ANALYTICAL FORMULAS FOR SOLUTIONS OF LINEAR DIFFERENCE EQUATIONS *

Anna Andruch-Sobiło ${ }^{\dagger}$

Received 13 November 2003

Abstract

We present folmulas for general solutions of three terms linear difference equations with non-constant coefficients.

1 Introduction

The problem of obtaining analytical formulas for general solutions of difference equations has been studied by many authors, e.g. Agarwal [1], Bartoszewski and Kwapisz [4], Kwapisz [6]-[7], Lakshmikantham and Trigiante [8], Musielak and Popenda [9], Popenda [10], etc. In papers [1], [7] and [8], an explicit formula for the solution of the equation

$$
F_{n+1}=a_{n} F_{n}+f_{n}, \quad n=0,1, \ldots
$$

is included.
In [4] and [6], the authors gave an analytical formula for the solutions of the equation

$$
F_{n+1}=a_{n} F_{n}+b_{n} F_{\gamma_{n}}+f_{n}, \quad n=0,1, \ldots, \quad \gamma_{n}=n-\beta_{n}
$$

where β_{n} is the remainder obtained from dividing n by a fixed natural number k.
Popenda in [10] gave explicit formulas for the solutions of linear homogeneous second order equations

$$
a_{n} x_{n+2}+b_{n} x_{n+1}+c_{n} x_{n}=0
$$

Popenda and Musielak were also interested in the partial difference equation of the form

$$
y(m+1, n+1)-y(m+1, n)-y(m, n+1)+y(m, n)=a(m, n) y(m, n)
$$

They have presented in [9] the explicit formula for the solutions of the above equation. Popenda and Andruch-Sobiło considered the difference equations in groups [3].

[^0]Andruch-Sobiło has also published some results on the difference equations in the groups in [2], some of the results in it are continuation of the work in [3].

The construction of the explicit formulas for the solutions of the partial difference equation is of great interest. For instance, Cheng has presented a lot of explicit solutions for partial difference equations in his book [5].

The problem of the explicit formulas for the solutions of difference equations is considered in this paper:

$$
\begin{gather*}
y(n+m)=a(n) y(n+1)+y(n) \tag{E1}\\
y(n+m)=a(n)[y(n+1)+d y(n)] \tag{E2}\\
y(n+m)=a(n) y(n+1)+b(n) y(n) \tag{E3}
\end{gather*}
$$

where $a, b: N \rightarrow R \backslash\{0\}, d \in R, m \geq 2, n \in N$, are considered. The results contained in this note are continuation of the work began by Popenda (in [10])

Explicit formulas for general solutions of the above equations are presented. The analytical formulas are non-recurrent algorithms for obtaining solutions of (E1), (E2) and (E3).

2 The Sum Operators

To construct analytical formulas, 'sum operators' have to be defined. The symbol $\bmod (w, z)$ denotes remainder of w / z, where $w, z \in Z, \bmod (w, z) \operatorname{simplifies}$ the equivalent expression $w-z\lfloor w / z\rfloor$, where the symbol $\lfloor w / z\rfloor$ denotes the greatest integral less than or equal to w / z.

DEFINITION 1. Let $a: N \rightarrow R \backslash\{0\}, m \in N$ and $n \in Z$. The operator $U(a ; m, r, n)=$ 1 if $r=0$, and

$$
\begin{aligned}
U(a ; m, r, n)= & \sum_{j_{1}=r-1}^{\lfloor(n+r-2) / m\rfloor} \sum_{j_{2}=r-2}^{j_{1}-1} \cdots \sum_{j_{r}=0}^{j_{r-1}-1}\left\{a\left(m j_{1}-(r-2)+\bmod (n+r-2, m)\right)\right. \\
& \times a\left(m j_{2}-(r-3)+\bmod (n+r-2, m)\right) \\
& \times \cdots \\
& \left.\times a\left(m j_{r}+1+\bmod (n+r-2, m)\right)\right\}
\end{aligned}
$$

if $r \geq 1$.
The operator U defined above is the sum of some products of the r-elements of sequence $\left\{a_{n}\right\}$. The value of the parameter r determines the number of elements in the products. For example, if $r=1$ then in $U(a ; m, r, n)$, there is only a simple sum. In particular,

$$
U(a ; 2,1,3)=\sum_{j_{1}=0}^{1} a\left(2 j_{1}+1\right)=a(1)+a(3)
$$

If $r=2$ in $U(a ; m, r, n)$, there are products of two terms. In particular,

$$
U(a ; 2,2,5)=\sum_{j_{1}=1}^{2} a\left(2 j_{1}+1\right) \sum_{j_{2}=0}^{j_{1}-1} a\left(2 j_{2}+2\right)=a(3) a(2)+a(5) a(2)+a(5) a(4)
$$

For $r=3$, products of three terms occur, an example is

$$
\begin{aligned}
U(a ; 2,3,5) & =\sum_{j_{1}=2}^{3} a\left(2 j_{1}-1\right) \sum_{j_{2}=1}^{j_{1}-1} a\left(2 j_{2}\right) \sum_{j_{3}=0}^{j_{2}-1} a\left(2 j_{3}+1\right) \\
& =a(3) a(2) a(1)+a(5) a(2) a(1)+a(5) a(4) a(1)+a(5) a(4) a(3)
\end{aligned}
$$

DEFINITION 2. Let $n \in Z$ and $m \in N$,

$$
\rho^{i}(m, n)=\left\{\begin{array}{l}
m\lfloor(n-i+1) /(m-1)\rfloor+i-n \quad \text { for } \quad i=2, \ldots, m \\
m\lfloor(n-m) /(m-1)\rfloor+m+1-n \quad \text { for } \quad i=1, m \geq 2, n \in Z
\end{array}\right.
$$

and

$$
\kappa^{i}(m, n)=\bmod \left(\rho^{i}(m, n), m\right), \quad i=1,2, \ldots, m, \quad m \in N, \quad n \in Z, \quad m \geq 2
$$

COROLLARY 1. From Definition 1 the following properties of the operator U, for $r \geq 1$ and $m \geq 2$, can be observed:

$$
U(a ; m, r, n)=a(n) U(a ; m, r-1, n-m+1)
$$

if $\lfloor(n+r-2) / m\rfloor=r-1$, and

$$
U(a ; m, r, n)=U(a ; m, r, n-m)+a(n) U(a ; m, r-1, n-m+1)
$$

if $\lfloor(n+r-2) / m\rfloor>r-1$, where $a: N \rightarrow R \backslash\{0\}$.
We will adopt the convention that $0^{0}=1,0^{1}=0$, empty sum is 0 and empty product is 1 .

3 Main Results

Let

$$
W\left(a ; m, \kappa^{i}(m, n), n\right):=U\left(a ; m, \kappa^{i}(m, n), n\right)+\sum_{j=1}^{\left\lfloor\rho^{i}(m, n) / m\right\rfloor} U\left(a ; m, m \cdot j+\kappa^{i}(m, n), n\right)
$$

THEOREM 1. The solution of (E1) satisfying initial conditions $y(i)=C_{y}(i)$, $i=1,2, \ldots, m, m \geq 2$, can be presented in the form

$$
\begin{equation*}
y(n+m)=\sum_{i=1}^{m}\left\{W\left(a ; m, \kappa^{i}(m, n), n\right)\right\} C_{y}(i), \quad n \in\{-m+1, \ldots, 0\} \cup N \tag{1}
\end{equation*}
$$

PROOF. The formula (1) for $n \in\{-m+1, \ldots, 0\}$ satisfies initial conditions, as follows. Let $n=0$. For any $m \geq 2$,

$$
\begin{align*}
y(m)= & \sum_{i=1}^{m} W\left(a ; m, \kappa^{i}(m, 0), 0\right) C_{y}(i) \\
= & \sum_{i=1}^{m}\left\{U\left(a ; m, \kappa^{i}(m, 0), 0\right)+\sum_{j=1}^{\left\lfloor\rho^{i}(m, 0) / m\right\rfloor} U\left(a ; m, m \cdot j+\kappa^{i}(m, 0), 0\right)\right\} C_{y}(i) \\
= & \sum_{i=1}^{m} U\left(a ; m, \kappa^{i}(m, 0), 0\right) C_{y}(i) \\
= & U\left(a ; m, \kappa^{1}(m, 0), 0\right) C_{y}(1) \\
& +\sum_{i=2}^{m-1} U\left(a ; m, \kappa^{i}(m, 0), 0\right) C_{y}(i)+U\left(a ; m, \kappa^{m}(m, 0), 0\right) C_{y}(m) \tag{2}
\end{align*}
$$

It is known that

$$
U\left(a ; m, \kappa^{1}(m, 0), 0\right)=0, m \geq 2
$$

and

$$
U\left(a ; m, \kappa^{i}(m, 0), 0\right)=0, \quad 2 \leq i \leq m-1, \quad m \geq 3
$$

So equality (2) takes the form

$$
y(m)=U\left(a ; m, \kappa^{m}(m, 0), 0\right) C_{y}(m)=U(a ; m, 0,0) C_{y}(m)=C_{y}(m)
$$

For $n \in N$ and any $m \geq 2$, the solution of difference equation is rewritten in the form

$$
y(n+m)=\varphi_{1}(n) C_{y}(1)+\varphi_{2}(n) C_{y}(2)+\ldots \varphi_{m}(n) C_{y}(m)
$$

By putting the above dependence to (E1) we obtain

$$
\begin{equation*}
\varphi_{i}(n)=a(n) \varphi_{i}(n+1-m)+\varphi_{i}(n-m), \quad n \in N \tag{3}
\end{equation*}
$$

for each $i=1,2, \ldots, m$ separately. If $\varphi_{1}(n), \ldots, \varphi_{m}(n)$ are given by $W\left(a ; m, \kappa^{i}(m, n), n\right)$, equation (3) can be presented in an explicit form:

$$
\begin{align*}
W\left(a ; m, \kappa^{i}(m, n), n\right)= & a(n) W\left(a ; m, \kappa^{i}(m, n-m+1), n-m+1\right) \\
& +W\left(a ; m, \kappa^{i}(m, n-m), n-m\right) \tag{4}
\end{align*}
$$

It is necessary to use Definitions 1 and 2 and properties of U in to prove the formula (4).

THEOREM 2. The solution of (E2) satisfying initial conditions $y(i)=C_{y}(i)$, $i=1,2, \ldots, m, m \geq 2$, can be presented in the form

$$
\begin{align*}
y(n+m) & =d^{(-m+1)(\lfloor(n+m-1) / m\rfloor)+(n+m)}\left\{\prod_{j=0}^{\lfloor(n+m) / m\rfloor-1} a(j \cdot m+\bmod (n+m, m))\right\} \\
& \times \sum_{i=1}^{m}\left\{W\left(s ; m, \kappa^{i}(m, n), n\right)\right\} d^{-i} C_{y}(i) \tag{5}
\end{align*}
$$

for $n \in\{-m+1, \ldots, 0\} \cup N$, where $s(0)=1$,

$$
\begin{equation*}
s(n)=d^{(-m+1) \delta(n, m)} \prod_{i=0}^{\lfloor n / m\rfloor-1} \frac{a(i \cdot m+\bmod (n, m)+1)}{a(i \cdot m+\bmod (n, m))} \tag{6}
\end{equation*}
$$

and

$$
\delta(n, m)= \begin{cases}1 & \bmod (n, m)=0 \\ 0 & \bmod (n, m) \neq 0\end{cases}
$$

PROOF. By putting

$$
\begin{equation*}
y(n)=d^{n} x(n), \quad n \in N, d \in R \tag{7}
\end{equation*}
$$

equation (E2) can be transformed to the form

$$
\begin{equation*}
x(n+m)=a(n) d^{-m+1}[x(n+1)+x(n)], n \in N \tag{8}
\end{equation*}
$$

The solution of (8) can be presented in the form $x(n)=u(n) v(n)$ where

$$
\begin{equation*}
u(n)=d^{(-m+1)(\lfloor(n-1) / m\rfloor)} \prod_{j=0}^{\lfloor n / m\rfloor-1} a(j \cdot m+\bmod (n, m)), n \in N \tag{9}
\end{equation*}
$$

and $v(n)$ is the solution of the following equation

$$
\begin{equation*}
v(n+m)=s(n) v(n+1)+v(n), n \in N \tag{10}
\end{equation*}
$$

for $v(i)=C_{v}(i), i=1,2, \ldots, m$.
In (6) and (9), it is assumed $a(0)=1$. The equation (10) has the form (E1). The solution of (10) can be presented by the use of operator $U(a ; m, r, n)$. Therefore the general solution of the equation (8) is given by the formula

$$
\begin{aligned}
x(n+m) & =d^{(-m+1)(\lfloor(n+m-1) / m\rfloor)}\left\{\prod_{j=0}^{\lfloor(n+m) / m\rfloor-1} a(j \cdot m+\bmod (n+m, m))\right\} \\
& \times \sum_{i=1}^{m}\left\{W\left(s ; m, \kappa^{i}(m, n), n\right)\right\} C_{v}(i)
\end{aligned}
$$

for $n \in\{-m+1, \ldots, 0\} \cup N$. Considering (7) the general solution of (E2) is obtained in form (5).

REMARK 1. For $d=1$, (E2) is of the form $y(n+m)=a(n)[y(n+1)+y(n)]$.
THEOREM 3. The solution of $y(n+m)=a(n)[y(n+1)+y(n)]$ satisfying the initial conditions $y(i)=C_{y}(i), i=1,2, \ldots, m, m \geq 2$, can be presented in the form

$$
\begin{aligned}
y(n+m) & =\left\{\prod_{j=0}^{\lfloor(n+m) / m\rfloor-1} a(j \cdot m+\bmod (n+m, m))\right\} \times \\
& \times \sum_{i=1}^{m}\left\{W\left(s ; m, \kappa^{i}(m, n), n\right)\right\} C_{y}(i)
\end{aligned}
$$

for $n \in\{-m+1, \ldots, 0\} \cup N$.
REMARK 2. For $d=-1$, (E2) takes the form $y(n+m)=a(n) \Delta y(n)$.
THEOREM 4. The solution of $y(n+m)=a(n) \Delta y(n)$ satisfying the initial conditions $y(i)=C_{y}(i), i=1,2, \ldots, m, m \geq 2$, can be presented in the form

$$
\begin{aligned}
y(n+m)= & (-1)^{(-m+1)(\lfloor(n+m-1) / m\rfloor)+(n+m)} \prod_{j=0}^{\lfloor(n+m) / m\rfloor-1} a(j \cdot m+\bmod (n+m, m)) \\
& \times \sum_{i=1}^{m}\left\{W\left(s ; m, \kappa^{i}(m, n), n\right)\right\}(-1)^{-i} C_{y}(i)
\end{aligned}
$$

for $n \in\{-m+1, \ldots, 0\} \cup N$.
The proofs of Theorem 3 and Theorem 4 follow from the proof of the Theorem 2.
THEOREM 5. The solution of (E3) satisfying the initial conditions $y(i)=C_{y}(i)$, $i=1,2, \ldots, m, m \geq 2$, can be presented in the form

$$
\begin{aligned}
y(n+m)= & \prod_{j=1}^{n+m-1} \frac{b(j)}{a(j)}\left\{\prod_{i=0}^{\lfloor(n+m) / m\rfloor-1} d(i \cdot m+\bmod (n+m, m))\right\} \times \\
& \times\left[\sum_{i=1}^{m}\left\{W\left(s ; m, \kappa^{i}(m, n), n\right)\right\} \prod_{k=0}^{i-1} \frac{a(k)}{b(k)} C_{y}(i)\right]
\end{aligned}
$$

for $n \in\{-m+1, \ldots, 0\} \cup N$, where

$$
\begin{align*}
& d(n)=b(n) \prod_{j=n}^{n+m-1} \frac{a(j)}{b(j)}, a(0):=1, b(0):=1, d(0):=1, \\
& s(n)=\prod_{i=0}^{\lfloor n / m\rfloor-1} \frac{d(i \cdot m+\bmod (n, m)+1)}{d(i \cdot m+\bmod (n, m))}, s(0):=1, n \in N . \tag{11}
\end{align*}
$$

PROOF. By (11) and

$$
z(n)=y(n) \prod_{j=1}^{n-1} \frac{a(j)}{b(j)}, \quad n \in N
$$

(E3) can be transformed to the form

$$
\begin{equation*}
z(n+m)=d(n)[z(n+1)+z(n)], n \in N \tag{12}
\end{equation*}
$$

The above equation is of the form (E2), therefore, if the formula for equation (12) is known the formula for the general solution of (E3) can be derived.

4 Examples

We offer some examples.
Examples of values of $\rho^{i}(4, n), i=1,2,3,4$:

n	$\rho^{1}(4, n)$	$\rho^{2}(4, n)$	$\rho^{3}(4, n)$	$\rho^{4}(4, n)$
1	0	1	-2	-1
2	-1	0	1	-2
3	-2	-1	0	1
4	1	2	-1	0
5	0	1	2	-1
6	-1	0	1	2
7	2	3	0	1
8	1	2	3	0

Examples of values of $\kappa^{i}(4, n), i=1,2,3,4$:

n	$\kappa^{1}(4, n)$	$\kappa^{2}(4, n)$	$\kappa^{3}(4, n)$	$\kappa^{4}(4, n)$
1	0	1	2	3
2	3	0	1	2
5	0	1	2	3
8	1	2	3	0

The first values of $U(a ; 4,1, n)$:

n	$U(a ; 4,1, n)$
$1,2,3,4$	properly $a(1), a(2), a(3), a(4)$
$5,6,7,8$	properly $a(1)+a(5), a(2)+a(6), \ldots, a(4)+a(8)$
$9, \ldots, 12$	$a(1)+a(5)+a(9), \ldots, a(4)+a(8)+a(12)$
13	$a(1)+a(5)+a(9)+a(13)$

The first values of $U(a ; 4,2, n)$:

n	$U(a ; 4,2, n)$
$1,2,3$	0
$4,5,6,7$	properly $a(4) a(1), a(5) a(2), a(6) a(3), a(7) a(4)$
$8,9,10,11$	$a(4) a(1)+a(8) a(1)+a(8) a(5), \ldots, a(7) a(4)+a(11) a(4)+a(11) a(8)$

The first values of $U(a ; 4,3, n)$:

n	$U(a ; 4,3, n)$
$1,2, \ldots, 6$	0
$7,8,9,10$	properly $a(7) a(4) a(1), a(8) a(5) a(2), \ldots, a(10) a(7) a(4)$,
11	$a(7) a(4) a(1)+a(11) a(4) a(1)+a(11) a(8) a(1)+a(11) a(8) a(5)$
12	$a(8) a(5) a(2)+a(12) a(5) a(2)+a(12) a(9) a(2)+a(12) a(9) a(6)$

The first values of $U(a ; 4,4, n)$:

n	$U(a ; 4,4, n)$
$1,2, \ldots, 9$	0
$10,11, \ldots, 13$	$a(10) a(7) a(4) a(1), \ldots, a(13) a(10) a(7) a(4)$
14	$a(14) a(11) a(8) a(5)+a(14) a(11) a(8) a(1)+a(14) a(11) a(4) a(1)+$
	$+a(14) a(7) a(4) a(1)+a(10) a(7) a(4) a(1)$

The solution of (E1) for $m=4$ by the formula (1) is of the form

$$
y(n+4)=\sum_{i=1}^{4}\left\{U\left(a ; 4, \kappa^{i}(4, n), n\right)+\sum_{j=1}^{\left\lfloor\rho^{i}(4, n) / 4\right\rfloor} U\left(a ; 4,4 j+\kappa^{i}(4, n), n\right)\right\} C_{y}(i)
$$

So, when $n=5$,

$$
\begin{aligned}
y(9) & =U(a ; 4,2,5) C_{y}(3)+U(a ; 4,1,5) C_{y}(2)+U(a ; 4,0,5) C_{y}(1) \\
& =\{a(2) a(5)\} C_{y}(3)+\{a(5)+a(1)\} C_{y}(2)+C_{y}(1) .
\end{aligned}
$$

References

[1] R. P. Agarwal, Difference Equations and Inequalities, Marcel Dekker, New York, 1992.
[2] A. Andruch-Sobiło, Difference equations in groups, Folia FSN Universitatis Masarykianae Brunensis, Mathematica 13(2003), 1-7.
[3] A. Andruch-Sobiło and J. Popenda, Difference equations in groups, Proceedings of Fourth International Conference on Difference Equations, Poznan, Poland,1998, 21-33.
[4] Z. Bartoszewski and M. Kwapisz, On some delay difference equations arising in a problem of capital deposit, Matematyka stosowana - Appliced Mathematics, 39(1996), 75-82.
[5] S. S. Cheng, Partial Difference Equations, Taylor and Francis, 2003.
[6] M. Kwapisz, On difference equations concerning the problem of capital deposit, Proceedings of the Second International Conference on Difference Equations, Vesprém, Hungary, 1995, 381-389.
[7] M. Kwapisz, Elements of the Theory of Reccurence Equations (in Polish), Gdańsk University, Gdańsk 1983.
[8] V. Lakshmikantham and D. Trigiante, Theory of Difference Equations: Numerical Methods and Applications, Academic Press, INC., New York, 1988.
[9] A. Musielak and J. Popenda, On the hyperbolic partial difference equations and their oscillatory properties, Glasnik Mathematićki, 33(53)(1998),209-221.
[10] J. Popenda, One expression for the solutions of second order difference equations, Proc. Amer. Math. Soc., 100(1987), 87-93.

[^0]: *Mathematics Subject Classifications: 39A10, 39A99.
 ${ }^{\dagger}$ Institute of Mathematics, Poznań University of Technology, Poznan, Poland

