = δq(t)xβ−α − e(t)

xα , we have F (x) ≥ F (x∗) = Qe(t). The
remaining proof is similar to that of Theorem 2.2. The proof is complete.

COROLLARY 3.2. If ρ(t) ≡ 1 in Theorem 3.1, and the hypothesis (28) is replaced
by

Q̃i(H) :=
∫ ti

si

[
Qe(t)Hα+1(t) − p(t)|H ′(t)|α+1

]
dt > 0 (34)

for i = 1, 2. Then Equation (3) is oscillatory.

We remark that Corollary 3.2 is closely related to the (α + 1)-degree functional.
Furthermore, in Theorem 3.1, there is no restriction on the positive constant α, plus,
Theorem 2.4 can be treated as its limiting case when β → α + 0 with the convention
that 00 = 1.
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EXAMPLE 3.5. Consider the following forced quasi-linear differential equation

(γtλ/3y′(t))′ + tλ|y(t)|2y(t) = − sin3 t, t ≥ 1, (35)

where γ, λ > 0 are constants. We see that Ψ(u) ≡ 1, which implies M = 1, and
α = 1, β = 3 in Theorem 3.1. Since α < β, Theorems 1.1, 1.2 and 2.2 cannot be
applied. However, we can obtain oscillation for Equation (35) with H(t) = sin t and
ρ(t) = t−λ/3. For any T ≥ 1, choose n sufficiently large so that nπ = 2kπ ≥ T and
s1 = 2kπ and t1 = (2k + 1)π. It is easy to verify that Qe(t) = 3

2
3
√

2tλ/3 sin2 t,

At1
s1

(Qe(t); t) =
3
2

3
√

2
∫ (2k+1)π

2kπ

sin4 tdt =
3
2

3
√

2
∫ π

0

sin4 tdt =
9
8

3
√

2,

and

At1
s1

(
p

∣∣∣∣
H ′

H
+

ρ′

(α + 1)ρ

∣∣∣∣
α+1

; t

)
=γ

∫ (2k+1)π

2kπ

∣∣∣∣cos t − λ sin t

6t

∣∣∣∣
2

dt

<γ

∫ (2k+1)π

2kπ

(1 +
λ

6
)2dt = γ(1 +

λ

6
)2π.

So we have (28) is true for i = 1 provided 0 < γ < 9 3√2
8(1+λ/6)2 . Similarly, for s2 =

(2k + 1)π and t2 = (2k + 2)π, we can show that (28) is true for i = 2. So Equation
(35) is oscillatory for 0 < γ < 9 3√2

8(1+λ/6)2
by Theorem 3.1.
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