ISSN 1607-2510

EIGENVALUES OF SEVERAL TRIDIAGONAL MATRICES *

Wen-Chyuan Yueh[†]

Received 4 September 2004

Abstract

Tridiagonal matrices appear frequently in mathematical models. In this note, we derive the eigenvalues and the corresponding eigenvectors of several tridiagonal matrices by the method of symbolic calculus in [1].

1 Introduction

There are many mathematical models which involves tridiagonal matrices of the form [2]

$$A_{n} = \begin{pmatrix} -\alpha + b & c & 0 & 0 & \dots & 0 & 0 \\ a & b & c & 0 & \dots & 0 & 0 \\ 0 & a & b & c & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & 0 & \dots & a & -\beta + b \end{pmatrix}_{n \times n}$$
(1)

In particular, when a = c = 1, b = -2 and $\alpha = \beta = 0$, the eigenvalues of A_n has been proved [3,4] to be

$$\lambda_k(A_n) = -2 + 2\cos\frac{k\pi}{n+1}, \ k = 1, 2, ..., n;$$

when a = c = 1, b = -2 and $\alpha = \beta = 1$, or, when a = c = 1, b = -2, $\alpha = 1$ and $\beta = 0$, the eigenvalues have been reported as

$$\lambda_k(A_n) = -2 + 2\cos\frac{k\pi}{n}, \ k = 1, 2, ..., n;$$

or

$$\lambda_k(A_n) = -2 + 2\cos\frac{2k\pi}{2n+1}, \ k = 1, 2, ..., n$$

respectively without proof. In this note, we intend to derive the eigenvalues and the corresponding eigenvectors of several tridiagonal matrices of the form A_n .

^{*}Mathematics Subject Classifications: 15A18

[†]Department of Refrigeration, Chin-Yi Institute of Technology, Taichung, Taiwan, R. O. China

2 The Eigenvalue Problem

Consider the eigenvalue problem $A_n u = \lambda u$, where a, b, c and α, β are numbers in the complex plane C. We will assume that $ac \neq 0$ since the contrary case is easy.

Let λ be an eigenvalue (which may be complex) and $(u_1, ..., u_n)^{\dagger}$ a corresponding eigenvector. We may view the numbers $u_1, u_2, ..., u_n$ respectively as the first, second, ..., and the *n*-th term of an infinite (complex) sequence $u = \{u_i\}_{i=0}^{\infty}$. Since $A_n u = \lambda u$ can be written as

$$\begin{array}{rcl} u_{0} & = & 0 \\ au_{0} + bu_{1} + cu_{2} & = & \lambda u_{1} + \alpha u_{1}, \\ au_{1} + bu_{2} + cu_{3} & = & \lambda u_{2} + 0, \\ & \dots & = & \dots, \\ au_{n-2} + bu_{n-1} + cu_{n} & = & \lambda u_{n-1} + 0, \\ au_{n-1} + bu_{n} + cu_{n+1} & = & \lambda u_{n} + \beta u_{n}, \\ & u_{n+1} & = & 0, \end{array}$$

we see that the sequence $u = \{u_k\}_{k=0}^{\infty}$ satisfies $u_0 = 0, u_{n+1} = 0$ and

$$au_{k-1} + bu_k + cu_{k+1} = \lambda u_k + f_k, \ k = 1, 2, \dots,$$
(2)

where $f_1 = \alpha u_1$ and $f_n = \beta u_n$, while $f_k = 0$ for $k \neq 1, n$. Note that u_1 cannot be 0, for otherwise from (2), $cu_2 = 0$ and inductively $u_3 = u_4 = \cdots = u_n = 0$ which is contrary to the definition of an eigenvector.

Let $f = \{f_k\}_{k=0}^{\infty}$ be defined above. Then (2) can be expressed as

$$c \{u_{k+2}\}_{k=0}^{\infty} + b \{u_{k+1}\}_{k=0}^{\infty} + a \{u_k\}_{k=0}^{\infty} = \lambda \{u_{k+1}\}_{k=0}^{\infty} + \{f_{k+1}\}_{k=0}^{\infty}.$$

We now recall that $\hbar = \{0, 1, 0, ...\}$, $\overline{\alpha} = \{\alpha, 0, 0, ...\}$ and the properties of convolution product xy of two sequences $x = \{x_k\}_{k=0}^{\infty}$ and $y = \{y_k\}_{k=0}^{\infty}$ (see [1] for details). Then by taking convolution of the above equation with $\hbar^2 = \hbar\hbar$, and noting that

$$\hbar \{u_{n+1}\} = \hbar \{u_1, u_2, ...\} = \{0, u_1, u_2, ...\} = u - \overline{u_0}$$

and

$$\hbar^2 \{ u_{n+2} \} = \hbar^2 \{ u_2, u_3, \ldots \} = \{ 0, 0, u_2, u_3, \ldots \} = u - \overline{u_0} - u_1 \hbar,$$

we have

$$c\left(u-\overline{u_0}-u_1\hbar\right)+\left(b-\lambda\right)\hbar\left(u-\overline{u_0}\right)+a\hbar^2u=\hbar\left(f-\overline{f_0}\right).$$

Solving for u, and substituting $u_0 = f_0 = 0$, we obtain

$$(a\hbar^2 + (b - \lambda)\hbar + \overline{c})u = (f + c\overline{u_1})\hbar$$

Since $c \neq 0$, we can divide the above equation [1] by $a\hbar^2 + (b - \lambda)\hbar + \overline{c}$ to obtain

$$u = \frac{(f + c\overline{u_1})\hbar}{a\hbar^2 + (b - \lambda)\hbar + \overline{c}}.$$
(3)

Let

$$\gamma_{\pm} = \frac{-(b-\lambda) \pm \sqrt{\omega}}{2a}, \ ac \neq 0$$

be the two roots of $az^2 + (b - \lambda)z + c = 0$, where $\omega = (b - \lambda)^2 - 4ac$. Since a, b, c as well as γ_{\pm}, ω are in the complex domain, we first introduce the following Lemma.

LEMMA 1. Let z = x + iy where $z \in C$ and $x, y \in R$. Then (i) $\sin z = 0$ if and only if $z = x = k\pi$ for some $k \in Z$, and (ii) $\cos z = \pm 1$ if and only if $z = x = j\pi$ for some $j \in Z$.

PROOF. If $z = x = k\pi$, $k \in \mathbb{Z}$, then $\sin z = 0$, which gives the sufficient condition of (i). If

$$\sin z = \sin \left(x + iy \right) = \sin x \cosh y + i \left(\cos x \sinh y \right) = 0,$$

then $\sin x \cosh y = 0$ and $\cos x \sinh y = 0$. Since $\cosh y \neq 0$, hence $\sin x = 0$ so that $x = k\pi$, $k \in Z$. Consequently $\cos x \neq 0$ and $\sinh y = 0$, which yields y = 0. Hence $z = x = k\pi$, $k \in Z$. This gives the necessary condition of (i). To prove (ii), in a similar manner we see that if $z = k\pi$, $k \in Z$, than $\cos z = \pm 1$. On the other hand, if

$$\cos z = \cos \left(x + iy \right) = \cos x \cosh y - i \left(\sin x \sinh y \right) = \pm 1,$$

then $\cos x \cosh y = \pm 1$ and $\sin x \sinh y = 0$. If $\sin x \neq 0$, then $\sinh y = 0$ so that y = 0, consequently $\cos x = \pm 1$ and $x = k\pi$, $k \in \mathbb{Z}$. But then $\sin x = 0$ which contradicts the assumption $\sin x \neq 0$. Hence $\sin x = 0$ and $x = k\pi$, $k \in \mathbb{Z}$. Then $\cos x = \pm 1$ and $\cosh y = 1$, which demands y = 0. This completes the proof.

COROLLARY 1. If $z \neq k\pi$ where $k \in \mathbb{Z}$, then $\sin z \neq 0$, $\cos z \neq \pm 1$ and $\sin \frac{z}{2} \neq 0$, $\cos \frac{z}{2} \neq 0$.

PROOF. If $z \neq k\pi$, $\sin z \neq 0$ and $\cos z \neq \pm 1$ follows readily from Lemma 1. Since $\sin z = 2 \sin \frac{z}{2} \cos \frac{z}{2} \neq 0$, so we have $\sin \frac{z}{2} \neq 0$ and $\cos \frac{z}{2} \neq 0$. This completes the proof.

According to γ_{\pm} being two different complex numbers or two equal numbers, there are two cases to be considered.

Case I. Suppose γ_+ and γ_- are two different complex numbers. Let $\gamma_{\pm} = p \pm iq$ where $p, q \in C$ and $q \neq 0$. Since $\gamma_+\gamma_- = p^2 + q^2 = c/a$ and $\gamma_+ + \gamma_- = 2p = (\lambda - b)/a$, we may write

$$\gamma_{\pm} = \sqrt{p^2 + q^2} \left(\cos\theta \pm i\sin\theta\right) = \frac{1}{\rho} e^{\pm i\theta},$$
$$\rho = \sqrt{\frac{a}{c}}, \ \cos\theta = \frac{p}{\sqrt{p^2 + q^2}} = \frac{\lambda - b}{2\sqrt{ac}}, \ \rho, \theta \in C.$$
(4)

where

By the method of partial fractions,

$$u = \frac{1}{\sqrt{\omega}} \left(\frac{1}{\gamma_{-} - \hbar} - \frac{1}{\gamma_{+} - \hbar} \right) (f + c\overline{u_{1}}) \hbar$$
$$= \frac{1}{\sqrt{\omega}} \left\{ \gamma_{-}^{-(j+1)} - \gamma_{+}^{-(j+1)} \right\} (f + c\overline{u_{1}}) \hbar$$
$$= \frac{1}{\sqrt{\omega}} \left\{ \left(\frac{a}{c} \right)^{j+1} \left(\gamma_{+}^{j+1} - \gamma_{-}^{j+1} \right) \right\} (f + c\overline{u_{1}}) \hbar,$$

68

W. C. Yueh

where the last two equalities are due to $\frac{1}{a-\hbar} = \left\{a^{-(n+1)}\right\}_{n=0}^{\infty}$ and $\gamma_+\gamma_- = c/a$. Applying De Moivre's Theorem, this may further be written as

$$u = \frac{2i}{\sqrt{\omega}} \left\{ \rho^{j+1} \sin\left(j+1\right) \theta \right\} \left(f + c\overline{u_1}\right) \hbar.$$

Setting $f_1 = \alpha u_1$, $f_n = \beta u_n$ and $f_j = 0$ for $j \neq 1, n$, we may evaluate u_j and obtain

$$u_{j} = \frac{2i}{\sqrt{\omega}} \left(c u_{1} \rho^{j} \sin j\theta + \alpha u_{1} \rho^{j-1} \sin \left(j-1\right)\theta + H \left(j-n-1\right) \beta u_{n} \rho^{j-n} \sin \left(j-n\right)\theta \right)$$
⁽⁵⁾

for $j \ge 1$, where H(x) is the unit step function defined by H(x) = 1 if $x \ge 0$ and H(x) = 0 if x < 0. In particular,

$$\frac{\sqrt{\omega}}{2i}u_{n+1} = cu_1\rho^{n+1}\sin(n+1)\theta + \alpha u_1\rho^n\sin n\theta + \beta u_n\rho\sin\theta \\
= cu_1\rho^{n+1}\sin(n+1)\theta + \alpha u_1\rho^n\sin n\theta \\
+ \beta\rho\frac{2i\sin\theta}{\sqrt{\omega}}\left(cu_1\rho^n\sin n\theta + \alpha u_1\rho^{n-1}\sin(n-1)\theta\right) \\
= cu_1\rho^{n+1}\sin(n+1)\theta + (\alpha+\beta)u_1\rho^n\sin n\theta + \alpha\beta u_1\frac{1}{c}\rho^{n-1}\sin(n-1)\theta,$$

where we have substituted $2i\sqrt{ac}\sin\theta = \sqrt{\omega}$. Since $\rho, u_1 \neq 0$ and $u_{n+1} = 0$, we finally obtain the necessary condition

$$ac\sin(n+1)\theta + (\alpha+\beta)\sqrt{ac}\sin n\theta + \alpha\beta\sin(n-1)\theta = 0.$$
 (6)

Since $\gamma_+ \neq \gamma_-$, $\gamma_+ - \gamma_- = 2i\sqrt{\frac{c}{a}}\sin\theta \neq 0$. By Lemma 1, $\theta \neq m\pi$ for $m \in \mathbb{Z}$. Then by (4), we have

$$\lambda = b + 2\sqrt{ac}\cos\theta \ \theta \neq m\pi, \ m \in Z.$$
(7)

Note that we may also obtain from (5) that

$$u_{j} = \frac{2i}{\sqrt{\omega}} \left(c u_{1} \rho^{j} \sin j\theta + \alpha u_{1} \rho^{j-1} \sin (j-1) \theta \right)$$
$$= \frac{u_{1}}{\sin \theta} \rho^{j-1} \left(\sin j\theta + \frac{\alpha}{\sqrt{ac}} \sin (j-1) \theta \right)$$
(8)

for j = 1, 2, ..., n.

Case II. γ_{\pm} are two equal roots. In this case, q = 0, or $\omega = (b - \lambda)^2 - 4ac = 0$. So we have

$$\lambda = b \pm 2\sqrt{ac}.\tag{9}$$

Furthermore, from (3), we have

$$u = \frac{(f + c\overline{u_1})\hbar}{c\left(1 + \frac{b-\lambda}{c}\hbar + \frac{a}{c}\hbar^2\right)} = \frac{(f + c\overline{u_1})\hbar}{c\left(1 \mp 2\sqrt{\frac{a}{c}}\hbar + \left(\sqrt{\frac{a}{c}}\hbar\right)^2\right)}$$
$$= \frac{1}{\sqrt{ac}}\frac{\rho\hbar}{\left(1 \mp \rho\hbar\right)^2}\left(f + c\overline{u_1}\right) = \frac{1}{\sqrt{ac}}\left\{(\pm 1)^{j+1}j\rho^j\right\}\left(f + c\overline{u_1}\right)$$

The j-th term now becomes

$$u_{j} = \frac{1}{\sqrt{ac}} \left((\pm 1)^{j+1} c u_{1} j \rho^{j} + (\pm 1)^{j} \alpha u_{1} (j-1) \rho^{j-1} \right) + \frac{1}{\sqrt{ac}} (\pm 1)^{j-n+1} H(j-n-1) \beta u_{n} (j-n) \rho^{j-n}.$$
(10)

By letting $u_{n+1} = 0$, we obtain

$$\left(ac \mp (\alpha + \beta)\sqrt{ac} + \alpha\beta\right)n + (ac - \alpha\beta) = 0.$$

Since this formula must be valid for all $n \geq 2$, thus $ac \pm (\alpha + \beta)\sqrt{ac} + \alpha\beta = 0$ and $ac - \alpha\beta = 0$. This yields the necessary condition $\alpha = \beta = \pm \sqrt{ac}$ (where $\alpha = \beta = -\sqrt{ac}$ corresponds to the eigenvalue $\lambda = b + 2\sqrt{ac}$, and $\alpha = \beta = \sqrt{ac}$ corresponds to the eigenvalue $\lambda = b - 2\sqrt{ac}$. The corresponding eigenvectors may be obtained from (10). Since $j \leq n$, we have, if we set $u_1 = 1$, $u_j = (-\rho)^{j-1}$ when $\alpha = \sqrt{ac}$ and $u_j = \rho^{j-1}$ when $\alpha = -\sqrt{ac}$.

Special Tridiagonal Matrices 3

Now we can apply the results of the last section to find the eigenvalues of several tridiagonal matrices of the form (1). We will assume $ac \neq 0$ and set $\rho = \sqrt{a/c}$ as before.

Suppose $\alpha = \beta = 0$ in A_n . Suppose λ is an eigenvalue. In Case I, (6) reduces to

$$\sin\left(n+1\right)\theta = 0.$$

Hence by Lemma 1,

$$\theta = \frac{k\pi}{n+1}, \ k = 0, \pm 1, \pm 2, \dots$$

Case II does not hold since $0 = \alpha = \beta = \sqrt{ac}$ is not allowed.

In other words, if λ is an eigenvalue of A_n and $(u_1, u_2, ..., u_n)^{\dagger}$ is a corresponding eigenvector, then according to (7),

$$\lambda = b + 2\sqrt{ac}\cos\frac{k\pi}{n+1}$$

for some $k \in \{1, ..., n\}$, and the corresponding $u_i^{(k)}$, according to (8), is given by

$$u_j^{(k)} = \rho^{j-1} \sin \frac{kj\pi}{n+1}, \ j = 1, 2, ..., n.$$
 (11)

where we have assumed $u_1^{(k)} = \sin \frac{k\pi}{n+1}$. Conversely, we may check by reversing the arguments in Section 2 that for each $k \in \{1, ..., n\}$, the number

$$\lambda_k = b + 2\sqrt{ac} \cos \frac{k\pi}{n+1}, \ k = 1, 2, ..., n,$$
(12)

is an eigenvalue and the vector $u^{(k)} = (u_1^{(k)}, u_2^{(k)}, ..., u_n^{(k)})^{\dagger}$ a corresponding eigenvector of A_n .

Before proceeding further, we introduce the following Lemma.

LEMMA 2. Let

which is obtained from A_n by interchanging the numbers α and β . Then the eigenvalues of B_n are the same as A_n , and the corresponding eigenvectors $v^{(k)} = \left(v_1^{(k)}, ..., v_n^{(k)}\right)^{\dagger}$, k = 1, ..., n, are given by

$$v_j^{(k)} = \rho^{2j} u_{n-j+1}^{(k)}, \ k = 1, 2, ..., n$$
(13)

where $u^{(k)} = \left(u_1^{(k)}, ..., u_n^{(k)}\right)^{\dagger}$, k = 1, ..., n, are the eigenvectors of A_n .

PROOF. Let λ be an eigenvalue and $u = (u_1, ..., u_n)^{\dagger}$ a corresponding eigenvector of A_n . Let

$$R_n = \begin{pmatrix} 0 & 0 & \dots & 0 & \rho^2 \\ 0 & 0 & \dots & \rho^4 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & \rho^{2n-2} & \dots & 0 & 0 \\ \rho^{2n} & 0 & \dots & 0 & 0 \end{pmatrix}_{n \times n}$$

Then since $A_n u = \lambda u$, we have $R_n A_n R_n^{-1} R_n u = \lambda R_n u$ or $A_n^* u^* = \lambda u^*$, where $u^* = R_n u = (\rho^2 u_n, \rho^4 u_{n-1}, ..., \rho^{2n} u_1)^{\dagger}$ and $A_n^* = R_n A_n R_n^{-1}$. By noting that $\rho^2 c = a$ and $\rho^{-2} a = c$, it is not difficult to see that $A_n^* = B_n$. Let $v = u^*$, then we have $B_n v = \lambda v$. Thus B_n has the same eigenvalues λ as A_n , and the corresponding eigenvectors $v = (v_1, ..., v_n)^{\dagger}$ are given by $v_j = \rho^{2j} u_{n-j+1}$. This completes the proof.

Now suppose $\alpha = 0$ and $\beta = \sqrt{ac} \neq 0$. This yields $\alpha\beta = 0$ and $\alpha + \beta = \sqrt{ac}$. In Case I, (6) becomes

$$\sin(n+1)\theta + \sin n\theta = 0.$$

or

$$2\sin\frac{(2n+1)\,\theta}{2}\cos\frac{\theta}{2} = 0.$$

Since $\theta \neq m\pi$, $m \in Z$, by Corollary of Lemma 1, $\cos \frac{\theta}{2} \neq 0$, we have $\sin \frac{(2n+1)\theta}{2} = 0$. Thus

$$\theta = \frac{2k\pi}{2n+1}, \ k = 0, \pm 1, \pm 2, \dots$$

Case II does not hold since $\alpha = 0 \neq \sqrt{ac}$. By reasons similar to the case where $\alpha = \beta = 0$ above, we may now see the following.

THEOREM 1. Suppose $\alpha = 0$ and $\beta = \sqrt{ac} \neq 0$. Then the eigenvalues $\lambda_1, ..., \lambda_n$ of A_n are given by

$$\lambda_k = b + 2\sqrt{ac} \cos\frac{2k\pi}{2n+1}, \ k = 1, 2, ..., n.$$
(14)

The corresponding eigenvectors $u^{(k)} = \left(u_1^{(k)}, ..., u_n^{(k)}\right)^{\dagger}$, k = 1, ..., n are given by

$$u_j^{(k)} = \rho^{j-1} \sin \frac{2kj\pi}{2n+1}, \ j = 1, 2, ..., n$$

We remark that in case $\beta = 0$ and $\alpha = \sqrt{ac} \neq 0$, Lemma 2 says that the eigenvalues are the same as given by (14). The corresponding eigenvector $v^{(k)} = \left(v_1^{(k)}, ..., v_n^{(k)}\right)^{\dagger}$, k = 1, ..., n, in view of (13), are

$$v_j^{(k)} = \rho^{j-1} \sin \frac{k \left(2j-1\right) \pi}{2n+1}, \ j = 1, 2, ..., n.$$
(15)

The eigenvalues and the corresponding eigenvectors of the other case $\alpha\beta = 0$ and $\alpha + \beta = -\sqrt{ac}$ can be obtained in a similar way. In Case I, now (6) becomes $\sin(n+1)\theta - \sin n\theta = 0$ or $(2n+1)\theta = 0$

$$2\cos\frac{(2n+1)\,\theta}{2}\sin\frac{\theta}{2} = 0.$$

Since $\theta \neq m\pi$, $m \in Z$, by Corollary of Lemma 1, $\sin \frac{\theta}{2} \neq 0$, we have $\cos \frac{(2n+1)\theta}{2} = 0$. Thus

$$\theta = \frac{(2k-1)\pi}{2n+1}, \ k = \pm 1, \pm 2, \pm 3, \dots$$

THEOREM 2. Suppose $\alpha = 0$ and $\beta = -\sqrt{ac} \neq 0$. Then the eigenvalues $\lambda_1, ..., \lambda_n$ of A_n are given by

$$\lambda_k = b + 2\sqrt{ac}\cos\frac{(2k-1)\pi}{2n+1}, \ k = 1, 2, 3, ..., n.$$
(16)

The corresponding eigenvectors $u^{(k)} = \left(u_1^{(k)}, ..., u_n^{(k)}\right)^{\dagger}, k = 1, ..., n$, are given by

$$u_j^{(k)} = \rho^{j-1} \sin \frac{(2k-1)j\pi}{2n+1}, \ j = 1, 2, ..., n.$$

In case $\beta = 0$ and $\alpha = -\sqrt{ac} \neq 0$, the eigenvalues are given by (16) and the corresponding eigenvectors by

$$v_j^{(k)} = \rho^{j-1} \cos \frac{(2k-1)(2j-1)\pi}{2(2n+1)}, \ j = 1, 2, ..., n.$$

Next, suppose $\alpha = -\beta = \sqrt{ac} \neq 0$, then (6) reduces to

$$\sin(n+1)\theta - \sin(n-1)\theta = 0$$

 or

$$2\cos n\theta\sin\theta = 0.$$

Since $\sin \theta \neq 0$, thus $\cos n\theta = 0$, so that

$$\theta = \frac{(2k-1)\pi}{2n}, \ k = \pm 1, \pm 2, \pm 3, \dots$$

Cases II does not hold as before.

THEOREM 3. Suppose $\alpha = -\beta = \sqrt{ac} \neq 0$. Then the eigenvalues $\lambda_1, ..., \lambda_n$ of A_n are given by

$$\lambda_k = b + 2\sqrt{ac}\cos\frac{(2k-1)\pi}{2n}, \ k = 1, 2, 3, ..., n.$$
(17)

The corresponding eigenvectors $u^{(k)} = \left(u_1^{(k)}, ..., u_n^{(k)}\right)^{\dagger}$, k = 1, ..., n, according to (8), are given by

$$u_j^{(k)} = \rho^{j-1} \sin \frac{(2k-1)(2j-1)\pi}{4n}, \ j = 1, 2, ..., n.$$

In case $\alpha = -\beta = -\sqrt{ac} \neq 0$, the eigenvalues are given by (17) and the corresponding eigenvectors by

$$v_j^{(k)} = \rho^{j-1} \cos \frac{(2k-1)(2j-1)\pi}{4n}, \ j = 1, 2, ..., n.$$

Next, suppose $\alpha = \beta = \sqrt{ac} \neq 0$, or $\alpha = \beta = -\sqrt{ac} \neq 0$. If λ is an eigenvalue of A_n , then in Case I, (6) reduces to

$$2\sin n\theta \left(\cos\theta + 1\right) = 0.$$

or

$$2\sin n\theta \left(\cos\theta - 1\right) = 0$$

respectively. Since $\theta \neq m\pi$, $m \in \mathbb{Z}$, by Corollary of Lemma 1, $\cos \theta \pm 1 \neq 0$, we have $\sin n\theta = 0$. Thus

$$\theta = \frac{k\pi}{n}, \ k = 0, \pm 1, \pm 2, \pm 3, \dots$$

Since $\theta \neq m\pi$ for $m \in \mathbb{Z}$ and since $\cos \theta$ is even and periodic, we obtain

$$\lambda = b + 2\sqrt{ac}\cos\frac{k\pi}{n}, \ k = 1, 2, 3, ..., n - 1.$$

In Case II, by (9), we have $\lambda = b + 2\sqrt{ac} = b + 2\sqrt{ac}\cos 0$ if $\alpha = \beta = -\sqrt{ac}$, and $\lambda = b - 2\sqrt{ac} = b + 2\sqrt{ac}\cos \pi$ if $\alpha = \beta = \sqrt{ac}$.

THEOREM 4. Suppose $\alpha = \beta = \sqrt{ac} \neq 0$. Then the eigenvalues $\lambda_1, ..., \lambda_n$ of A_n are given by

$$\lambda_k = b + 2\sqrt{ac}\cos\frac{k\pi}{n}, \ k = 1, 2, 3, ..., n,$$

and the corresponding eigenvectors $u^{(k)} = \left(u_1^{(k)},...,u_n^{(k)}\right)^\dagger$ are given by

$$u_j^{(k)} = \rho^{j-1} \sin \frac{k \left(2j-1\right) \pi}{2n}, \ j = 1, 2, ..., n,$$

for k = 1, 2, ..., n - 1 and

$$u_j^{(k)} = (-\rho)^{j-1}, \ j = 1, 2, ..., n,$$

for k = n.

THEOREM 5. Suppose $\alpha = \beta = -\sqrt{ac} \neq 0$. Then the eigenvalues $\lambda_1, ..., \lambda_n$ of A_n are given by

$$\lambda_k = b + 2\sqrt{ac}\cos\frac{(k-1)\pi}{n}, \ k = 1, 2, 3, ..., n,$$

and the corresponding eigenvectors $u^{(k)} = \left(u_1^{(k)}, ..., u_n^{(k)}\right)^{\dagger}$ are given by

$$u_j^{(k)} = \rho^{j-1}, \ j = 1, 2, ..., n$$

for k = 1 and

$$u_j^{(k)} = \rho^{j-1} \cos \frac{(k-1)(2j-1)\pi}{2n}, \ j = 1, 2, ..., n,$$

for k = 2, 3, ..., n.

References

- S. S. Cheng, Partial Difference Equations, Taylor and Francis, London and New York, 2003.
- [2] S. S. Cheng, M. Gil' and C. J. Tian, Synchronization in a discrete circular network, Proceedings of the 6-th International Conference on Difference Equations, in press.
- [3] R. T. Gregory and D. Karney, A collection of matrices for testing computational algorithm, Wiley-Interscience, 1969.
- [4] J. F. Elliott, The characteristic roots of certain real symmetric matrices, Mater thesis, Univ. of Tennessee, 1953.