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Abstract

We present folmulas for general solutions of three terms linear difference equa-
tions with non-constant coefficients.

1 Introduction

The problem of obtaining analytical formulas for general solutions of difference equa-
tions has been studied by many authors, e.g. Agarwal [1], Bartoszewski and Kwapisz
[4], Kwapisz [6]-[7], Lakshmikantham and Trigiante [8], Musielak and Popenda [9],
Popenda [10], etc. In papers [1], [7] and [8], an explicit formula for the solution of the
equation

Fn+1 = anFn + fn, n = 0, 1, . . . ,

is included.
In [4] and [6], the authors gave an analytical formula for the solutions of the equation

Fn+1 = anFn + bnFγn + fn, n = 0, 1, . . . , γn = n− βn,

where βn is the remainder obtained from dividing n by a fixed natural number k.
Popenda in [10] gave explicit formulas for the solutions of linear homogeneous second

order equations

anxn+2 + bnxn+1 + cnxn = 0.

Popenda and Musielak were also interested in the partial difference equation of the
form

y(m+ 1, n+ 1)− y(m+ 1, n)− y(m,n+ 1) + y(m,n) = a(m,n)y(m,n).

They have presented in [9] the explicit formula for the solutions of the above equa-
tion. Popenda and Andruch-Sobi#lo considered the difference equations in groups [3].
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2 Solutions of Difference Equations

Andruch-Sobi#lo has also published some results on the difference equations in the
groups in [2], some of the results in it are continuation of the work in [3].
The construction of the explicit formulas for the solutions of the partial difference

equation is of great interest. For instance, Cheng has presented a lot of explicit solutions
for partial difference equations in his book [5].
The problem of the explicit formulas for the solutions of difference equations is

considered in this paper:

y(n+m) = a(n)y(n+ 1) + y(n), (E1)

y(n+m) = a(n)[y(n+ 1) + dy(n)], (E2)

y(n+m) = a(n)y(n+ 1) + b(n)y(n), (E3)

where a, b : N → R\{0}, d ∈ R, m ≥ 2, n ∈ N, are considered. The results contained
in this note are continuation of the work began by Popenda (in [10])
Explicit formulas for general solutions of the above equations are presented. The

analytical formulas are non-recurrent algorithms for obtaining solutions of (E1), (E2)
and (E3).

2 The Sum Operators

To construct analytical formulas, ‘sum operators’ have to be defined. The symbol
mod(w, z) denotes remainder of w/z, where w, z ∈ Z, mod(w, z) simplifies the equiva-
lent expression w− z ew/zf, where the symbol ew/zf denotes the greatest integral less
than or equal to w/z.

DEFINITION 1. Let a : N → R\{0},m ∈ N and n ∈ Z. The operator U(a;m, r, n) =
1 if r = 0, and

U(a;m, r, n) =

e(n+r−2)/mf[
j1=r−1

j1−1[
j2=r−2

· · ·
jr−1−1[
jr=0

{a(mj1 − (r − 2) +mod(n+ r − 2,m))

×a(mj2 − (r − 3) +mod(n+ r − 2,m))
× · · ·
×a(mjr + 1 +mod(n+ r − 2,m))}

if r ≥ 1.
The operator U defined above is the sum of some products of the r-elements of

sequence {an}. The value of the parameter r determines the number of elements in
the products. For example, if r = 1 then in U(a;m, r, n), there is only a simple sum.
In particular,

U(a; 2, 1, 3) =
1[

j1=0

a(2j1 + 1) = a(1) + a(3).
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If r = 2 in U(a;m, r, n), there are products of two terms. In particular,

U(a; 2, 2, 5) =
2[

j1=1

a(2j1 + 1)

j1−1[
j2=0

a(2j2 + 2) = a(3)a(2) + a(5)a(2) + a(5)a(4).

For r = 3, products of three terms occur, an example is

U(a; 2, 3, 5) =
3[

j1=2

a(2j1 − 1)
j1−1[
j2=1

a(2j2)

j2−1[
j3=0

a(2j3 + 1)

= a(3)a(2)a(1) + a(5)a(2)a(1) + a(5)a(4)a(1) + a(5)a(4)a(3).

DEFINITION 2. Let n ∈ Z and m ∈ N,

ρi(m,n) =

�
me(n− i+ 1)/(m− 1)f+ i− n for i = 2, . . . ,m,
me(n−m)/(m− 1)f+m+ 1− n for i = 1,m ≥ 2, n ∈ Z,

and

κi(m,n) = mod(ρi(m,n),m), i = 1, 2, . . . ,m, m ∈ N, n ∈ Z, m ≥ 2.

COROLLARY 1. From Definition 1 the following properties of the operator U, for
r ≥ 1 and m ≥ 2, can be observed:

U(a;m, r, n) = a(n)U(a;m, r − 1, n−m+ 1)
if e(n+ r − 2)/mf = r − 1, and

U(a;m, r, n) = U(a;m, r, n−m) + a(n)U(a;m, r − 1, n−m+ 1)
if e(n+ r − 2)/mf > r − 1, where a : N → R\{0}.
We will adopt the convention that 00 = 1, 01 = 0, empty sum is 0 and empty

product is 1.

3 Main Results

Let

W (a;m,κi(m,n), n) := U(a;m,κi(m,n), n) +

eρi(m,n)/mf[
j=1

U(a;m,m · j + κi(m,n), n).

THEOREM 1. The solution of (E1) satisfying initial conditions y(i) = Cy(i),
i = 1, 2, . . . ,m, m ≥ 2, can be presented in the form

y(n+m) =
m[
i=1

�
W (a;m,κi(m,n), n)

�
Cy(i), n ∈ {−m+ 1, . . . , 0} ∪N. (1)
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PROOF. The formula (1) for n ∈ {−m + 1, . . . , 0} satisfies initial conditions, as
follows. Let n = 0. For any m ≥ 2,

y(m) =
m[
i=1

W (a;m,κi(m, 0), 0)Cy(i)

=
m[
i=1

U(a;m,κi(m, 0), 0) +
eρi(m,0)/mf[

j=1

U(a;m,m · j + κi(m, 0), 0)

Cy(i)
=

m[
i=1

U(a;m,κi(m, 0), 0)Cy(i)

= U(a;m,κ1(m, 0), 0)Cy(1)

+
m−1[
i=2

U(a;m,κi(m, 0), 0)Cy(i) + U(a;m,κ
m(m, 0), 0)Cy(m). (2)

It is known that

U(a;m,κ1(m, 0), 0) = 0, m ≥ 2

and

U(a;m,κi(m, 0), 0) = 0, 2 ≤ i ≤ m− 1, m ≥ 3.

So equality (2) takes the form

y(m) = U(a;m,κm(m, 0), 0)Cy(m) = U(a;m, 0, 0)Cy(m) = Cy(m).

For n ∈ N and any m ≥ 2, the solution of difference equation is rewritten in the form

y(n+m) = ϕ1(n)Cy(1) + ϕ2(n)Cy(2) + . . .ϕm(n)Cy(m).

By putting the above dependence to (E1) we obtain

ϕi(n) = a(n)ϕi(n+ 1−m) + ϕi(n−m), n ∈ N (3)

for each i = 1, 2, . . . ,m separately. If ϕ1(n), ...,ϕm(n) are given byW (a;m,κ
i(m,n), n),

equation (3) can be presented in an explicit form:

W (a;m,κi(m,n), n) = a(n)W (a;m,κi(m,n−m+ 1), n−m+ 1)
+W (a;m,κi(m,n−m), n−m). (4)

It is necessary to use Definitions 1 and 2 and properties of U in to prove the formula
(4).
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THEOREM 2. The solution of (E2) satisfying initial conditions y(i) = Cy(i),
i = 1, 2, . . . ,m, m ≥ 2, can be presented in the form

y(n+m) = d(−m+1)(e(n+m−1)/mf)+(n+m)


e(n+m)/mf−1\

j=0

a(j ·m+mod(n+m,m))


×
m[
i=1

{W (s;m,κi(m,n), n)}d−iCy(i),

(5)

for n ∈ {−m+ 1, . . . , 0} ∪N , where s(0) = 1,

s(n) = d(−m+1)δ(n,m)
en/mf−1\
i=0

a(i ·m+mod(n,m) + 1)
a(i ·m+mod(n,m)) , (6)

and

δ(n,m) =

�
1 mod(n,m) = 0
0 mod(n,m) 9= 0 .

PROOF. By putting

y(n) = dnx(n), n ∈ N, d ∈ R, (7)

equation (E2) can be transformed to the form

x(n+m) = a(n)d−m+1[x(n+ 1) + x(n)], n ∈ N. (8)

The solution of (8) can be presented in the form x(n) = u(n)v(n) where

u(n) = d(−m+1)(e(n−1)/mf)
en/mf−1\
j=0

a(j ·m+mod(n,m)), n ∈ N, (9)

and v(n) is the solution of the following equation

v(n+m) = s(n)v(n+ 1) + v(n), n ∈ N, (10)

for v(i) = Cv(i), i = 1, 2, . . . ,m.
In (6) and (9), it is assumed a(0) = 1. The equation (10) has the form (E1). The

solution of (10) can be presented by the use of operator U(a;m, r, n). Therefore the
general solution of the equation (8) is given by the formula

x(n+m) = d(−m+1)(e(n+m−1)/mf)


e(n+m)/mf−1\

j=0

a(j ·m+mod(n+m,m))


×
m[
i=1

{W (s;m,κi(m,n), n)}Cv(i),
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for n ∈ {−m+ 1, . . . , 0} ∪N . Considering (7) the general solution of (E2) is obtained
in form (5).

REMARK 1. For d = 1, (E2) is of the form y(n+m) = a(n)[y(n+ 1) + y(n)].

THEOREM 3. The solution of y(n + m) = a(n)[y(n + 1) + y(n)] satisfying the
initial conditions y(i) = Cy(i), i = 1, 2, . . . ,m, m ≥ 2, can be presented in the form

y(n+m) =


e(n+m)/mf−1\

j=0

a(j ·m+mod(n+m,m))
×

×
m[
i=1

�
W (s;m,κi(m,n), n)

�
Cy(i),

for n ∈ {−m+ 1, . . . , 0} ∪N .
REMARK 2. For d = −1, (E2) takes the form y(n+m) = a(n)∆y(n).

THEOREM 4. The solution of y(n+m) = a(n)∆y(n) satisfying the initial condi-
tions y(i) = Cy(i), i = 1, 2, . . . ,m, m ≥ 2, can be presented in the form

y(n+m) = (−1)(−m+1)(e(n+m−1)/mf)+(n+m)
e(n+m)/mf−1\

j=0

a(j ·m+mod(n+m,m))

×
m[
i=1

�
W (s;m,κi(m,n), n)

�
(−1)−iCy(i),

for n ∈ {−m+ 1, . . . , 0} ∪N.
The proofs of Theorem 3 and Theorem 4 follow from the proof of the Theorem 2.

THEOREM 5. The solution of (E3) satisfying the initial conditions y(i) = Cy(i),
i = 1, 2, . . . ,m, m ≥ 2, can be presented in the form

y(n+m) =
n+m−1\
j=1

b(j)

a(j)


e(n+m)/mf−1\

i=0

d(i ·m+mod(n+m,m))
×

×
%
m[
i=1

{W (s;m,κi(m,n), n)}
i−1\
k=0

a(k)

b(k)
Cy(i)

&

for n ∈ {−m+ 1, . . . , 0} ∪N, where

d(n) = b(n)
n+m−1\
j=n

a(j)

b(j)
, a(0) := 1, b(0) := 1, d(0) := 1,

s(n) =

en/mf−1\
i=0

d(i ·m+mod(n,m) + 1)
d(i ·m+mod(n,m)) , s(0) := 1, n ∈ N.

(11)
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PROOF. By (11) and

z(n) = y(n)
n−1\
j=1

a(j)

b(j)
, n ∈ N,

(E3) can be transformed to the form

z(n+m) = d(n)[z(n+ 1) + z(n)], n ∈ N. (12)

The above equation is of the form (E2), therefore, if the formula for equation (12) is
known the formula for the general solution of (E3) can be derived.

4 Examples

We offer some examples.
Examples of values of ρi(4, n), i = 1, 2, 3, 4:

n ρ1(4, n) ρ2(4, n) ρ3(4, n) ρ4(4, n)
1 0 1 −2 −1
2 −1 0 1 −2
3 −2 −1 0 1
4 1 2 −1 0
5 0 1 2 −1
6 −1 0 1 2
7 2 3 0 1
8 1 2 3 0

Examples of values of κi(4, n), i = 1, 2, 3, 4:

n κ1(4, n) κ2(4, n) κ3(4, n) κ4(4, n)
1 0 1 2 3
2 3 0 1 2
5 0 1 2 3
8 1 2 3 0

The first values of U(a; 4, 1, n):

n U(a; 4, 1, n)
1, 2, 3, 4 properly a(1), a(2), a(3), a(4)
5, 6, 7, 8 properly a(1) + a(5), a(2) + a(6), . . . , a(4) + a(8)
9, . . . , 12 a(1) + a(5) + a(9), . . . , a(4) + a(8) + a(12)
13 a(1) + a(5) + a(9) + a(13)

The first values of U(a; 4, 2, n):

n U(a; 4, 2, n)
1, 2, 3 0
4, 5, 6, 7 properly a(4)a(1), a(5)a(2), a(6)a(3), a(7)a(4)
8, 9, 10, 11 a(4)a(1) + a(8)a(1) + a(8)a(5), . . . , a(7)a(4) + a(11)a(4) + a(11)a(8)
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The first values of U(a; 4, 3, n):

n U(a; 4, 3, n)
1, 2, . . . , 6 0
7, 8, 9, 10 properly a(7)a(4)a(1), a(8)a(5)a(2), . . . , a(10)a(7)a(4),
11 a(7)a(4)a(1) + a(11)a(4)a(1) + a(11)a(8)a(1) + a(11)a(8)a(5)
12 a(8)a(5)a(2) + a(12)a(5)a(2) + a(12)a(9)a(2) + a(12)a(9)a(6)

The first values of U(a; 4, 4, n):

n U(a; 4, 4, n)
1, 2, . . . , 9 0
10, 11, . . . , 13 a(10)a(7)a(4)a(1), . . . , a(13)a(10)a(7)a(4)

14 a(14)a(11)a(8)a(5) + a(14)a(11)a(8)a(1) + a(14)a(11)a(4)a(1)+
+a(14)a(7)a(4)a(1) + a(10)a(7)a(4)a(1)

The solution of (E1) for m = 4 by the formula (1) is of the form

y(n+ 4) =
4[
i=1

U(a; 4,κi(4, n), n) +
eρi(4,n)/4f[

j=1

U(a; 4, 4j + κi(4, n), n)

Cy(i).
So, when n = 5,

y(9) = U(a; 4, 2, 5)Cy(3) + U(a; 4, 1, 5)Cy(2) + U(a; 4, 0, 5)Cy(1)
= {a(2)a(5)}Cy(3) + {a(5) + a(1)}Cy(2) + Cy(1).
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