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Abstract

Tridiagonal matrices appear frequently in mathematical models. In this note,
we derive the eigenvalues and the corresponding eigenvectors of several tridiagonal
matrices by the method of symbolic calculus in [1].

1 Introduction

There are many mathematical models which involves tridiagonal matrices of the form
[2]

An =


−α+ b c 0 0 ... 0 0

a b c 0 ... 0 0
0 a b c ... 0 0
... ... ... ... ... ... ...
0 0 0 0 ... a −β + b


n×n

. (1)

In particular, when a = c = 1, b = −2 and α = β = 0, the eigenvalues of An has been
proved [3,4] to be

λk (An) = −2 + 2 cos kπ

n+ 1
, k = 1, 2, ..., n;

when a = c = 1, b = −2 and α = β = 1, or, when a = c = 1, b = −2, α = 1 and β = 0,
the eigenvalues have been reported as

λk (An) = −2 + 2 cos kπ
n
, k = 1, 2, ..., n;

or

λk (An) = −2 + 2 cos 2kπ

2n+ 1
, k = 1, 2, ..., n

respectively without proof. In this note, we intend to derive the eigenvalues and the
corresponding eigenvectors of several tridiagonal matrices of the form An.
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2 The Eigenvalue Problem

Consider the eigenvalue problem Anu = λu, where a, b, c and α, β are numbers in the
complex plane C. We will assume that ac = 0 since the contrary case is easy.
Let λ be an eigenvalue (which may be complex) and (u1, ..., un)

† a corresponding
eigenvector. We may view the numbers u1, u2, ..., un respectively as the first, second,
..., and the n-th term of an infinite (complex) sequence u = {ui}∞i=0 . Since Anu = λu
can be written as

u0 = 0

au0 + bu1 + cu2 = λu1 + αu1,

au1 + bu2 + cu3 = λu2 + 0,

... = ...,

aun−2 + bun−1 + cun = λun−1 + 0,
aun−1 + bun + cun+1 = λun + βun,

un+1 = 0,

we see that the sequence u = {uk}∞k=0 satisfies u0 = 0, un+1 = 0 and
auk−1 + buk + cuk+1 = λuk + fk, k = 1, 2, ..., (2)

where f1 = αu1 and fn = βun, while fk = 0 for k = 1, n. Note that u1 cannot be 0, for
otherwise from (2), cu2 = 0 and inductively u3 = u4 = · · · = un = 0 which is contrary
to the definition of an eigenvector.
Let f = {fk}∞k=0 be defined above. Then (2) can be expressed as

c {uk+2}∞k=0 + b {uk+1}∞k=0 + a {uk}∞k=0 = λ {uk+1}∞k=0 + {fk+1}∞k=0 .
We now recall that h̄ = {0, 1, 0, ...} , α = {α, 0, 0, ...} and the properties of convolution
product xy of two sequences x = {xk}∞k=0 and y = {yk}∞k=0 (see [1] for details). Then
by taking convolution of the above equation with h̄2 = h̄h̄, and noting that

h̄ {un+1} = h̄ {u1, u2, ...} = {0, u1, u2, ...} = u− u0
and

h̄2 {un+2} = h̄2 {u2, u3, ...} = {0, 0, u2, u3, ...} = u− u0 − u1h̄,
we have

c (u− u0 − u1h̄) + (b− λ) h̄ (u− u0) + ah̄2u = h̄ f − f0 .

Solving for u, and substituting u0 = f0 = 0, we obtain

ah̄2 + (b− λ) h̄+ c u = (f + cu1) h̄.

Since c = 0, we can divide the above equation [1] by ah̄2 + (b− λ) h̄+ c to obtain

u =
(f + cu1) h̄

ah̄2 + (b− λ) h̄+ c
. (3)
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Let

γ± =
− (b− λ)±√ω

2a
, ac = 0

be the two roots of az2 + (b− λ) z + c = 0, where ω = (b− λ)2 − 4ac. Since a, b, c as
well as γ±,ω are in the complex domain, we first introduce the following Lemma.
LEMMA 1. Let z = x+ iy where z ∈ C and x, y ∈ R. Then (i) sin z = 0 if and only

if z = x = kπ for some k ∈ Z, and (ii) cos z = ±1 if and only if z = x = jπ for some
j ∈ Z.
PROOF. If z = x = kπ, k ∈ Z, then sin z = 0, which gives the sufficient condition

of (i). If
sin z = sin (x+ iy) = sinx cosh y + i (cosx sinh y) = 0,

then sinx cosh y = 0 and cosx sinh y = 0. Since cosh y = 0, hence sinx = 0 so that
x = kπ, k ∈ Z. Consequently cosx = 0 and sinh y = 0, which yields y = 0. Hence
z = x = kπ, k ∈ Z. This gives the necessary condition of (i). To prove (ii), in a similar
manner we see that if z = kπ, k ∈ Z, than cos z = ±1. On the other hand, if

cos z = cos (x+ iy) = cosx cosh y − i (sinx sinh y) = ±1,
then cosx cosh y = ±1 and sinx sinh y = 0. If sinx = 0, then sinh y = 0 so that y = 0,
consequently cosx = ±1 and x = kπ, k ∈ Z. But then sinx = 0 which contradicts
the assumption sinx = 0. Hence sinx = 0 and x = kπ, k ∈ Z. Then cosx = ±1 and
cosh y = 1, which demands y = 0. This completes the proof.

COROLLARY 1. If z = kπ where k ∈ Z, then sin z = 0, cos z = ±1 and sin z2 = 0,
cos z2 = 0.

PROOF. If z = kπ, sin z = 0 and cos z = ±1 follows readily from Lemma 1. Since
sin z = 2 sin z2 cos

z
2 = 0, so we have sin

z
2 = 0 and cos

z
2 = 0. This completes the proof.

According to γ± being two different complex numbers or two equal numbers, there
are two cases to be considered.

Case I. Suppose γ+ and γ− are two different complex numbers. Let γ± = p ± iq
where p, q ∈ C and q = 0. Since γ+γ− = p2 + q2 = c/a and γ+ + γ− = 2p = (λ− b) /a,
we may write

γ± = p2 + q2 (cos θ ± i sin θ) = 1

ρ
e±iθ,

where

ρ =
a

c
, cos θ =

p

p2 + q2
=

λ− b
2
√
ac
, ρ, θ ∈ C. (4)

By the method of partial fractions,

u =
1√
ω

1

γ− − h̄ −
1

γ+ − h̄ (f + cu1) h̄

=
1√
ω

γ
−(j+1)
− − γ

−(j+1)
+ (f + cu1) h̄

=
1√
ω

a

c

j+1

γj+1+ − γj+1− (f + cu1) h̄,
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where the last two equalities are due to 1
a−h̄ = a−(n+1)

∞
n=0

and γ+γ− = c/a. Apply-
ing De Moivre’s Theorem, this may further be written as

u =
2i√
ω

ρj+1 sin (j + 1) θ (f + cu1) h̄.

Setting f1 = αu1, fn = βun and fj = 0 for j = 1, n, we may evaluate uj and obtain

uj =
2i√
ω
cu1ρ

j sin jθ + αu1ρ
j−1 sin (j − 1) θ +H (j − n− 1)βunρj−n sin (j − n) θ

(5)
for j ≥ 1, where H (x) is the unit step function defined by H(x) = 1 if x ≥ 0 and
H(x) = 0 if x < 0. In particular,
√
ω

2i
un+1 = cu1ρ

n+1 sin (n+ 1) θ + αu1ρ
n sinnθ + βunρ sin θ

= cu1ρ
n+1 sin (n+ 1) θ + αu1ρ

n sinnθ

+βρ
2i sin θ√

ω
cu1ρ

n sinnθ + αu1ρ
n−1 sin (n− 1) θ

= cu1ρ
n+1 sin (n+ 1) θ + (α+ β)u1ρ

n sinnθ + αβu1
1

c
ρn−1 sin (n− 1) θ,

where we have substituted 2i
√
ac sin θ =

√
ω. Since ρ, u1 = 0 and un+1 = 0, we finally

obtain the necessary condition

ac sin (n+ 1) θ + (α+ β)
√
ac sinnθ + αβ sin (n− 1) θ = 0. (6)

Since γ+ = γ−, γ+ − γ− = 2i c
a sin θ = 0. By Lemma 1, θ = mπ for m ∈ Z. Then by

(4), we have
λ = b+ 2

√
ac cos θ θ = mπ, m ∈ Z. (7)

Note that we may also obtain from (5) that

uj =
2i√
ω
cu1ρ

j sin jθ + αu1ρ
j−1 sin (j − 1) θ

=
u1
sin θ

ρj−1 sin jθ +
α√
ac
sin (j − 1) θ (8)

for j = 1, 2, ..., n.

Case II. γ± are two equal roots. In this case, q = 0, or ω = (b− λ)2 − 4ac = 0. So
we have

λ = b± 2√ac. (9)

Furthermore, from (3), we have

u =
(f + cu1) h̄

c 1 + b−λ
c h̄+

a
c h̄

2 =
(f + cu1) h̄

c 1∓ 2 a
c h̄+

a
c h̄

2

=
1√
ac

ρh̄

(1∓ ρh̄)2
(f + cu1) =

1√
ac

(±1)j+1 jρj (f + cu1)
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The j-th term now becomes

uj =
1√
ac

(±1)j+1 cu1jρj + (±1)j αu1(j − 1)ρj−1

+
1√
ac
(±1)j−n+1H(j − n− 1)βun (j − n) ρj−n. (10)

By letting un+1 = 0, we obtain

ac∓ (α+ β)
√
ac+ αβ n+ (ac− αβ) = 0.

Since this formula must be valid for all n ≥ 2, thus ac ± (α+ β)
√
ac + αβ = 0 and

ac−αβ = 0. This yields the necessary condition α = β = ∓√ac (where α = β = −√ac
corresponds to the eigenvalue λ = b + 2

√
ac, and α = β =

√
ac corresponds to the

eigenvalue λ = b− 2√ac). The corresponding eigenvectors may be obtained from (10).

Since j ≤ n, we have, if we set u1 = 1, uj = (−ρ)j−1 when α =
√
ac and uj = ρj−1

when α = −√ac.

3 Special Tridiagonal Matrices

Now we can apply the results of the last section to find the eigenvalues of several
tridiagonal matrices of the form (1). We will assume ac = 0 and set ρ = a/c as
before.
Suppose α = β = 0 in An. Suppose λ is an eigenvalue. In Case I, (6) reduces to

sin (n+ 1) θ = 0.

Hence by Lemma 1,

θ =
kπ

n+ 1
, k = 0,±1,±2, ....

Case II does not hold since 0 = α = β =
√
ac is not allowed.

In other words, if λ is an eigenvalue of An and (u1, u2, ..., un)
† is a corresponding

eigenvector, then according to (7),

λ = b+ 2
√
ac cos

kπ

n+ 1

for some k ∈ {1, ..., n}, and the corresponding u(k)j , according to (8), is given by

u
(k)
j = ρj−1 sin

kjπ

n+ 1
, j = 1, 2, ..., n. (11)

where we have assumed u
(k)
1 = sin kπ

n+1 .
Conversely, we may check by reversing the arguments in Section 2 that for each

k ∈ {1, ..., n}, the number

λk = b+ 2
√
ac cos

kπ

n+ 1
, k = 1, 2, ..., n, (12)
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is an eigenvalue and the vector u(k) = (u
(k)
1 , u

(k)
2 , ..., u

(k)
n )† a corresponding eigenvector

of An.

Before proceeding further, we introduce the following Lemma.

LEMMA 2. Let

Bn =


−β + b c 0 0 ... 0 0
a b c 0 ... 0 0
0 a b c ... 0 0
... ... ... ... ... . . . . . .
0 0 0 0 ... a −α+ b


n×n

,

which is obtained from An by interchanging the numbers α and β. Then the eigenvalues

of Bn are the same as An, and the corresponding eigenvectors v
(k) = v

(k)
1 , ..., v

(k)
n

†
,

k = 1, ..., n, are given by

v
(k)
j = ρ2ju

(k)
n−j+1, k = 1, 2, ..., n (13)

where u(k) = u
(k)
1 , ..., u

(k)
n

†
, k = 1, ..., n, are the eigenvectors of An.

PROOF. Let λ be an eigenvalue and u = (u1, ..., un)
†
a corresponding eigenvector

of An. Let

Rn =


0 0 ... 0 ρ2

0 0 ... ρ4 0
... ... ... ... ...
0 ρ2n−2 ... 0 0
ρ2n 0 ... 0 0


n×n

.

Then since Anu = λu, we have RnAnR
−1
n Rnu = λRnu or A

∗
nu
∗ = λu∗, where u∗ =

Rnu = ρ2un, ρ
4un−1, ..., ρ2nu1

†
and A∗n = RnAnR

−1
n . By noting that ρ2c = a and

ρ−2a = c, it is not difficult to see that A∗n = Bn. Let v = u
∗, then we have Bnv = λv.

Thus Bn has the same eigenvalues λ as An, and the corresponding eigenvectors v =
(v1, ..., vn)

†
are given by vj = ρ2jun−j+1. This completes the proof.

Now suppose α = 0 and β =
√
ac = 0. This yields αβ = 0 and α + β =

√
ac. In

Case I, (6) becomes

sin (n+ 1) θ + sinnθ = 0.

or

2 sin
(2n+ 1) θ

2
cos

θ

2
= 0.

Since θ = mπ, m ∈ Z, by Corollary of Lemma 1, cos θ2 = 0, we have sin (2n+1)θ2 = 0.
Thus

θ =
2kπ

2n+ 1
, k = 0,±1,±2, ....

Case II does not hold since α = 0 =
√
ac. By reasons similar to the case where

α = β = 0 above, we may now see the following.
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THEOREM 1. Suppose α = 0 and β =
√
ac = 0. Then the eigenvalues λ1, ...,λn

of An are given by

λk = b+ 2
√
ac cos

2kπ

2n+ 1
, k = 1, 2, ..., n. (14)

The corresponding eigenvectors u(k) = u
(k)
1 , ..., u

(k)
n

†
, k = 1, ..., n are given by

u
(k)
j = ρj−1 sin

2kjπ

2n+ 1
, j = 1, 2, ..., n.

We remark that in case β = 0 and α =
√
ac = 0, Lemma 2 says that the eigenvalues

are the same as given by (14). The corresponding eigenvector v(k) = v
(k)
1 , ..., v

(k)
n

†
,

k = 1, ..., n, in view of (13), are

v
(k)
j = ρj−1 sin

k (2j − 1)π
2n+ 1

, j = 1, 2, ..., n. (15)

The eigenvalues and the corresponding eigenvectors of the other case αβ = 0 and α+
β = −√ac can be obtained in a similar way. In Case I, now (6) becomes sin (n+ 1) θ−
sinnθ = 0 or

2 cos
(2n+ 1) θ

2
sin

θ

2
= 0.

Since θ = mπ, m ∈ Z, by Corollary of Lemma 1, sin θ
2 = 0, we have cos

(2n+1)θ
2 = 0.

Thus

θ =
(2k − 1)π
2n+ 1

, k = ±1,±2,±3, ...

THEOREM 2. Suppose α = 0 and β = −√ac = 0. Then the eigenvalues λ1, ...,λn
of An are given by

λk = b+ 2
√
ac cos

(2k − 1)π
2n+ 1

, k = 1, 2, 3, ..., n. (16)

The corresponding eigenvectors u(k) = u
(k)
1 , ..., u

(k)
n

†
, k = 1, ..., n, are given by

u
(k)
j = ρj−1 sin

(2k − 1) jπ
2n+ 1

, j = 1, 2, ..., n.

In case β = 0 and α = −√ac = 0, the eigenvalues are given by (16) and the
corresponding eigenvectors by

v
(k)
j = ρj−1 cos

(2k − 1) (2j − 1)π
2 (2n+ 1)

, j = 1, 2, ..., n.

Next, suppose α = −β = √ac = 0, then (6) reduces to
sin (n+ 1) θ − sin (n− 1) θ = 0
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or

2 cosnθ sin θ = 0.

Since sin θ = 0, thus cosnθ = 0, so that

θ =
(2k − 1)π

2n
, k = ±1,±2,±3, ....

Cases II does not hold as before.

THEOREM 3. Suppose α = −β = √ac = 0. Then the eigenvalues λ1, ...,λn of An
are given by

λk = b+ 2
√
ac cos

(2k − 1)π
2n

, k = 1, 2, 3, ..., n. (17)

The corresponding eigenvectors u(k) = u
(k)
1 , ..., u

(k)
n

†
, k = 1, ..., n, according to (8),

are given by

u
(k)
j = ρj−1 sin

(2k − 1) (2j − 1)π
4n

, j = 1, 2, ..., n.

In case α = −β = −√ac = 0, the eigenvalues are given by (17) and the correspond-
ing eigenvectors by

v
(k)
j = ρj−1 cos

(2k − 1) (2j − 1)π
4n

, j = 1, 2, ..., n.

Next, suppose α = β =
√
ac = 0, or α = β = −√ac = 0. If λ is an eigenvalue of

An, then in Case I, (6) reduces to

2 sinnθ (cos θ + 1) = 0.

or

2 sinnθ (cos θ − 1) = 0
respectively. Since θ = mπ, m ∈ Z, by Corollary of Lemma 1, cos θ ± 1 = 0, we have
sinnθ = 0. Thus

θ =
kπ

n
, k = 0,±1,±2,±3, ... .

Since θ = mπ for m ∈ Z and since cos θ is even and periodic, we obtain

λ = b+ 2
√
ac cos

kπ

n
, k = 1, 2, 3, ..., n− 1.

In Case II, by (9), we have λ = b + 2
√
ac = b + 2

√
ac cos 0 if α = β = −√ac, and

λ = b− 2√ac = b+ 2√ac cosπ if α = β =
√
ac.

THEOREM 4. Suppose α = β =
√
ac = 0. Then the eigenvalues λ1, ...,λn of An

are given by

λk = b+ 2
√
ac cos

kπ

n
, k = 1, 2, 3, ..., n,
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and the corresponding eigenvectors u(k) = u
(k)
1 , ..., u

(k)
n

†
are given by

u
(k)
j = ρj−1 sin

k (2j − 1)π
2n

, j = 1, 2, ..., n,

for k = 1, 2, ..., n− 1 and

u
(k)
j = (−ρ)j−1 , j = 1, 2, ..., n,

for k = n.

THEOREM 5. Suppose α = β = −√ac = 0. Then the eigenvalues λ1, ...,λn of An
are given by

λk = b+ 2
√
ac cos

(k − 1)π
n

, k = 1, 2, 3, ..., n,

and the corresponding eigenvectors u(k) = u
(k)
1 , ..., u

(k)
n

†
are given by

u
(k)
j = ρj−1, j = 1, 2, ..., n

for k = 1 and

u
(k)
j = ρj−1 cos

(k − 1) (2j − 1)π
2n

, j = 1, 2, ..., n,

for k = 2, 3, ..., n.
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