THE GENERALIZED HERON MEAN AND ITS DUAL FORM *

Zhi-hua Zhang ${ }^{\dagger}$, Yu-dong Wu ${ }^{\ddagger}$

Received 9 March 2004

Abstract

In this paper, we define the generalized Heron mean $H_{r}(a, b ; k)$ and its dual form $h_{r}(a, b ; k)$, and obtain some propositions for these means.

1 Introduction

For positive numbers a, b, let $A=A(a, b)=\frac{a+b}{2}, G=G(a, b)=\sqrt{a b}, H=H(a, b)=$ $\frac{a+\sqrt{a b}+b}{3}$, and

$$
L=L(a, b)=\left\{\begin{array}{cc}
\frac{a-b}{\ln a-\ln b} & a \neq b \\
a & a=b
\end{array} .\right.
$$

These are respectively called the arithmetic, geometric, Heron, and logarithmic means. Let r be a real number, the r-order power mean (see [1]) is defined by

$$
M_{r}=M_{r}(a, b)=\left\{\begin{array}{cl}
\left(\frac{a^{r}+b^{r}}{2}\right)^{1 / r} & r \neq 0 \tag{1}\\
\sqrt{a b} & r=0
\end{array} .\right.
$$

The well-known Lin inequality (see also [1]) is stated as $G \leqslant L \leqslant M_{\frac{1}{3}}$.
In 1993, the following interpolation inequalities are summarized and stated by Kuang in [1]:

$$
\begin{equation*}
G \leqslant L \leqslant M_{\frac{1}{3}} \leqslant M_{\frac{1}{2}} \leqslant H \leqslant M_{\frac{2}{3}} \leqslant A \tag{2}
\end{equation*}
$$

In [2], Jia and Cao studied the power-type generalization of Heron mean

$$
H_{r}=H_{p}(a, b)=\left\{\begin{array}{cc}
\left(\frac{a^{r}+(a b)^{r / 2}+b^{r}}{3}\right)^{1 / r} & r \neq 0 \tag{3}\\
\sqrt{a b} & r=0
\end{array}\right.
$$

[^0]and obtained inequalities $L \leqslant H_{p} \leqslant M_{q}$, where $p \geqslant \frac{1}{2}, q \geqslant \frac{2}{3} p$. Furthermore, $p=\frac{1}{2}, q=$ $\frac{1}{3}$ are the best constants.

In 2003, Xiao and Zhang [3] gave another generalization of Heron mean and its dual form respectively as follows

$$
\begin{equation*}
H(a, b ; k)=\frac{1}{k+1} \sum_{i=0}^{k} a^{\frac{k-i}{k}} b^{\frac{i}{k}} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
h(a, b ; k)=\frac{1}{k} \sum_{i=1}^{k} a^{\frac{k+1-i}{k+1}} b^{\frac{i}{k+1}}, \tag{5}
\end{equation*}
$$

where k is a natural number. They proved that $H(a, b ; k)$ is a monotone decreasing function and $h(a, b ; k)$ is a monotone increasing function in k, and $\lim _{k \rightarrow+\infty} H(a, b ; k)=$ $\lim _{k \rightarrow+\infty} h(a, b ; k)=L(a, b)$.

Combining (3)-(5), two classes of new means for two variables will be defined.
DEFINITION 1. Suppose $a>0, b>0, k$ is a natural number and r is a real number. Then the generalized power-type Heron mean and its dual form are defined as follows

$$
H_{r}(a, b ; k)=\left\{\begin{array}{cc}
\left(\frac{1}{k+1} \sum_{i=0}^{k} a^{(k-i) r / k} b^{i r / k}\right)^{1 / r}, & r \neq 0 \tag{6}\\
\sqrt{a b}, & r=0
\end{array}\right.
$$

and

$$
h_{r}(a, b ; k)=\left\{\begin{array}{cc}
\left(\frac{1}{k} \sum_{i=0}^{k} a^{(k+1-i) r /(k+1)} b^{i r /(k+1)}\right)^{1 / r}, & r \neq 0 \tag{7}\\
\sqrt{a b}, & r=0
\end{array}\right.
$$

According to Definition 1, we easily find the following characteristic properties and two remarks for $H_{r}(a, b ; k)$ and $h(a, b ; k)$.

PROPOSITION 1. If k is a natural number, and r is a real number, then
(a) $H_{r}(a, b ; k)=H_{r}(b, a ; k)$ and $h_{r}(a, b ; k)=h_{r}(b, a ; k)$;
(b) $\lim _{r \rightarrow 0} H_{r}(a, b ; k)=\lim _{r \rightarrow 0} h_{r}(a, b ; k)=\sqrt{a b}$;
(c) $H_{r}(a, b ; 1)=M_{r}(a, b), H_{r}(a, b ; 2)=H_{r}(a, b)$ and $h_{r}(a, b ; 1)=\sqrt{a b}$;
(d) $\lim _{k \rightarrow+\infty} H_{r}(a, b ; k)=\lim _{k \rightarrow+\infty} h_{r}(a, b ; k)=\left[L\left(a^{r}, b^{r}\right)\right]^{\frac{1}{r}}$;
(e) $a \leqslant H_{r}(a, b ; k) \leqslant b$ and $a \leqslant h_{r}(a, b ; k) \leqslant b$ if $0<a<b$;
(f) $H_{r}(a, b ; k)=h_{r}(a, b ; k)=a$ if, and only if, $a=b$;
$(g) H_{r}(t a, t b ; k)=t H_{r}(a, b ; k)$ and $h_{r}(t a, t b ; k)=t h_{r}(a, b ; k)$ if $t>0$.

REMARK 1. Suppose $a>0, b>0, k$ is a natural number and r is a real number. Then the generalized power-type Heron mean $H_{r}(a, b ; k)$ and its dual form $h_{r}(a, b ; k)$ can be written as

$$
H_{r}(a, b ; k)= \begin{cases}{\left[\frac{a^{\frac{(k+1) r}{k}}-b^{\frac{(k+1) r}{k}}}{(k+1)\left(a^{\frac{r}{k}}-b^{\frac{r}{k}}\right)}\right]^{\frac{1}{r}},} & r \neq 0, a \neq b \tag{8}\\ \sqrt{a b}, & r=0, a \neq b \\ a, & r \in R, a=b\end{cases}
$$

and

$$
h_{r}(a, b ; k)= \begin{cases}{\left[\frac{a^{\frac{k r}{k+1}}-b^{\frac{k r}{k+1}}}{-k\left(a^{-\frac{r}{k+1}}-b^{-\frac{r}{k+1}}\right)}\right]^{\frac{1}{r}},} & r \neq 0, a \neq b \tag{9}\\ \sqrt{a b}, & r=0, a \neq b \\ a, & r \in R, a=b\end{cases}
$$

REMARK 2. Let $a>0, b>0, k$ is a natural number, then the following DetempleRobertson mean $D_{r}(a, b)$ (see [4]) and its dual form $d_{k}(a, b)$ are respectively the special cases for $H_{r}(a, b ; k)$ and $h_{k}(a, b ; k)$:

$$
D_{k}(a, b)=\left[H_{k}(a, b ; k)\right]^{k}=\frac{1}{k+1} \sum_{i=0}^{k} a^{k-i} b^{i}= \begin{cases}\frac{a^{k+1}-b^{k+1}}{(k+1)(a-b)}, & a \neq b \tag{10}\\ a^{k}, & a=b\end{cases}
$$

and

$$
d_{k}(a, b)=\left[h_{k+1}(a, b ; k)\right]^{k+1}=\frac{1}{k} \sum_{i=1}^{k} a^{k+1-i} b^{i}= \begin{cases}\frac{a b\left(a^{k}-b^{k}\right)}{k(a-b)}, & a \neq b \tag{11}\\ a^{k+1}, & a=b\end{cases}
$$

In this paper, we obtain the monotonicity and logarithmic convexity of the generalized power-type Heron mean $H_{r}(a, b ; k)$ and its dual form $h_{r}(a, b ; k)$.

2 Lemmas

In order to prove the theorems of the next section, we require some lemmas in this section.

LEMMA 1 ([1]). Let a_{1}, \ldots, a_{n} be real numbers with $a_{i} \neq a_{j}$ for $i \neq j$, and

$$
M_{r}(a)= \begin{cases}{\left[\frac{1}{n} \sum_{i=1}^{n} a_{i}^{r}\right]^{\frac{1}{r}},} & 0<|r|<+\infty \tag{12}\\ \prod_{i=1}^{n} a_{i}^{\frac{1}{n}}, & r=0\end{cases}
$$

Then $M_{r}(a)$ is a monotone increasing function in r, and $f(r)=\left[M_{r}(a)\right]^{r}$ is a logarithmic convex function with respect to $r>0$.

LEMMA $2([5],[6])$. Let p, q be arbitrary real numbers, and $a, b>0$. Then the extended mean values

$$
E_{p, q}(a, b)=\left\{\begin{array}{cc}
{\left[\frac{q}{p} \frac{a^{p}-b^{p}}{a^{q}-b^{q}}\right]^{1 /(p-q)},} & p q(p-q)(a-b) \neq 0 \tag{13}\\
{\left[\frac{1}{p} \frac{a^{p}-b^{p}}{\ln a-\ln b}\right]^{1 / p},} & p(a-b) \neq 0, q=0 \\
e^{-1 / p}\left(\frac{a^{a^{p}}}{b^{b p}}\right)^{1 /\left(a^{p}-b^{p}\right)} & p(a-b) \neq 0, p=q \\
\sqrt{a b}, & (a-b) \neq 0, p=q=0 \\
a, & a=b
\end{array}\right.
$$

are monotone increasing with respect to both p and q, or to both a and b; and are logarithmical concave on $(0,+\infty)$ with respect to either p or q, respectively; and logarithmical convex on $(-\infty, 0)$ with respect to either p or q, respectively.

LEMMA 3 ([7]). Let p, q, u, v be arbitrary with $p \neq q, u \neq v$. Then the inequality

$$
\begin{equation*}
E_{p, q}(a, b) \geqslant E_{u, v}(a, b) \tag{14}
\end{equation*}
$$

is satisfied for all $a, b>0, a \neq b$ if and only if $p+q \geqslant u+v$, and $e(p, q) \geqslant e(u, v)$, where

$$
e(x, y)= \begin{cases}(x-y) / \ln (x / y), & \text { for } x y>0, x \neq y \\ 0, & \text { for } x y=0\end{cases}
$$

if either $0 \leqslant \min \{p, q, u, v\}$ or $\max \{p, q, u, v\} \leqslant 0$; and

$$
e(x, y)=(|x|-|y|) /(x-y), \text { for } x, y \in \mathrm{R}, x \neq y
$$

if either $\min \{p, q, u, v\}<0<\max \{p, q, u, v\}$.
LEMMA 4. If k is a natural number. Then

$$
\begin{equation*}
(k+2)^{k(k+3)} \geqslant(k+1)^{(k+1)(k+2)} \tag{15}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{k}{(k+2) \ln (k+1)} \geqslant \frac{k+1}{(k+3) \ln (k+2)} . \tag{16}
\end{equation*}
$$

PROOF. When $k=1,2$, we have $(1+2)^{1 \cdot(1+3)}=81>64=(1+1)^{(1+1)(1+2)}$, and $(2+2)^{2 \cdot(2+3)}=1048576>531441=(2+1)^{(2+1)(2+2)}$, respectively. i.e. (15) or (16) holds.

If $k \geqslant 3$, then we have

$$
\begin{equation*}
\frac{k^{3}}{6} \geqslant \frac{k^{2}}{2}, \frac{k^{4}}{24} \geqslant k \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
k(k+3)-i \geqslant k(k+1), 1 \leqslant i \leqslant 3 . \tag{18}
\end{equation*}
$$

Using the binomial theorem, we obtain

$$
\begin{align*}
\left(1+\frac{1}{k+1}\right)^{k(k+3)} & =1+\frac{k(k+3)}{k+1}+\frac{k(k+3)[k(k+3)-1]}{2(k+1)^{2}} \\
& +\frac{k(k+3)[k(k+3)-1][k(k+3)-2]}{6(k+1)^{3}} \\
& +\frac{k(k+3)[k(k+3)-1][k(k+3)-2][k(k+3)-3]}{24(k+1)^{4}}+\cdots \tag{19}
\end{align*}
$$

From (17)-(19), we get

$$
\begin{align*}
\left(1+\frac{1}{k+1}\right)^{k(k+3)} & >1+k+\frac{k^{2}}{2}+\frac{k^{3}}{6}+\frac{k^{4}}{24} \\
& \geqslant 1+k+\frac{k^{2}}{2}+\frac{k^{2}}{2}+k=1+2 k+k^{2}=(k+1)^{2} \tag{20}
\end{align*}
$$

Rearranging (20), we immediately find (15) or (16). The proof of Lemma 4 is completed.
LEMMA 5 ([8]). Suppose $b_{1} \geqslant b_{2} \geqslant \cdots \geqslant b_{n}>0, \frac{a_{1}}{b_{1}} \geqslant \frac{a_{2}}{b_{2}} \geqslant \cdots \geqslant \frac{a_{n}}{b_{n}}>0$. Then the function

$$
F_{r}(a, b)= \begin{cases}{\left[\sum_{i=1}^{n} a_{i}^{r} / \sum_{i=1}^{n} b_{i}^{r}\right]^{\frac{1}{r}},} & r \neq 0 \tag{21}\\ \left(\prod_{i=1}^{n} \frac{a_{i}}{b_{i}}\right)^{1 / n}, & r=0\end{cases}
$$

is monotone increasing one with respect to r.
LEMMA 6. Suppose $x \geqslant 1$, and k is a fixed natural number. Then the functions

$$
\begin{equation*}
f_{k}(x)=\left(\sum_{i=0}^{k} x^{k-i}\right)^{\frac{1}{k}} /\left(\sum_{i=0}^{k+1} x^{k+1-i}\right)^{\frac{1}{k+1}} \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{k}(x)=\left(\sum_{i=1}^{k} x^{k+1-i}\right)^{\frac{1}{k+1}} /\left(\sum_{i=1}^{k+1} x^{k+2-i}\right)^{\frac{1}{k+2}} \tag{23}
\end{equation*}
$$

are monotone decreasing with respect to $x \in[1,+\infty)$.
PROOF. Calculating the derivative for $f_{k}(x)$ and $g_{k}(x)$ about x, respectively, we get
$f_{k}^{\prime}(x)=\left[\sum_{i=1}^{k} \frac{i(i+1)}{2}\left(x^{i-1}-x^{2 k-i}\right)\right] /\left[k(k+1)\left(\sum_{i=0}^{k} x^{k-i}\right)^{\frac{k-1}{k}}\left(\sum_{i=0}^{k+1} x^{k+1-i}\right)^{\frac{k+2}{k+1}}\right]$.

Since $x \geqslant 1$ and k is a fixed natural number, we find that $x^{i-1}-x^{2 k-i} \leqslant 0$ for $1 \leqslant i \leqslant k$, or $f_{k}^{\prime}(x) \leqslant 0$. And we similarly obtain $g_{k}^{\prime}(x) \leqslant 0$. It is easy to see that the functions $f_{k}(x)$ and $g_{k}(x)$ are monotone decreasing with respect to $x \in[1,+\infty)$. The proof of Lemma 6 is completed.

3 Monotonicity and Logarithmic Convexity

From Lemma 2 and Lemma 1, we may easily prove the following Theorem 1 and Theorem 2 respectively.

THEOREM 1. If k is a fixed natural number, then $H_{r}(a, b ; k)$ and $h_{r}(a, b ; k)$ are monotone increasing with respect to a and to b for fixed real numbers r, or with respect to r for fixed positive numbers a and b; and are logarithmical concave on $(0,+\infty)$, and logarithmical convex on $(-\infty, 0)$ with respect to r.

THEOREM 2. Assume a and b are fixed positive numbers, and k is a fixed natural number. Then $\left[H_{r}(a, b ; k)\right]^{r}$ and $\left[h_{r}(a, b ; k)\right]^{r}$ are logarithmic convex functions with respect to $r>0$.

THEOREM 3 ([3]). For any $r>0, H_{r}(a, b ; k)$ is monotonic decreasing and $h_{r}(a, b ; k)$ is monotone increasing with respect to k.

THEOREM 4. For fixed positive numbers a and $b, H_{\frac{k}{k+2}}(a, b ; k)$ is monotonic decreasing and $h_{\frac{k+1}{k-1}}(a, b ; k)$ is monotone increasing with resepct to k.

PROOF. The proof of the monotonicity of $H_{\frac{k}{k+2}}(a, b ; k)$ is equivalent to the inequality

$$
\begin{equation*}
\left[\frac{a^{\frac{k+1}{k+2}}-b^{\frac{k+1}{k+2}}}{(k+1)\left(a^{\frac{1}{k+2}}-b^{\frac{1}{k+2}}\right)}\right]^{\frac{k+2}{k}} \geqslant\left[\frac{a^{\frac{k+2}{k+3}}-b^{\frac{k+2}{k+3}}}{(k+2)\left(a^{\frac{1}{k+3}}-b^{\frac{1}{k+3}}\right)}\right]^{\frac{k+3}{k+1}}, \tag{24}
\end{equation*}
$$

where k is a natural number. Setting $p_{1}=\frac{k+1}{k+2}, q_{1}=\frac{1}{k+2}, u_{1}=\frac{k+2}{k+3}$, and $v_{1}=\frac{1}{k+3}$, then (24) becomes

$$
\begin{equation*}
E_{p_{1}, q_{1}}(a, b) \geqslant E_{u_{1}, v_{1}}(a, b) . \tag{25}
\end{equation*}
$$

It is easy to see that $\min \left\{p_{1}, q_{1}, u_{1}, v_{1}\right\}=\frac{1}{k+3}>0$, and $p_{1}+q_{1}=1=u_{1}+v_{1}$. From Lemma 4, we find that

$$
\begin{equation*}
e\left(p_{1}, q_{1}\right)=\frac{k}{(k+2) \ln (k+1)} \geqslant \frac{k+1}{(k+3) \ln (k+2)}=e\left(u_{1}, v_{1}\right), \tag{26}
\end{equation*}
$$

where $e(x, y)$ is defined in Lemma 3. Using Lemma 3, we can obtain (25), and it immediately follows that expression (24) is true.

We may similarly prove that $h_{\frac{k+1}{k-1}}(a, b ; k)$ is a monotone increasing function with respect to k. The proof is complete.

THEOREM 5. If $b_{1} \geqslant b_{2}>0$ and $a_{1} / b_{1} \geqslant a_{2} / b_{2}>0$, then $H_{r}\left(a_{1}, a_{2} ; k\right) / H_{r}\left(b_{1}, b_{2} ; k\right)$ and $h_{r}\left(a_{1}, a_{2} ; k\right) / h_{r}\left(b_{1}, b_{2} ; k\right)$ are monotone increasing with respect to r in \mathbf{R}.

PROOF. According to Definition 1, we have

$$
\frac{H_{r}\left(a_{1}, a_{2} ; k\right)}{H_{r}\left(b_{1}, b_{2} ; k\right)}= \begin{cases}{\left[\sum_{i=0}^{k} a_{1}^{\frac{(k-i) r}{k}} a_{2}^{\frac{i r}{k}} / \sum_{i=0}^{k} b_{1}^{\frac{(k-i) r}{k}} b_{2}^{\frac{i r}{k}}\right]^{\frac{1}{r}},} & r \neq 0 \tag{27}\\ \sqrt{\frac{0}{a_{1} a_{2}}}, & r=0\end{cases}
$$

and

$$
\frac{h_{r}\left(a_{1}, a_{2} ; k\right)}{h_{r}\left(b_{1}, b_{2} ; k\right)}= \begin{cases}{\left[\sum_{i=1}^{k} a_{1}^{\frac{(k+1-i) r}{k+1}} a_{2}^{\frac{i r}{k+1}} / \sum_{i=1}^{k} b_{1}^{\frac{(k+1-i) r}{k+1}} b_{2}^{\frac{i r}{k+1}}\right]^{\frac{1}{r}},} & r \neq 0 ; \tag{28}\\ \sqrt{\frac{a_{1} a_{2}}{b_{1} b_{2}}}, & r=0 .\end{cases}
$$

For $b_{1} \geqslant b_{2}>0$ and $a_{1} / b_{1} \geqslant a_{2} / b_{2}>0$, we find

$$
\begin{equation*}
b_{1} \geqslant b_{1}^{\frac{k-1}{k}} b_{2}^{\frac{1}{k}} \geqslant b_{1}^{\frac{k-2}{k}} b_{2}^{\frac{2}{k}} \geqslant \cdots \geqslant b_{2}>0 \tag{29}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{a_{1}}{b_{1}} \geqslant\left(\frac{a_{1}}{b_{1}}\right)^{\frac{k-1}{k}}\left(\frac{a_{2}}{b_{2}}\right)^{\frac{1}{k}} \geqslant\left(\frac{a_{1}}{b_{1}}\right)^{\frac{k-2}{k}}\left(\frac{a_{2}}{b_{2}}\right)^{\frac{2}{k}} \geqslant \cdots \geqslant \frac{a_{2}}{b_{2}}>0 \tag{30}
\end{equation*}
$$

From Lemma 5, combining (27)-(30), the proof follows.
THEOREM 6. If $0<a \leqslant b \leqslant 1 / 2$, then $H_{r}(a, b ; k) / H_{r}(1-a, 1-b ; k)$ and $h_{r}(a, b ; k) / h_{r}(1-a, 1-b ; k)$ are monotone increasing in r.

Indeed, from $0<a \leqslant b \leqslant \frac{1}{2}$, we get $0<1-a \leqslant 1-b$ and $0<\frac{a}{1-a} \leqslant \frac{b}{1-b}$. Using Theorem 5, we obtain Theorem 6.

THEOREM 7. If $b_{1} \geqslant b_{2}>0$ and $a_{1} / b_{1} \geqslant a_{2} / b_{2}>0$, then $\left(D_{k}\left(a_{1}, a_{2}\right) / D_{k}\left(b_{1}, b_{2}\right)\right)^{\frac{1}{k}}$ and $\left(d_{k}\left(a_{1}, a_{2}\right) / d_{k}\left(b_{1}, b_{2}\right)\right)^{\frac{1}{k+1}}$ are monotone increasing with respect to k in \mathbf{N}.

PROOF. To prove $\left(D_{k}\left(a_{1}, a_{2}\right) / D_{k}\left(b_{1}, b_{2}\right)\right)^{\frac{1}{k}}$ is monotone increasing with respect to k in \mathbf{N}, we only need to prove that: if $b_{1} \geqslant b_{2}>0, a_{1} / b_{1} \geqslant a_{2} / b_{2}>0$ and k is a natural number, then

$$
\begin{equation*}
\left(\sum_{i=0}^{k} a_{1}^{k-i} a_{2}^{i} / \sum_{i=0}^{k} b_{1}^{k-i} b_{2}^{i}\right)^{\frac{1}{k}} \leqslant\left(\sum_{i=0}^{k+1} a_{1}^{k+1-i} a_{2}^{i} / \sum_{i=0}^{k+1} b_{1}^{k+1-i} b_{2}^{i}\right)^{\frac{1}{k+1}} \tag{31}
\end{equation*}
$$

Taking $x_{1}=\frac{a_{1}}{a_{2}}, x_{2}=\frac{b_{1}}{b_{2}}$, we have $x_{1} \geqslant x_{2} \geqslant 1$, and inequality (31) is equivalent to

$$
\begin{equation*}
\left(\sum_{i=0}^{k} x_{1}^{k-i}\right)^{\frac{1}{k}} /\left(\sum_{i=0}^{k+1} x_{1}^{k+1-i}\right)^{\frac{1}{k+1}} \leqslant\left(\sum_{i=0}^{k} x_{2}^{k-i}\right)^{\frac{1}{k}} /\left(\sum_{i=0}^{k+1} x_{2}^{k+1-i}\right)^{\frac{1}{k+1}} \tag{32}
\end{equation*}
$$

From Lemma 6, we find (32) or (31). Thus, Theorem 7 is proved.
The monotonicity of $\left(D_{k}\left(a_{1}, a_{2}\right) / D_{k}\left(b_{1}, b_{2}\right)\right)^{\frac{1}{k}}$ in the above Theorem was obtained by Wang et al. in 1988 (see [9]). By proof similar to that of Theorem 6, we may obtain

THEOREM 8. If $0<a \leqslant b \leqslant \frac{1}{2}$, then $\left(D_{k}(a, b) / D_{k}(1-a, 1-b)\right)^{\frac{1}{k}}$ and $\left(h_{k}(a, b) / h_{k}(1-a, 1-b)\right)^{\frac{1}{k+1}}$ are monotone increasing with respect to r.

REMARK 3. Let $k \rightarrow+\infty$, from Proposition 1(d), we have

$$
\begin{equation*}
\lim _{k \rightarrow+\infty} h_{r}(a, b ; k)=\lim _{k \rightarrow+\infty} H_{r}(a, b ; k)=\left[L\left(a^{r}, b^{r}\right)\right]^{\frac{1}{r}} . \tag{33}
\end{equation*}
$$

We may also obtain some similar results for $\left[L\left(a^{r}, b^{r}\right)\right]^{\frac{1}{r}}$:
(a) $\left[L\left(a^{r}, b^{r}\right)\right]^{\frac{1}{r}}$ is monotone increasing with respect to a and b for fixed real numbers r, or to r for fixed positive numbers a and b; and are logarithmical concave on $(0,+\infty)$ with respect to r; and logarithmical convex on $(-\infty, 0)$ with respect to r;
(b) If a and b are fixed positive numbers, then $L\left(a^{r}, b^{r}\right)$ is a logarithmic convex function with respect to $r>0$;
(c) If $b_{1} \geqslant b_{2}>0$ and $a_{1} / b_{1} \geqslant a_{2} / b_{2}>0$, then $\left[L\left(a_{1}^{r}, a_{2}^{r}\right) / L\left(b_{1}^{r}, b_{2}^{r}\right)\right]^{\frac{1}{r}}$ is monotone increasing with respect to r in \mathbf{R};
(d) If $0<a \leqslant b \leqslant \frac{1}{2}$, then $\left[L\left(a^{r}, b^{r}\right) / L\left((1-a)^{r},(1-b)^{r}\right)\right]^{\frac{1}{r}}$ is monotone increasing with respect to $r \in \mathbf{R}$.

References

[1] J. C. Kuang, Applied Inequalities, Hunan Eduation Press, 2nd. Ed., 1993 (in Chinese).
[2] G. Jia and J. D. Cao, A new upper bound of the logarithmic mean, J. Ineq. Pure Appl. Math., 4(4)(2003), Article 80.
[3] Z. G. Xiao and Z. H. Zhang, The inequalities $G \leq L \leq I \leq A$ in n variables, J. Ineq. Pure Appl. Math., 4(2)(2003), Article 39.
[4] D. W. Detemple and J. M. Robertson, On generalized symmetric means of two varibles, Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No.634-672(1979), 236238.
[5] F. Qi, Logarithmic convexities of the extended mean values, RGMIA Resarch Report Collection 5(2)(1999), Article5.
[6] E. B. Lenach and M. Sholander, Extended mean values, Amer. Math. Monthly, 85(1978), 84-90.
[7] Zs. Páles, Inequalities for differences of powers, J. Math. Anal. Appl., 131(1988), 271-281.
[8] A. W. Marsall, I. Olkin and F. Proschan, Monotonicty of ratios of means and other applications of majorization, in Inequalities, edited by O. Shisha. New York London 1967, 177-190.
[9] W. L. Wang, G. X. Li and J. Chen, Inequalities involving ratios of means, J. Chendu University of Science and Technology, 42(6) (1988), 83-88 (in Chinese)

[^0]: *Mathematics Subject Classifications: 26D15, 26D10.
 ${ }^{\dagger}$ Zixing Educational Research Section, Chenzhou, Hunan 423400, P. R. China
 \ddagger Xinchang Middle School, Xinchang, Zhejiang 312500, P. R. China

