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Abstract
In this paper we prove the existence of mild solutions of nonlinear integrod-

ifferential equations with time varying delays in Banach spaces. The results are
obtained by using the resolvent operator and the Schaefer fixed point theorem.
An application is provided to illustrate the technique.

1 Introduction

Using the method of semigroup, existence and uniqueness of mild, strong and classical
solutions of semilinear evolution equations have been discussed by Pazy [11] and the
nonlocal Cauchy problem for the same equation has been studied by Byszewskii [3, 4].
Balachandran and Chandrasekaran [1] studied the nonlocal Cauchy problem for semi-
linear integrodifferential equation with deviating argument. Balachandran and Park
[2] has been discussed about the existence of solutions and controllability of nonlinear
integrodifferential systems in Banach spaces. Grimmer [6] obtained the representation
of solutions of integrodifferential equations by using resolvent operators in a Banach
space. Liu [8] discussed the Cauchy problem for integrodifferential evolution equa-
tions in abstract spaces and also in [9] he discussed nonautonomous integrodifferential
equations. Lin and Liu [7] studied the nonlocal Cauchy problem for semilinear inte-
grodifferential equations by using resolvent operators. Liu and Ezzinbi [10] investigated
non-autonomous integrodifferential equations with nonlocal conditions. Byszewskii and
Acka [5] studied the classical solution of nonlinear functional differential equation with
time varying delays. The purpose of this paper is to prove the existence of mild so-
lutions for time varying delay integrodifferential evolution equations with the help of
Schaefer’s fixed point theorem.

2 Preliminaries

Consider the nonlinear time varying delay integrodifferential evolution equation of the
form

x′(t) = A(t)x(t) +
∫ t

0

B(t, s)x(s)ds + f(t, x(σ1(t)),
∫ t

0

k(t, s, x(σ2(s)))ds), t ∈ J (1)
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with nonlocal condition
x(0) + g(x) = x0, (2)

where A(t) and B(t, s) are closed linear operators on a Banach space X with dense
domain D(A) which is independent of t, f : J × X × X → X, k : J × J × X → X,
g : C(J, X) → X and the delay σi(t) ≤ t are given functions. Here J = [0, T ].

We shall make the following conditions:

(H1) A(t) generates a strongly continuous semigroup of evolution operators.

(H2) Suppose Y is a Banach space formed from D(A) with the graph norm. A(t)
and B(t, s) are closed operators it follows that A(t) and B(t, s) are in the set of
bounded linear operators from Y to X, B(Y, X), for 0 ≤ t ≤ T and 0 ≤ s ≤ t ≤ T,
respectively. A(t) and B(t, s) are continuous on 0 ≤ t ≤ T and 0 ≤ s ≤ t ≤ T,
respectively, into B(Y, X).

DEFINITION 2.1. A resolvent operator for (1)-(2) is a bounded operator valued
function R(t, s) ∈ B(X), 0 ≤ s ≤ t ≤ T, the space of bounded linear operators on X,
having the following properties

(i) R(t, s) is strongly continuous in s and t. R(t, t) = I, the identity operator on X.
‖R(t, s)‖ ≤ Meβ(t−s) t, s ∈ J and M, β are constants.

(ii) R(t, s)Y ⊂ Y, R(t, s) is strongly continuous in s and t on Y.

(iii) For y ∈ Y, R(t, s)y is continuously differentiable in s and t, and for 0 ≤ s ≤ t ≤ T,

∂

∂t
R(t, s)y = A(t)R(t, s)y +

∫ t

s

B(t, r)R(r, s)ydr,

∂

∂s
R(t, s)y = −R(t, s)A(s)y −

∫ t

s

R(t, r)B(r, s)ydr,

with ∂
∂tR(t, s)y and ∂

∂sR(t, s)y are strongly continuous on 0 ≤ s ≤ t ≤ T. Here R(t, s)
can be extracted from the evolution operator of the generator A(t). The resolvent
operator is similar to the evolution operator for nonautonomous differential equations
in Banach spaces.

DEFINITION 2.2. A continuous function x(t) is said to be a mild solution of the
nonlocal Cauchy problem (1)-(2), if

x(t) = R(t, 0)[x0 − g(x)] +
∫ t

0

R(t, s)f(s, x(σ1(s)),
∫ s

0

k(s, τ, x(σ2(τ )))dτ )ds

is satisfied.
We need the following fixed point theorem due to Schaefer [12].
THEOREM 2.1. Let E be a normed linear space. Let F : E → E be a completely

continuous operator, that is, it is continuous and the image of any bounded set is
contained in a compact set and let

ζ(F ) = {x ∈ E : x = λFx for some 0 < λ < 1}.
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Then either ζ(F ) is unbounded or F has a fixed point.
Assume that the following conditions hold:

(H3) There exists a resolvent operator R(t, s) which is compact and continuous in the
uniform operator topology for t > s. Further, there exists a constant M1 > 0
such that

‖R(t, s)‖ ≤ M1.

(H4) For each t ∈ J , the function f(t, ·, ·) : X × X → X is continuous, and for
each, x ∈ X and the function f(·, x(σ1(t)),

∫ t

0
k(t, s, x(σ2(s)))ds) : J → X is

strongly measurable.

(H5) There exists an integrable function m1 : J × J → [0,∞) such that

‖k(t, s, x)‖ ≤ m1(t, s)Ω0(‖x‖), for any t, s ∈ J, x ∈ X,

where Ω0 : [0,∞) → [0,∞) is a continuous nondecreasing function.

(H6) There exists an integrable function m2 : J → [0,∞) such that

‖f(t, x, y‖ ≤ m2(t)Ω1(‖x‖ + |y|), for any t ∈ J, x, y ∈ X,

where Ω1 : [0,∞) → (0,∞) is a continuous nondecreasing function.

(H7) The function g : C(J, X) → X is completely continuous and there exists a
constant M2 > 0 such that ‖g(x)‖ ≤ M2 for any x ∈ X.

(H8) The function m̂(t) = max{M1m2(t), m1(t, t),
∫ t

0
∂m1(t,s)

∂t ds} satisfies

∫ T

0

m̂(s)ds <

∫ ∞

c

ds

2Ω0(s) + Ω1(s)
,

where c = M1[‖x0‖ + M2].

3 Existence of Mild Solutions

The main result is as follows.
THEOREM 3.1. If the assumptions (H1) − (H8) are satisfied then the problem

(1)-(2) has a mild solution on J .
PROOF. Consider the Banach space Z = C(J, X). We establish the existence of a

mild solution of the problem (1)-(2) by applying the Schaefer’s fixed point theorem.
First we obtain a priori bounds for the operator equation

x(t) = λΦx(t), 0 < λ < 1, (3)

where Φ : Z → Z is defined as

(Φx)(t) = R(t, 0)[x0 − g(x)] +
∫ t

0

R(t, s)f(s, x(σ1(s)),
∫ s

0

k(s, τ, x(σ2(τ )))dτ )ds. (4)
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Then from (3) and (4) we have

‖x(t)‖ ≤ M1[‖x0‖ + M2] + M1

∫ t

0

m2(s)Ω1(‖x(s)‖ +
∫ s

0

m2(s, τ )Ω0(‖x(τ )‖)dτ )ds.

Denoting the right hand side of the above inequality as v(t). Then ‖x(t)‖ ≤ v(t) and v(0) =
c = M1[‖x0‖ + M2].

v′(t) = M1m2(t)Ω1(‖x(t)‖ +
∫ t

0

m1(t, s)Ω0(‖x(s)‖)ds)

≤ M1m2(t)Ω1(v(t) +
∫ t

0

m1(t, s)Ω0(v(s))ds),

since v is obviously increasing and let,

w(t) = v(t) +
∫ t

0

m1(t, s)Ω0(v(s))ds. Then w(0) = v(0) = c and v(t) ≤ w(t),

w′(t) = v′(t) + m1(t, t)Ω0(v(t)) +
∫ t

0

∂m1(t, s)
∂t

Ω0(v(s))ds

≤ M1m2(t)Ω1(w(t)) + m1(t, t)Ω0(w(t)) +
∫ t

0

∂m1(t, s)
∂t

Ω0(w(s))ds

≤ m̂(t){2Ω0(w(t)) + Ω1(w(t))}.

This implies
∫ w(t)

w(0)

ds

2Ω0(s) + Ω1(s)
≤

∫ T

0

m̂(s)ds <

∫ ∞

c

ds

2Ω0(s) + Ω1(s)
, 0 ≤ t ≤ T. (5)

Inequality (5) implies that there is a constant K such that v(t) ≤ K, t ∈ J and
hence we have ‖x‖ = sup{|x(t)| : t ∈ J} ≤ K, where K depends only on T and on the
functions m̂, Ω0 and Ω1.

We shall now prove that the operator Φ : Z → Z is a completely continuous
operator. Let Bk = {x ∈ Z : ‖x‖ ≤ k} for some k ≥ 1. We first show that Φ maps Bk

into an equicontinuous family.
Let x ∈ Bk and t1, t2 ∈ [0, T ]. Then if 0 < t1 < t2 < T ,

‖(Φx)(t1) − (Φx)(t2)‖
≤ ‖(R(t1, 0) − R(t2, 0))[x0 − g(x)]‖

+‖
∫ t1

0

[R(t1, s) − R(t2, s)]f(s, x(σ1(s)),
∫ s

0

k(s, τ, x(σ2(τ )))dτ )ds‖

+‖
∫ t2

t1

R(t2, s)f(s, x(σ1(s)),
∫ s

0

k(s, τ, x(σ2(τ )))dτ )ds‖

≤ ‖(R(t1, 0) − R(t2, 0))[x0 − g(x)]‖

+
∫ t1

0

‖[R(t1, s) − R(t2, s)]f(s, x(σ1(s)),
∫ s

0

k(s, τ, x(σ2(τ )))dτ )‖ds

+M1

∫ t2

t1

m2(s)Ω1(k +
∫ s

0

m1(s, τ )Ω0(k)dτ )ds.
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The right hand side is independent of x ∈ Bk and tends to zero as t2 − t1 → 0, since
f is completely continuous and by (H3), R(t, s) for t > s is continuous in the uniform
operator topology . Thus Φ maps Bk into an equicontinuous family of functions.

It is easy to see that ΦBk is uniformly bounded. Next, we show ΦBk is compact.
Since we have shown ΦBk is equicontinuous collection, by the Arzela-Ascoli theorem
it suffices to show that Φ maps Bk into a precompact set in X.

Let 0 < t ≤ T be fixed and let ε be a real number satisfying 0 < ε < t. For x ∈ Bk,
we define

(Φεx)(t) = R(t, 0)[x0 − g(x)] +
∫ t−ε

0

R(t, s)f(s, x(σ1(s)),
∫ s

0

k(s, τ, x(σ2(τ )))dτ )ds.

Since R(t, s) is a compact operator, the set Yε(t) = {(Φεx)(t) : x ∈ Bk} is precompact
in X for every ε, 0 < ε < t. Moreover, for every x ∈ Bk we have

‖(Φx)(t) − (Φεx)(t)‖ ≤
∫ t

t−ε

‖R(t, s)f(s, x(σ1(s)),
∫ s

0

k(s, τ, x(σ2(τ )))dτ )‖ds

≤ M1

∫ t

t−ε

m2(s)Ω1(k +
∫ s

0

m1(s, τ )Ω0(k)dτ )ds.

Therefore there are precompact sets arbitrarily close to the set {(Φx)(t) : x ∈ Bk}.
Hence, the set {(Φx)(t) : x ∈ Bk} is precompact in X.

It remains to show that Φ : Z → Z is continuous. Let {xn}∞0 ⊆ Z with xn → x in
Z. Then there is an integer q such that ‖xn(t)‖ ≤ q for all n and t ∈ J , so xn ∈ Bq

and x ∈ Bq . By (H4),

f(t, xn(σ1(t)),
∫ t

0

k(t, s, xn(σ2(s)))ds) → f(t, x(σ1(t)),
∫ t

0

k(t, s, x(σ2(s)))ds),

for each t ∈ J and since

‖f(t, xn(σ1(t)),
∫ t

0

k(t, s, xn(σ2(s)))ds)

− f(t, x(σ1(t)),
∫ t

0

k(t, s, x(σ2(s)))ds)‖ ≤ 2m2(t)Ω1(q +
∫ t

0

m1(t, s)Ω0(q)ds),

we have by dominated convergence theorem

‖Φxn − Φx‖ ≤
∫ t

0

‖R(t, s)[f(s, xn(σ1(s)),
∫ s

0

k(s, τ, xn(σ2(τ )))dτ )

− f(s, x(σ1(s)),
∫ s

0

k(s, τ, x(σ2(τ )))dτ )]‖ds

→ 0, as n → ∞.

Thus Φ is continuous. This completes the proof that Φ is completely continuous.
Finally the set ζ(Φ) = {x ∈ Z : x = λΦx, λ ∈ (0, 1)} is bounded, as we proved in

the first step. Consequently, by Schaefer’s theorem, the operator Φ has a fixed point
in Z. This means that any fixed point of Φ is a mild solution of (1)-(2) on J satisfying
(Φx)(t) = x(t).
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4 Application

As an application of Theorem 3.1 we shall consider the system (1)-(2) with a control
parameter such as

x′(t) = A(t)x(t)+
∫ t

0

B(t, s)x(s)ds + Cu(t)

+f(t, x(σ1(t)),
∫ t

0

k(t, s, x(σ2(s)))ds), t ∈ J (6)

x(0) + g(x) = x0, (7)

where A, B, f, k, g are as before and C is a bounded linear operator from a Banach
space U into X and u ∈ L2(J, U ). The mild solution of (6)-(7) is given by

x(t) = R(t, 0)[x0 − g(x)]+
∫ t

0

R(t, s)[Cu(s) + f(s, x(σ1(s)),
∫ s

0

k(s, τ, x(σ2(τ )))dτ )]ds.

DEFINITION 4.1. [2] System (6) is said to be controllable with nonlocal condition
(7) on the interval J if for every x0, xT ∈ X, there exists a control u ∈ L2(J, U ) such
that the mild solution x(·) of (6)-(7) satisfies

x(0) + g(x) = x0 and x(T ) = xT .

To establish the result, we need the following additional conditions:

(H9) The linear operator W : L2(J, U ) → X, defined by

Wu =
∫ T

0

R(T, s)Cu(s)ds,

induces an inverse operator W̃−1 defined on L2(J, U )/kerW and there exists a
positive constant M3 > 0 such that ‖CW̃−1‖ ≤ M3.

(H10)The function m̂(t) = max{M1m2(t), m1(t, t),
∫ t

0
∂m1(t,s)

∂t ds} satisfies

∫ T

0

m̂(s)ds <

∫ ∞

c

ds

2Ω0(s) + Ω1(s)
,

where c is a constant depending on the system parameters.
THEOREM 4.1. If the hypothesis (H1)− (H7) and (H9)− (H10) are satisfied then

the system (6) is controllable on J.

PROOF. Using the hypothesis (H9), for an arbitrary function x(·), define the control

u(t) = W̃−1

[
xT − R(T, 0)[x0 − g(x)]

−
∫ T

0

R(T, s)f(s, x(σ1(s)),
∫ s

0

k(s, τ, x(σ2(τ )))dτ )ds

]
(t).
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We shall show that when using this control, the operator Ψ : Z → Z defined by

(Ψx)(t) = R(t, 0)[x0 − g(x)]

+
∫ t

0

R(t, s)[Cu(s) + f(s, x(σ1(s)),
∫ s

0

k(s, τ, x(σ2(τ )))dτ )]ds,

has a fixed point. This fixed point is, then a solution of (6)-(7). Clearly ,(Ψx)(T ) = xT ,
which means that the control u steers the system (6)-(7) from the initial state x0 to
xT in time T, provided we can obtain a fixed point of the nonlinear operator Ψ. The
remaining part of the proof is similar to Theorem 3.1, and hence, it is omitted.
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