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Abstract

This note reports on a functional decomposition result for 1/k! with a potential
for novel computational and number-theoretic applications.

1 Main Result

Structure decomposition is a fundamental principle in practically all branches of math-
ematics. It states that “an unordered structure should always be decomposable into two
more ordered structures”. In linear algebra, e.g., the principle reveals itself in the fact
that any (unordered) square matrix is decomposable into a sum of a symmetric (more
ordered) matrix and a skew symmetric (more ordered) matrix . In functional analysis,
the principle stipulates that an arbitrary real function is decomposable into a sum of
associated odd and even functions. Furthermore, in combinatorics, numerics, special
functions and in several other fields the reciprocal of the factorial 1/k! often recurs and
a number of pertaining mathematical manipulations can be anticipated to significantly
simplify if it were possible to establish a decomposition principle for 1/k! in terms of
1/ (2k)! and 1/ (2k + 1)!. This note is in fact a report on a new result in this field
invoking the perforated factorial

(2k + 1 | ∗)! =
k

j=0

(2j + 1) = (2k + 1)!/2kk!

and the summation functionals @ and ℵ defined by

@ 1

(2k)!
= −1

4

k

n=0

2n

(2n |12)!
,

ℵ 1

(2k + 1)!
= −1

4

k

n=0

2n

(2n+ 1 |12)!
,
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in terms of the perturbed factorial

m |12 ! =
m!

(m− 2) (m+ 1)
where m is a non-negative integer different from 2.

THEOREM 1. The following holds:

1/k! = (2k − 1 | ∗)!@ 1

(2k)!
+ (2k + 1 | ∗)!ℵ 1

(2k + 1)!
.

PROOF. Clearly when m = 2, 2 |12 ! =∞, and 1

(2|12)!
= 0 while 0 |12 ! = 1 |12 ! =

−12 . Moreover, it is demonstrated in the Appendix that
∞

n=0

2n

(2n |12)!
= 0.

The proof turns out to be an indirect consequence of the ‘rational triplic’ form for the
exponential

ex =
2

x2 − 2
∞

n=3

∞

m=0

(m+ 2)

(m+ n)!
xm+n − x− 1 (1)

recently reported by Haidar [1]. It starts with the following two identities

1

(2k)!
= −

k

n=0

1

(2n |12)!2k−n+1
(2)

and

1

(2k + 1)!
= −

k

n=0

1

(2n+ 1 |12)!2k−n+1
(3)

which can be demonstrated by means of the examples

1

8!
= − 1

(0 |12)!25
− 1

(2 |12)!24
− 1

(4 |12)!23
− 1

(6 |12)!22
− 1

(8 |12)!2
,

and

1

9!
= − 1

(1 |12)!25
− 1

(3 |12)!24
− 1

(5 |12)!23
− 1

(7 |12)!22
− 1

(9 |12)!2
.

The two identities can then be rewritten respectively in the following way:

1

(2k)!
=
1

2k
−

k

n=2

(n− 1) (2n+ 1)
(2n)!2k−n

,
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and

1

(2k + 1)!
=
1

2k
−

k

n=2

(n+ 1) (2n− 1)
(2n+ 1)!2k−n

.

Conceive equation (1) as a Padé-like form for ex:

ex =
1 + x− 2

3!x
3 − 5x44! − 9x

5

5!

1− x2

2

=

1 + x−
∞

n=3

(n+1)(n−2)
2

xn

n!

1− x2

2

which is obviously the same as

ex = 1 + x−
∞

n=3

(n+ 1) (n− 2)
2

xn

n!

∞

m=0

x2m

2m

and

ex =
∞

m=0

x2m

2m
+
∞

m=0

x2m+1

2m
−

∞

n=3

(n+ 1) (n− 2)
2

xn

n!

∞

m=0

x2m

2m
. (4)

Consider now the product

∞

n=3

(n+ 1) (n− 2)
2

xn

n!

∞

m=0

x2m

2m
=

1

2

∞

n=3

(n+ 1) (n− 2)
n!

xn
∞

m=0

x2m

2m
,

and this is equal to

∞

n=3

(n+ 1) (n− 2)
n!

xn
∞

m=0

x2m

2m+1
.

Note that the least power of x in this product is 3. The coefficient of x2r (r ≥ 2) is

r−2

m=0

(2r − 2m+ 1) (r −m− 1)
(2(r −m))!2m

while the coefficient of x2r+1 (r ≥ 1) is

r−1

m=0

(2r − 2m− 1) (r −m+ 1)
(2 (r −m) + 1)!2m
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Equation (2) therefore becomes

ex =
∞

m=0

x2m

2m
+
∞

m=0

x2m+1

2m
−

∞

n=3

(n+ 1) (n− 2)
2

xn

n!

∞

m=0

x2m

2m

= 1 +
x2

2
+
∞

r=2

1

2r
−

r−2

m=0

(2r − 2m+ 1) (r −m− 1)
(2(r −m))!2m x2r +

x+
∞

r=1

1

2r
−

r−1

m=0

(2r − 2m− 1) (r −m+ 1)
(2 (r −m) + 1)!2m x2r+1.

Comparison with the Maclaurin’s series representation of ex will lead to the proof.

2 Applications

The present decomposition is clearly redundant for any harmonic analysis of periodic
functions such as

cosx =
∞

k=0

(−1)k x2k
(2k)!

or sinx =
∞

k=0

(−1)k x2k+1
(2k + 1)!

.

It has, however, much more promise in a modal analysis of severely aperiodic functions
like ex and mildly aperiodic, or recurrent functions like Bessel functions of the first
kind Jm (x) [2].

(i) Indeed, the decomposition

ex =
∞

k=0

(2k − 1 | ∗)!@ 1

(2k)!
+ (2k + 1 | ∗)!ℵ 1

(2k + 1)!
xk (5)

is expected to further the accelerating convergence effect of the pertaining intrinsic
Haidar’s rational triplic form (1) for the exponential.

(ii) Decomposition of the series representation of Bessel functions of the first kind
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into four power series

Jm (x)

=
∞

m=0

(−1)r
r! (m+ r)!

x

2

m+2r

=
∞

r=0

(2r − 1|∗)! (2m+ 2r − 1|∗)!@ 1

(2r)!
@ 1

(2m+ 2r)!
(−1)r x

2

m+2r

+
∞

r=0

(2r + 1|∗)! (2m+ 2r − 1|∗)!ℵ 1

(2r + 1)!
@ 1

(2m+ 2r)!
(−1)r x

2

m+2r

+
∞

r=0

(2r − 1|∗)! (2m+ 2r + 1|∗)!@ 1

(2r)!
ℵ 1

2m+ 2r + 1)!
(−1)r x

2

m+2r

+
∞

r=0

(2r + 1|∗)! (2m+ 2r + 1|∗)!ℵ 1

(2r + 1)!

×ℵ 1

(2m+ 2r + 1)!
(−1)r x

2

m+2r

.

Such nonstandard harmonic (modal) analysis can be employed in sifting possible almost-
periods that are attributable to Jm (x).
(iii) In number theory one can state the following novel results.

COROLLARY 1. If n is a natural number > 2, then there exists at least one prime
number p satisfying

2r < p <
1

2
(4r − 1|∗)! (4r + 1|∗)!@ 1

(4r)!
ℵ 1

(4r + 1)!

−1/2

for n = 2r and r > 1, and

2r + 1 < p <
1

2
(4r + 1|∗)! (4r + 3|∗)!@ 1

(4r + 2)!
ℵ 1

(4r + 3)!

−1/2

for n = 2r + 1 and r > 1.

PROOF. Invoke the well known result [3] which states that if n is a natural number
> 2, then there exists at least one prime number p satisfying

n < p < n!, (6)

i.e.

1

n
>
1

p
>
1

n!
.

Decompose 1/n! according to the Theorem 1, using the @ and ℵ functional notation.
The proof is then completed by inversion after invoking the Arithmetic-Geometric
inequality.
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Result (6) was, however, proved by Tchebyshev in 1850 to be replaceable by the
following sharper fact.

THEOREM 2 (Tchebyshev). If n > 5, then between n and 2n, there exist at least
two primes p and q satisfying

n < p < q < 2n. (7)

Therefore, motivated by (7) and making use of the definition

ρ (n) = 4n (2k − 1|∗)! (2k + 1|∗)!@ 1

(2k)!
ℵ 1

(2k + 1)!

1/2

,

we can show that limn→∞ ρ (n) > 1.

To provide a proof for this result, note that

ρ (n) = n
n

j=1

(2j − 1) (2n+ 1)
n

k=0

2k

(2k|12)!
n

k=0

2k

(2k + 1|12)!
.

But
∞

k=0

ak
∞

k=0

bk =
∞

k=0

ck where ck =
k

r=0
arbk−r. Therefore

lim
n→∞ ρ (n) = lim

n→∞n
n

j=1

(2j − 1) (2n+ 1)
n

k=0

k

r=0

2r

(2r|12)!
2k−r

(2k − 2r + 1|12)!

1/2

= lim
n→∞n

n

j=1

(2j − 1)

× (2n+ 1)
n

k=0

k

r=0

2r (2r − 2) (2r + 1) (2k − 2r − 1) (2k − 2r + 2)
(2r)! (2k − 2r + 1)!

1/2

.

It is straightforward to show that ρ (6) > 1, then the proof can be carried out by
induction. Suppose lim

n→∞ ρ (n) > 1 is true for n = m, then it should also be true for

n = m+ 1.

So if

lim
m→∞ ρ (m)

= lim
m→∞m

m

j=1

(2j − 1)

× (2m+ 1)
m

k=0

k

r=0

2r (2r − 2) (2r + 1) (2k − 2r − 1) (2k − 2r + 2)
(2r)! (2k − 2r + 1)!

1/2

> 1,



50 Decomposition of the Reciprocal of the Factorial

we have

lim
m→∞ ρ (m+ 1)

= lim
m→∞ (m+ 1)

m

j=1

(2j − 1)

× (2m+ 3)
m+1

k=0

k

r=0

2r (2r − 2) (2r + 1) (2k − 2r − 1) (2k − 2r + 2)
(2r)! (2k − 2r + 1)!

1/2

= lim
m→∞ (m+ 1)

m

j=1

(2j − 1)

× (2m+ 3)
m

k=0

k

r=0

2r (2r − 2) (2r + 1) (2k − 2r − 1) (2k − 2r + 2)
(2r)! (2k − 2r + 1)!

+ (2m+ 3)
m+1

r=0

2r (2r − 2) (2r + 1) (2k − 2r − 1) (2k − 2r + 2)
(2r)! (2k − 2r + 1)!

1/2

and this is clearly > lim
m→∞ ρ (m) > 1. Here the proof ends.

The previous corollary and result indicate a possibility for different search domains
for large prime numbers according to the parity of n. The practical value of this remark
requires, perhaps, a further multi-disciplinary investigation.

3 Appendix

The identities (2-3) could be verified directly by induction: for example, one can verify
that

1

(2k)!
= −

k

n=0

1

(2n|12)!2k−n+1

is true for k = 0. The inductive step is as follows:

1

(2k + 2)!
− 1
2

1

(2k)!
= −k (2k + 3)

(2k + 2)!
−
k+1

n=0

1

(2n|12)!2k−n+2
+
1

2

k

n=0

1

(2n|12)!2k−n+1

= −
k+1

n=0

1

(2n|12)!2k−n+2
+

k

n=0

1

(2n|12)!2k−n+2

= − 1

(2k + 2|12)!2
= −(2k) (2k + 3)

(2k + 2)!2

= −(k) (2k + 3)
(2k + 2)!

.
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Notice also that

2k

(2k)!
=
1

k!

1

(1) (3) · · · (2k − 1)
For m an integer, define the odd factorial (m|∗)! to be the product of all odd integers
less or equal to m. Factoring out 2k, one gets

2k

(2k)!
= −

k

n=0

1

(2n|12)!2−n+1

and

1

k!

1

(2k − 1|∗)! = −
k

n=0

2n−1

(2n|12)!

= − 1

(0|12)!2
− 1

(2|12)!
− 2

(4|12)!
− · · ·− 2k−1

(2k|12)!
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