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Abstract

Sharp inequalities for periodic functions are established which can help to
improve many existence criteria for solutions of differential equations.

1 Introduction

Let CT , where T > 0, be the space of all real continuous T -periodic functions of the
form x : R → R and endowed with the usual linear structure as well as the norm
nxn0 = max0≤t≤T |x (t)|. For any x ∈ C(1) (R,R) ∩ CT and any ξ ∈ [0, T ] , by the
fundamental theorem of Calculus,

nxn0 ≤ |x (ξ)|+
T

0

|x3 (s)| ds. (1)

In particular, let C0T be the set of all real functions of the form y ∈ CT such that
y (ξy) = 0 for some ξy ∈ [0, T ] . Then for any y ∈ C(1) (R,R) ∩ C0T ,

nyn0 ≤
T

0

|y3 (s)| ds. (2)

Such inequalities have been used, among many things, for finding a priori bounds
for T -periodic solutions of differential equations. By means of such a priori bounds,
we may then look for T -periodic solutions by means of fixed point theorems such as
the continuation theorems (see e.g. [1]) which are popular (see for examples [1-18]).
However, since (1) and (2) were applied to find the a priori bounds in these references,
and since they are not sharp inequalities (as will be seen below), the corresponding
existence criteria cannot be sharp neither.
In [19], it is noted that (1) can easily be extended to

nxn0 ≤ |x (ξ)|+
1

2

T

0

|x3 (s)| ds, (3)
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which can be used for deriving existence criteria for periodic solutions. The major
objective of this paper is, among other things, to show further that the inequalities (3)
is sharp. To illustrate their use, we will show how some of the existence criteria can be
improved in straightforward manners.

2 Sharp Inequalities

We begin by improving the inequality (1).

THEOREM 1. Suppose x = x (t) ∈ C(1) (R,R) ∩ CT and ξ ∈ [0, T ] . Then

nxn0 ≤ |x (ξ)|+
1

2

T

0

|x3 (s)| ds, (4)

where the constant factor 1/2 is the best possible.

PROOF. Let x = x (t) ∈ C(1) (R,R)∩CT and ξ ∈ [0, T ] . Then for any t ∈ [ξ, ξ + T ] ,
we have

x (t) = x(ξ) +
t

ξ

x3 (s) ds (5)

and

x (t) = x(ξ + T ) +
t

ξ+T

x3 (s) ds = x(ξ)−
ξ+T

t

x3 (s) ds. (6)

From (5) and (6), we see that for any t ∈ [ξ, ξ + T ],

2x (t) = 2x(ξ) +
t

ξ

x3 (s) ds−
ξ+T

t

x3 (s) ds, (7)

that is

x (t) = x(ξ) +
1

2

t

ξ

x3 (s) ds−
ξ+T

t

x3 (s) ds . (8)

Thus for any t ∈ [ξ, ξ + T ]

|x (t)| ≤ |x(ξ)|+ 1
2

ξ+T

ξ

|x3 (s)| ds, (9)

so that

nxn0 = max
ξ≤t≤ξ+T

|x (t)| ≤ |x(ξ)|+ 1
2

ξ+T

ξ

|x3 (s)| ds.

≤ |x(ξ)|+ 1
2

T

0

|x3 (s)| ds. (10)
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Now we assert that if α is a constant and α < 1/2, then there are x ∈ C(1) (R,R)∩
CT and ξ ∈ [0, T ] such that

nxn0 > |x (ξ)|+ α
T

0

|x3 (s)| ds. (11)

Indeed, let x (t) = 2− cos 2πT t and ξ = 0. Then nxn0 = 3 and

|x(ξ)|+ α
T

0

|x3 (s)| ds = 1 + α
2π

T

T

0

sin
2π

T
s ds = 1 + 4α < nxn0

as required. This shows that the constant 1/2 in (4) is the best possible. The proof is
complete.

THEOREM 2. Let y ∈ C(1) (R,R) ∩ C0T . Then

nyn0 ≤
1

2

T

0

|y3 (s)| ds, (12)

and the constant factor 1/2 is the best possible.

PROOF. Let y ∈ C(1) (R,R)∩C0T . Then y ∈ C(1) (R,R)∩CT and there is ξ ∈ [0, T ]
such that y (ξ) = 0. From Theorem 1, we have

nyn0 ≤
1

2

T

0

|y3 (s)| ds. (13)

Now we assert that if β be a constant and β < 1/2, then there is y ∈ C(1) ∩ C0T such
that

nyn0 > β
T

0

|y3 (s)| ds. (14)

Indeed, let y (t) = 1− cos 2πT t. Then y (0) = 0, so y ∈ C(1) (R,R) ∩ C0T , nyn0 = 2 and

β
T

0

|y3 (s)| ds = β
2π

T

T

0

sin
2π

T
s ds = 4β < nyn0 (15)

as required. Thus the constant factor 1/2 in (12) is the best possible. The proof is
complete.

Next let x ∈ C(n) (R,R) ∩ CT where n 2. For i = 1, 2, .., n − 1, note that
x(i−1) (0) = x(i−1) (T ) , so that is ξ ∈ [0, T ] such that x(i) (ξ) = 0. Thus from Theorem
2, we have

COROLLARY 1. Let x ∈ C(n) (R,R) ∩ CT where n 2. Then

x(i)
0
≤ 1
2

T

0

x(i+1) (s) ds, i = 1, 2, ..., n− 1. (16)
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3 Applications

By means of the sharp inequalities derived above, we can improve many existence
criteria for periodic solutions of delay differential equations in the literature. We will
demonstrate our ideas by improving the results in several recent papers.
First, in [3], the authors consider the existence of 2π-periodic solutions of Rayleigh

equations of the form

x33 (t) + f (x3 (t)) + g (x (t− τ (t))) = p (t) , (17)

where f and g are real continuous functions defined on R, f (0) = 0, τ and p are real

continuous functions defined on R with period 2π, and
2π

0
p (t) dt = 0.

We will show that the condition 4π[r1+(2π + 1) r2] < 1 in Theorem 1 of [3] can be
replaced by the weaker condition 2π[r1 + (π + 1) r2] < 1. More precisely, we have the
following existence criteria.

THEOREM 3. Suppose there exist constants r1, r2 0, K > 0 and D > 0 such
that
[A1] |f (y)| ≤ r1 |y|+K for y ∈ R,
[A2] xg (x) > 0 and |g (x)| > r1 |x|+K for |x| > D, and
[A3] limx→−∞

g(x)
x ≤ r2.

Then for 2π[r1 + (π + 1) r2] < 1, (17) has a 2π-periodic solution.

PROOF. We let

x33 (t) + λf (x3 (t)) + λg (x (t− τ (t))) = λp (t) , (18)

where λ ∈ (0, 1). In view of the proof of Theorem 1 in [3], it suffices to prove that
for any 2π-periodic solution x (t) of (18), there exist constants M0 and M1, which are
independent from x(t) and λ, such that

nxn0 ≤M0 and nx3n0 ≤M1. (19)

First of all, as in the proof of Theorem 1 in [3], we may show that there is a t∗ ∈ [0, 2π]
such that

|x (t∗)| ≤ nx3n0 +D. (20)

Then by (4) and (20), we get

nxn0 ≤ |x (t∗)|+
1

2

2π

0

|x3 (s)| ds < (π + 1) nx3n0 +D. (21)

In view of the condition 2π[r1 + (π + 1) r2] < 1, we may find a positive number ε such
that

2π[r1 + (π + 1) (r2 + ε)] < 1. (22)

From condition [A3], there is a ρ > D such that for x < −ρ,
g (x)

x
< r2 + ε. (23)
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Let

E1 = {t | t ∈ [0, 2π] , x (t− τ (t)) > ρ} ,

E2 = {t | t ∈ [0, 2π] , x (t− τ (t)) < −ρ} ,

E3 = {t | t ∈ [0, 2π] , |x (t− τ (t))| ≤ ρ} ,
and gρ = max|x|≤ρ |g (x)| . As in the proof of Theorem 1 in [3], we have

E2

|g (x (t− τ (t)))| dt ≤ 2π (r2 + ε) nxn0 , (24)

E3

|g (x (t− τ (t)))| dt ≤ 2πgρ, (25)

E1

|g (x (t− τ (t)))| dt ≤
E2

|g (x (t− τ (t)))| dt

+
E3

|g (x (t− τ (t)))| dt+
2π

0

|f (x3 (t))| dt, (26)

and

2π

0

|x33 (s)| ds ≤
2π

0

|f (x3 (t))| dt+
E1

|g (x (t− τ (t)))| dt

+
E2

|g (x (t− τ (t)))| dt+
E3

|g (x (t− τ (t)))| dt+ 2π npn0 .(27)

By (26) and (27), we see that

2π

0

|x33 (s)| ds ≤ 2π npn0 + 2
2π

0

|f (x3 (t))| dt

+2
E2

|g (x (t− τ (t)))| dt+ 2
E3

|g (x (t− τ (t)))| dt. (28)

From (18), (21), (24), (25), (27) and condition [A1], we have

2π

0

|x33 (s)| ds ≤ 2
2π

0

|f (x3 (t))| dt+ 2π (r2 + ε) nxn0 + 2πgρ + 2π npn0
≤ 2 {2πr1 nx3n0 + 2πK + 2π (r2 + ε) [(π + 1) nx3n0 +D] + 2πgρ}+ 2π npn0
≤ 4π[r1 + (π + 1) (r2 + ε)] nx3n0 + σ1

≤ 2π[r1 + (π + 1) (r2 + ε)]
2π

0

|x33 (s)| ds+ σ1

= σ
2π

0

|x33 (s)| ds+ σ1, (29)
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where the fourth inequality follows from (16), and σ = 2π[r1 + (π + 1) (r2 + ε)] and
σ1 = 4π (r2 + ε)D + 4πgρ + 4πK + 2π npn0 . It follows that

2π

0

|x33 (s)| ds ≤ D1, (30)

where D1 =
σ1
1−σ . By (16), we have

nx3n0 ≤
1

2

2π

0

|x33 (s)| ds ≤M1 (31)

where M1 =
1
2D1. In view of (21) and (31), we have

nxn0 < (π + 1) nx3n0 +D ≤M0, (32)

where M0 = (π + 1)M1 +D. The proof is complete.

We remark that the same reasoning shows that the condition 4π[r1+(2π + 1) r2] < 1
in Theorem 2 of [3] can be replaced by the weaker condition 2π[r1 + (π + 1) r2] < 1.

In [4], the authors studied the existence of T -periodic solutions of equations of the
form

x33 (t) + f (t, x (t) , x (t− τ0 (t)))x
3 (t) + β (t) g (x (t− τ1 (t))) = p (t) , (33)

where f is a real continuous functions defined on R3 with positive period T , g is a
real continuous function defined on R, and β, τ0, τ1 as well as p are real continuous
functions defined on R with period T. By replacing appropriate inequalities in [4] with
ours, it is not difficult to see that the conditions f1 <

1
T and r < 1−f1T

β1T 2
in Theorem

1 of [4] can be replaced by the weaker conditions f1 <
2
T and r < 2

2−f1T
β1T 2

, and the

condition r < σ
β1T

in Theorem 2 of [4] by the weaker condition r < 2σ
β1T

.
Similar principles can also be applied to other first order delay differential equations.
For insatnce, in [20], the authors studied the existence of T -periodic solutions of

equations of the form

x3(t) = f (t, x(t), x(t− τ1(t)), ..., x(t− τm(t))) , (34)

where f = f(t, u0, ..., um) is a real continuous function defined on R
m+2 and is T -

periodic in t for fixed u0, ..., um. We assume as in [20] that a0, ..., am, τ1, ..., τm, p ∈ CT
and τ1, ..., τm, p are nonnegative functions and τ0(t) ≡ 0 on R.
THEOREM 4. Suppose that (i) there exists ρ0 > 0 such that f(t, u0, ..., um) > 0

(< 0) for u0, ..., um > ρ0, and f(t, u0, ..., um) < 0 (respectively > 0) for u0, ..., um <
−ρ0, and (ii)

|f(t, u0, u1, ..., u3)| ≤ |a0(t)| |u0|+ |a1(t)| |u1|+ ...+ |am(t)| |um|+ p(t) (35)

for t ∈ R. If
m

i=0

T

0

|ai(t)| dt < 2, (36)
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then the equation (34) has at least one T -periodic solution.

PROOF. We first remark that the condition (36) is much weaker than the origianl
condition

T
m

i=0

max
0≤t≤T

|ai(t)| < 1.

We let

x3 (t) = λf (t, x(t), x(t− τ1(t)), ..., x(t− τm(t))) , (37)

where λ ∈ (0, 1). In view of the proof of Theorem 1 in [20]. It suffices to prove that for
any T -periodic solution x (t) of (37), there exist constants R1, which is independent
from x(t) and λ, such that

nxn0 ≤ ρ1. (38)

From (37), we see that

T

0

f (t, x(t), x(t− τ1(t)), ..., x(t− τm(t))) dt = 0. (39)

In view of our assumption (i) and (39) and the fact that x is T -periodic, there is a
t0 ∈ [0, T ] such that

|x (t0)| ≤ ρ0. (40)

It is easy to see from (4) and (40) that

nxn0 ≤ ρ0 +
1

2

T

0

|x3 (s)| ds. (41)

From (35), (37) and (41), we get

T

0

|x3 (t)| dt ≤
T

0

|f (t, x(t), x(t− τ1(t)), ..., x(t− τm(t)))| dt

≤
m

i=0

T

0

|ai(t)| |x(t− τi(t))| dt+
T

0

p (t) dt

≤
m

i=0

T

0

|ai(t)| ρ0 +
1

2

T

0

|x3 (s)| ds dt+ T npn0

=
1

2

m

i=0

T

0

|ai(t)| dt
T

0

|x3 (s)| ds+ T npn0 + ρ0

m

i=0

T

0

|ai(t)| dt

=
1

2

m

i=0

T

0

|ai(t)| dt
T

0

|x3 (s)| ds+ C1, (42)
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for some positive constant C1. By (36), we see that there is some positive constant C2
such that

T

0

|x3 (t)| dt ≤ C2. (43)

In view of (41) and (43), we know that

nxn0 ≤ ρ0 +
1

2
C2. (44)

The proof is complete.

To close this note, we mention that in [21], the authors studied the existence of
T -periodic solutions of equations of the form

x3(t) = r(t)− a(t)x(t− σ)− b(t)x3(t− τ), (45)

where τ and σ are positive constants, b ∈ CT∩C(1)(R,R) such that a(t+σ)−b3(t+τ) 9= 0
for t ∈ R. By means of the same principle illustrated above, it is not difficult to see
that the condition

max
0≤t≤T

|b(t)|+ T max
0≤t≤T

|a(t)| < 1

in the main Theorem of [21] can be replaced by the weaker condition max0≤t≤T |b(t)|+
1
2

T

0
a(t)dt < 1.
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