ON THE VELOCITY PROJECTION MAP FOR POLYHEDRAL SKOROKHOD PROBLEMS *

Martin V. Day ${ }^{\ddagger}$

Received 24 June 2004

Abstract

We consider the Skorokhod problem with oblique reflection on a convex polyhedral domain. Under Assumption 2.1 of Dupuis and Ishii, insuring the Lipschitz continuity of the Skorokhod map, the associated velocity projection map is identified with a collection of complementarity problems. The solvability of the complementarity problems is shown to be equivalent to the existence of the discrete projection map.

1 Introduction

Consider the closed convex polyhedron G consisting of those $x \in \mathbb{R}^{n}$ satisfying a collection of N linear inequalities

$$
\begin{equation*}
x \cdot n_{i} \geq c_{i} \tag{1}
\end{equation*}
$$

The n_{i} are unit vectors and c_{i} are scalars. For $x \in G$ the set of indices for which the constraints are active will be denoted

$$
I(x)=\left\{i: x \cdot n_{i}=c_{i}\right\} .
$$

Thus ∂G consists of those $x \in G$ for which $I(x)$ is nonempty.
A "restoration vector" d_{i} is assigned to each constraint (1), normalized by $n_{i} \cdot d_{i}=1$. At $x \in \partial G$ we define the set $d(x)$ of (normalized) convex combinations of the d_{i} associated with active constraints:

$$
d(x)=\left\{\gamma=\sum_{i \in I(x)} \alpha_{i} d_{i}: \alpha_{i} \geq 0,|\gamma|=1\right\}
$$

For completeness, take $d(x)=\{0\}$ if x is interior to G. Given a function $\psi:[0, T] \rightarrow \mathbb{R}^{n}$ (of some appropriate class) with $\psi(0) \in G$, the Skorokhod Problem is to find a function $\phi:[0, T] \rightarrow G$ such that

$$
\phi(t)=\psi(t)+\int_{(0, t]} \gamma(s) d \ell
$$

[^0]where ℓ is a finite measure on $[0, T]$, supported on $\{t: \phi(t) \in \partial G\}$, and $\gamma(t)$ is a measurable function with $\gamma(t) \in d(\phi(t))$ for all t. The idea is that $\phi(t)$ is the result of pushing $\psi(t)$ in the direction d_{i} when necessary to prevent violation of constraint i, producing a function $\phi(t)$ that remains in G. A careful treatment of this problem was given by Dupuis and Ishii [6], with additional work in [7]. The map $\Gamma: \psi(\cdot) \mapsto \phi(\cdot)$ is called the Skorokhod map, to whatever extent it is well-defined.

Skorokhod problems are particularly useful in the study of queueing systems. See the many references in [7], and also [4] where Γ is called the "oblique reflection mapping". Several recent papers (such as [1] and [5]) consider differential games associated with queueing systems. Only absolutely continuous functions are relevant there, in which case the Skorokhod problem can be expressed as a differential equation:

$$
\dot{\phi}(t)=\pi(x(t), \dot{\psi}(t))
$$

where $\pi(x, v)$ is the velocity projection map, defined by (7) below. (See [6].)
For practical purposes it is useful to identify $\pi(x, v)$ directly in terms of the constraints and associated d_{i}. This takes the form of complementarity problems (3). These are also intimately connected with the discrete projection map $\Pi(\cdot)$ appearing in (7) below. Observations and simple results connecting these objects have appeared piecemeal in the literature, often under the slightly more restrictive assumption that G is a convex cone. For instance [2] (Remark 1, page 158) points out the connection between the complementarity problem and the Skorokhod map for linear functions, $\psi(t)=t v$, $\phi(t)=t w$ in the case $G=\mathbb{R}^{n}$. In [3], where G is a convex cone with vertex at 0, $\Pi(\cdot)$ has a simple scaling property which implies $\pi(0, v)=\Pi(v)=w$ for the same linear functions. Putting these together we have the connection between $\pi(0, v)$ and the complementarity problem, at least at $x=0$ for $G=\mathbb{R}^{n}$.

Our goal is to present the connections among $\pi(x, v), \Pi(y)$ and the complementarity problems in a more organized way, and for a general convex polyhedron G. Assumption 2.1 below will be assumed throughout. Our main results are that $\pi(x, v)$ is precisely the solution map of the complementarity problem (Theorem 1), and that the solvability of the complementarity problems is equivalent to the existence of the discrete projection (Theorem 2). Theorem 2 also provides a slight strengthening of the result from [6] that the existence of Π in a neighborhood of G is sufficient for its existence globally.

2 Preliminaries

The n_{i}, d_{i} must satisfy some conditions for the Skorokhod problem to be well-posed and have decent continuity properties. Dupuis and Ishii [6] present separate sufficient conditions for continuity and existence. Their sufficient condition for continuity is the following (we retain the same title as in [6] and [7]):

ASSUMPTION 2.1. There exists a compact, convex set $B \subseteq \mathbb{R}^{n}$ with $0 \in B^{\circ}$, such that for each $i=1, \ldots N$ and $z \in \partial B$, and any inward normal v to B at z,

$$
\left|z \cdot n_{i}\right|<1 \quad \text { implies } \quad v \cdot d_{i}=0
$$

We refer the reader to [7] and [6] for details, properties of B, and techniques to verify its existence. Assumption 2.1 will be a hypothesis for all our results below.

The sufficient condition for existence in [6] is Assumption 3.1. This postulates the existence of a discrete projection map $\Pi: \mathbb{R}^{n} \rightarrow G$ such that $y=\Pi(x)$ satisfies the following properties

$$
\begin{align*}
& y=x \text { if } x \in G \\
& y \in \partial G \text { and } r(y-x) \in d(y) \text { for some } r>0 \text { if } x \notin G \tag{2}
\end{align*}
$$

We do not assume the existence of $\Pi(y)$ here. Rather Theorem 2 below will establish an equivalence between the existence of $\Pi(y)$ and the existence of solutions to the following family of complementarity problems: given $x \in \partial G$ and $v \in \mathbb{R}^{n}$, find $w \in \mathbb{R}^{n}$ such that

$$
\begin{gather*}
w=v+\sum_{i \in I(x)} \beta_{i} d_{i}, \quad \text { where } \beta_{i} \text { are scalars satisfying } \tag{3}\\
\beta_{i} \geq 0, n_{i} \cdot w \geq 0, \text { and } \beta_{i}\left(n_{i} \cdot w\right)=0 \text { for each } i \in I(x)
\end{gather*}
$$

Specifically we will call this the complementarity problem for v at x.
The major implication of Assumption 2.1 is Lipschitz continuity of the Skorokhod map on functions in $D\left([0, T], R^{n}\right)$ (right continuous functions having left limits). The discrete projection $\Pi(\cdot)$ is associated with solutions of the Skorokhod problem for piecewise constant functions. As a consequence, Assumption 2.1 implies that $\Pi(\cdot)$ is Lipschitz, on whatever domain it is defined: if $\Pi\left(x_{i}\right)$ exists for two x_{i} values, $i=1,2$, then

$$
\begin{equation*}
\left|\Pi\left(x_{2}\right)-\Pi\left(x_{1}\right)\right| \leq K\left|x_{2}-x_{1}\right| \tag{4}
\end{equation*}
$$

(See the fourth bullet, page 1690 of [3].) The value K will appear in several results below. We will see as a consequence of Lemma 1 below that Assumption 2.1 also implies that solutions of (3) are unique.

Another key quantity for our arguments is the slack in inactive constraints for $x \in \partial G$:

$$
\begin{equation*}
\delta_{x}=\min _{j \in I(x)^{c}}\left(x \cdot n_{j}-c_{j}\right) \tag{5}
\end{equation*}
$$

With the convention that $\delta_{x}=+\infty$ if $I(x)^{c}=\{1, \ldots, N\} \backslash I(x)$ is empty, we see that δ_{x} is always positive, possibly infinite. Consider any y with $|y-x|<\delta_{x}$. Since the n_{i} are all unit vectors, it follows that $y \cdot n_{j}>c_{j}$ for $j \in I(x)^{c}$. Thus $y \in G$ iff $y \cdot n_{i} \geq c_{i}$ for $i \in I(x)$. Moreover $I(y) \subseteq I(x)$ for such y.

3 Local Equivalence

Our first result connects the complementarity problem at $x \in \partial G$ to the existence of $\Pi(\cdot)$ in a neighborhood of x.

LEMMA 1. Suppose Assumption 2.1 holds, $x \in \partial G$ and $\epsilon>0$.
a) If $\epsilon|v|<\delta_{x} / K$ and $y=\Pi(x+\epsilon v)$ exists, then $w=\frac{1}{\epsilon}(y-x)$ solves the complementarity problem for v at x.
b) If $\epsilon|w|<\delta_{x}$ and w solves the complementarity problem for v at x, then $\Pi(x+\epsilon v)=$ $x+\epsilon w$.

PROOF. For part a), since $\Pi(x)=x$ it follows from (4) and $\epsilon|v|<\delta_{x} / K$ that

$$
|y-x|=|\epsilon w|=|\Pi(x+\epsilon v)-x| \leq K|\epsilon v|<\delta_{x}
$$

By definition of δ_{x} this means $y \cdot n_{i}>c_{i}$ for any $i \notin I(x)$. For any $i \in I(x)$ we have

$$
w \cdot n_{i}=\frac{1}{\epsilon}\left(y \cdot n_{i}-x \cdot n_{i}\right)=\frac{1}{\epsilon}\left(y \cdot n_{i}-c_{i}\right) \geq 0
$$

Thus

$$
\begin{equation*}
I(y)=\left\{i \in I(x): w \cdot n_{i}=0\right\} \tag{6}
\end{equation*}
$$

We also know from the definition of Π that there exist $\alpha_{i} \geq 0, i \in I(y)$,

$$
\epsilon(w-v)=\Pi(x+\epsilon v)-(x+\epsilon v)=\sum_{i \in I(y)} \alpha_{i} d_{i} .
$$

Thus with $\beta_{i}=\alpha_{i} / \epsilon$ for $i \in I(y)$ and $\beta_{i}=0$ for $i \in I(x) \backslash I(y)$ we have $w=$ $v+\sum_{i \in I(x)} \beta_{i} d_{i}$ and

$$
\beta_{i} \geq 0 ; \quad w \cdot n_{i} \geq 0 ; \quad \text { and } \beta_{i}\left(w \cdot n_{i}\right)=0
$$

the last equality following from (6). In other words, w is a solution to the complementarity problem (3) for v at x.

For b), the hypotheses imply $|(x+\epsilon w)-x|<\delta_{x}$. Therefore for $x+\epsilon w \in G$ it is sufficient that $w \cdot n_{i} \geq 0$ for $i \in I(x)$, which is true from the features of the complementarity problem. If $w=v$ then $x+\epsilon v=x+\epsilon w \in G$ so that $\Pi(x+\epsilon v)=$ $x+\epsilon w$, establishing our claim. Suppose instead that $w \neq v$. Then some $\beta_{j}>0$ and consequently $w \cdot n_{j}=0$, which implies $x+\epsilon w \in \partial G$. We know from $\epsilon|w|<\delta_{x}$ that $I(x+\epsilon w)=\left\{i \in I(x): w \cdot n_{i}=0\right\}$. Let $F=\left\{i \in I(x): \beta_{i}>0\right\}$. The complementarity conditions imply that $F \subseteq I(x+\epsilon w)$ and therefore $(x+\epsilon w)-(x+\epsilon v)=\sum_{i \in F} \epsilon \beta_{i} d_{i}$. Since this is nonzero with nonnegative coefficients, when scaled to norm 1 it belongs to $d(x+\epsilon w)$. Hence $\Pi(x+\epsilon v)=x+\epsilon w$, as claimed.

Lemma 1 has several consequences. First it implies that the solutions of the complementarity problem at a fixed $x \in \partial G$ are unique (if they exist). Indeed if solutions w_{1}, w_{2} exist for v_{1}, v_{2} respectively, then for sufficiently small $\epsilon>0$ the lemma implies $\Pi\left(x+\epsilon v_{i}\right)=x+\epsilon w_{i}$. It follows from (4) that

$$
\left|w_{2}-w_{1}\right| \leq K\left|v_{2}-v_{1}\right|
$$

Thus the solution map $v \mapsto w$ is Lipschitz on the set of v for which it is defined. Moreover (taking $v_{1}=w_{1}=0$) we see that solutions of the complementarity problem satisfy $|w| \leq K|v|$.

A second consequence is that solutions of the complementarity problem are given by directional derivatives of Π. Indeed if w solves the complementarity problem for v at x, then $\Pi(x+\epsilon v)=x+\epsilon w$ for all $\epsilon>0$ sufficiently small, and consequently

$$
\frac{\Pi(x+\epsilon v)-x}{\epsilon}=w .
$$

The velocity projection map is defined in [6] by

$$
\begin{equation*}
\pi(x, v)=\lim _{\Delta \downarrow 0} \frac{\Pi(x+\Delta v)-x}{\Delta} \tag{7}
\end{equation*}
$$

So we see that if the complementarity problem for v at x has a solution, then $\pi(x, v)$ exists and agrees with the solution. Conversely, if $\pi(x, v)$ exists, then $\Pi(x+\epsilon v)$ exists for all sufficiently small $\epsilon>0$, so by part a) of the lemma the complementarity problem for v has a solution, which must then agree with $\pi(x, v)$.

THEOREM 1. Suppose Assumption 2.1 holds and $x \in \partial G . w=\pi(x, v)$ as defined by (7) exists iff w solves the complementarity problem for v at x. $\Pi(y)$ exists for all y in some neighborhood of x iff the complementarity problem (3) has a solution at x for every $v \in \mathbb{R}^{n}$.

PROOF. Our discussion above establishes all but the "if" assertion of the last sentence. Suppose the complementarity problem (3) has a solution at x for every $v \in \mathbb{R}^{n}$. Consider $|y-x|<\delta_{x} / K$. Let w solve the complementarity problem for $v=y-x$ at x. Then $|w| \leq K|v|<\delta_{x}$, so by part b) of the lemma, $\Pi(x+v)=\Pi(y)$ does exist for all y in the δ_{x} / K neighborhood of x.

4 Global Existence of the Discrete Projection

Theorem 4.4 of $[7]$ says that $\Pi(\cdot)$ exists globally if it exists in some δ-neighborhood of $G:\{y:|y-x|<\delta$ for some $x \in G\}$. The following lemma will allow us to prove global existence from solvability of the complementarity problems. We save its proof until after that of the theorem.

LEMMA 2. There exists a $\delta>0$ with the property that for every $y \notin G$ with $\mathrm{d}(y, G)<\delta$ there exists $x \in \partial G$ with $|y-x|<\delta_{x} / K$.

THEOREM 2. Under Assumption 2.1 the following are equivalent:
a) For every $x \in \partial G$ and $v \in \mathbb{R}^{n}$ there exists a solution w of the complementarity problem (3).
b) $\Pi(y)$ exists for all y in some open set containing G.
c) $\Pi(y)$ is defined for all $y \in \mathbb{R}^{n}$.

PROOF (Theorem 2). We only need to prove that a) implies c), since the rest of the implications are provided by Theorem 1. Let $\delta>0$ be as in Lemma 2. Consider any y in the δ-neighborhood of G. If $y \notin G$ there exists there exists $x \in \partial G$ with
$|y-x|<\delta_{x} / K$. The proof of Theorem 1 shows that $\Pi(y)$ exists. Thus $\Pi(\cdot)$ is defined on the δ neighborhood of G. Theorem 4.4 of $[7]$ now implies that $\Pi(\cdot)$ is defined globally.

That b) \Rightarrow c) is a slight extension of Theorem 4.4 of [7] in the case of unbounded G, because then not all neighborhoods of G contain a δ-neighborhood. Lemma 2 is elementary in the bounded case. We need to work harder for the general case.

PROOF (Lemma 2). For each $I \subseteq\{1, \ldots, N\}$ define the face F_{I} of ∂G for which the constraints $i \in I$ are active:

$$
F_{I}=\left\{x: x \cdot n_{i}=c_{i} \text { for } i \in I, \text { and } x \cdot n_{j}>c_{j} \text { for } j \in I^{c}\right\} .
$$

Let L_{I} be the linear subspace of \mathbb{R}^{n} defined by $v \cdot n_{i}=0$ for all $i \in I$. Clearly any two points of F_{I} differ by an element of L_{I}.

We will show that for each nonempty face F_{I} there exists $\delta_{I}>0$ with the property that

$$
\begin{equation*}
d\left(y, F_{I}\right)<\delta_{I} \text { implies that there exists } x \in \partial G \text { with }|y-x|<\delta_{x} / K \tag{8}
\end{equation*}
$$

To see this, first consider a nonempty face F_{I} of maximal order, i.e. F_{J} is empty for all $I \subsetneq J$. The $x \cdot n_{j}$ for $j \notin I$ must then be constant over F_{I}. (Otherwise we could add some vector from L_{I} to x obtain a point in G with at least one more active constraint, which is contrary to the maximality.) Thus δ_{x} / K is constant over F_{I} and serves as δ_{I}.

Now suppose there were some nonempty F_{I} for which no $\delta_{I}>0$ exists. We can assume I is largest possible with this property. Then from the preceding paragraph there are nonempty F_{J} with $I \subsetneq J$, and $\delta_{J}>0$ does exist for all such J. We will produce a contradiction by constructing a suitable $\delta_{I}>0$.

Define

$$
\epsilon=\frac{1}{2} \min _{I \subsetneq J} \delta_{J}>0
$$

and let F_{I}^{ϵ} be the set of those y in the affine hyperplane defined by the active constraints $y \cdot n_{i}=c_{i}, i \in I$, which are at least ϵ away from any point where some other constraint $\left(j \in I^{c}\right)$ is active:

$$
F_{I}^{\epsilon}=\left\{x \in F_{I}: y \in F_{I} \text { whenever } y-x \in L_{I} \text { and }|y-x|<\epsilon\right\}
$$

We claim that $0<\inf _{x \in F_{I}^{\epsilon}} \delta_{x}$. To see this consider any $j \in I^{c}$. It suffices to show that $x \cdot n_{j}-c_{j}$ has a positive lower bound over F_{I}^{ϵ}. There are two cases to consider. If $L_{I} \perp n_{j}$ then $x \cdot n_{j}-c_{j}$ is a positive constant over F_{I}^{ϵ}. If $L_{I} \perp n_{j}$ fails, there exists a unit vector $u \in L_{I}$ with $u \cdot n_{j}>0$. Consider any $x \in F_{I}^{\epsilon}$ and $0<\epsilon^{\prime}<\epsilon$. Let $y=x-\epsilon^{\prime} u$. Since $|y-x|<\epsilon$ and $x \cdot n_{i}=y \cdot n_{i}$ all $i \in I$, the definition of F_{I}^{ϵ} implies that $y \cdot n_{j}-c_{j}>0$. Therefore

$$
x \cdot n_{j}=\left(y+\epsilon^{\prime} u\right) \cdot n_{j}>c_{j}+\epsilon^{\prime} u \cdot n_{j} .
$$

Taking the supremum over $\epsilon^{\prime}<\epsilon$ implies that $x \cdot n_{j}-c_{j} \geq \epsilon u \cdot n_{j}$ for all $x \in F_{I}^{\epsilon}$, establishing $\epsilon u \cdot n_{j}$ as the desired lower bound.

Now consider

$$
\begin{equation*}
\delta_{I}=\min \left(\epsilon, \inf _{x \in F_{I}^{\epsilon}} \delta_{x} / K\right) \tag{9}
\end{equation*}
$$

It follows that $\delta_{I}>0$. Suppose that $d\left(y, F_{I}\right)<\delta_{I}$. Then there is an $x \in F_{I}$ with $|y-x|<\delta_{I}$. If $x \in F_{I}^{\epsilon}$ then $x \in \partial G$ and

$$
|y-x|<\delta_{I} \leq \delta_{x} / K
$$

Otherwise, $x \in F_{I} \backslash F_{I}^{\epsilon}$. In that case, by definition of F_{I}^{ϵ} there exists y^{\prime} with $\left|y^{\prime}-x\right|<\epsilon$, $y^{\prime} \cdot n_{i}=c_{i}$ for all $i \in I$ but $y^{\prime} \cdot n_{j} \leq c_{j}$ for some $j \in I^{c}$. Then along the line segment from x to y^{\prime} there exists a z with $z \cdot n_{i}=c_{i}$ for all $i \in I \cup\{k\}$, some $k \notin I$, and $z \cdot n_{j} \geq c_{j}$ for all remaining j. Then $z \in G$ and $I \cup\{k\} \subseteq I(z)$. Therefore $z \in F_{J}$ where $I \subsetneq J=I(z)$. Since z is on the line segment between x and $y^{\prime},|z-x| \leq\left|y^{\prime}-x\right|<\epsilon$. Therefore $d\left(y, F_{J}\right) \leq|z-x|+|x-y|<2 \epsilon \leq \delta_{J}$. By (8) for J, there exists $x^{\prime} \in \partial G$ with $\left|y-x^{\prime}\right|<\delta_{x^{\prime}} / K$. Thus δ_{I} defined by (9) does satisfy (8).

By contradiction $\delta_{I}>0$ satisfying (8) does exist for all nonempty faces F_{I}. The lemma follows.

5 Coercivity as a Sufficient Condition

The complementarity problem (3) can be expressed in standard form: given $q=\left(n_{i} \cdot v\right)$ find $\beta=\left(\beta_{i}\right)$ such that

$$
\begin{align*}
\beta & \geq 0 ; \quad(\text { componentwise) } \\
z & \geq 0 \quad \text { where } z=M \beta+q ; \text { and } \tag{10}\\
z \cdot \beta & =0
\end{align*}
$$

where M is the matrix with entries $n_{i} \cdot d_{j}, i, j \in I(x)$, which we will denote $M=$ $N_{I}^{T} D_{I}, I=I(x)$. While several sufficient conditions for solvability of (10) are known, a particularly simple one is that M be coercive (i.e. $u \cdot M u>0$ for all $u \neq 0$). See for instance Chapter 1 of [8], Corollary 4.3 and Theorem 5.5. Thus, under Assumption 2.1, a sufficient condition for the global existence of $\Pi(x)$ is that $M=N_{I}^{T} D_{I}$ be coercive for all I with F_{I} nonempty.

Coercivity of $M=N_{I}^{T} D_{I}$ is equivalent to positive definiteness of

$$
\frac{1}{2}\left(N_{I}^{T} D_{I}+D_{I}^{T} N_{I}\right)
$$

making it rather easy to check. On the other hand coercivity requires that $\left\{n_{i}: i \in I\right\}$ is linearly independent. Thus in \mathbb{R}^{n} we can only hope to appeal to coercivity if no more than n of the constraints (1) are active at each $x \in G$. Otherwise different conditions would need to be used.

References

[1] R. Atar and P. Dupuis, A differential game with constrained dynamics and viscosity solutions of a related HJB equation, Nonlinear Analysis, 51(2002), 1105-1130.
[2] A. Berhard and A. El Kharroubi, Régularizations déterministes et stochastiques dans le premier "orthant" de \mathbb{R}^{n}, Stochastics and Stochastics Reports, 34(1991), 149-167.
[3] A. Budhiraja and P. Dupuis, Simple necessary and sufficient conditions for the stability of constrained processes, SIAM J. Appl. Math., 59(1999), 1686-1700.
[4] H. Chen and D. D. Yao, Fundamentals of Queueing Networks, Springer-Verlag, New York, 2001.
[5] M. V. Day, J. Hall, J. Menendez, D. Potter and I. Rothstein, Robust optimal service analysis of single-server re-entrant queues, Computational Optimization and Applications, 22(2002), 261-302.
[6] P. Dupuis and H. Ishii, On Lipschitz continuity of the solution mapping of the Skorokhod problem, with applications, Stochastics and Stochastics Reports, 35(1991), 31-62.
[7] P. Dupuis and K. Ramanan, Convex duality and the Skorokhod problem, I and II, Prob. Theor. and Rel. Fields, 115(1999), 153-195, 197-236.
[8] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and their Applications, Academic Press, New York, 1980.

[^0]: *Mathematics Subject Classifications: 90C33, 93A30, 60K25
 \dagger Supported in part by NSF grant DMS-0102266.
 \ddagger Department of Mathematics, Virginia Tech, Blacksburg, Virginia, USA 24061-0123

