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Abstract

In three recent papers [1-3], solutions of the form x (z) = λzµ are found for
iterative functional differential equations. We find similar solutions for a more
general equation

a

i=1

x(ni) (piz)
Ni
= Azj

b

i=1

x[mi] (qiz)
M1
.

Given a function f, its m-th iterate is defined as f [0](z) = z, f [1](z) = f(z), and
f [m+1](z) = f f [m](z) . In [1], it is noted that power solutions of the form x(z) = βzγ

can be found for the iterative functional differential equation

x (z) = x[m](z)

provided that γm = γ − 1 and βγ
m−1+···+γ = γ. In 2001, Li et al. [2] found solutions

of the form x (z) = λzµ for the iterative functional differential equation of the form

x(n) (z) = azj x[m] (z)
k

(1)

where k,m, n are positive integers, j is a nonnegative integer, a is a complex number
and x(n) (z) is the n-th derivative of x(z). As in [1], the proof is based on directly
substituting x(z) = λzµ into the above equation and deduce necessary conditions on
the exponent µ and the coefficient λ from the functional differential equation. Using
essentially the same proof, Li et al. [3] in 2002, found power solutions for iterative
equations of the form

x(n)(z) = a
l

i=1

(x[mi](qiz))
ki , (2)

where n, l, k1, k2, ..., kl are positive integers,m1,m2, ...,ml are nonnegative integers such
that ml ≥ 2 and 0 < m1 < m2 < · · · < ml, and a, q1, q2, ..., ql are nonzero complex
numbers.
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In this note, we prove the existence of power solutions for the more general equation

x(n1) (p1z)
N1 · · · x(na) (paz)

Na

= Azj x[m1] (q1z)
M1 · · · x[mb] (qbz)

Mb

(3)

where a, b, N1, . . . , Na, M1, . . . ,Mb and n1, ..., na, m1, ...,mb are positive integers such
that n1 > n2 > · · · > na and m1 > m2 > · · · > mb. The number j is a nonnegative
integer and A, p1, . . . , pa, q1, . . . , qb are nonzero complex numbers.
By taking a = b = 1, N1 = 1, M1 = k and p1 = q1 = 1 in (3), we obtain (1). By

taking a = 1, b = l, N1 = 1, p1 = 1, Mi = ki for i = 1, 2, . . . , l in (3), we obtain (2).
For the sake of convenience, we employ the notation

(µ)n = µ(µ− 1) · · · (µ− n+ 1).
THEOREM 1. Let Ω be a domain in the complex planeC which does not include the

negative real axis nor the origin. Put s (N, a) = N1+ · · ·+Na, s (M, b) =M1+ · · ·+Mb

and s (Nn, a) = N1n1 + · · · +Nana. Let µ1, . . . , µm, where 1 ≤ m ≤ m1, be distinct
roots of the polynomial

f (z) =M1z
m1 + · · ·+Mbz

mb − s (N, a) z + s (Nn, a) + j. (4)

If s (N,a) ≤ s (M, b), then (3) has m distinct, single-valued, nonzero, analytic power
solutions of the form

xi (z) = λiz
µi , i = 1, 2, . . . ,m; z ∈ Ω,

where

λi =

 a
l=1 p

Nlµi
l

A
b
l=1 q

Mlµ
ml
i

l

(µi)
s(N,a)
na (µi − na)s(N,a−1)na−1−na · · · (µi − n2)s(N,1)n1−n2

Bi

, (5)

and

Bi =
1− µi

s(M, b) + s(Nn, a)− s(N, a) + j .

PROOF. Substituting x (z) = λzµ into (3), we obtain

Pµλ
s(N,a)(µ)s(N,a)na (µ− na)s(N,a−1)na−1−na · · · (µ− n2)s(N,1)n1−n2 z

s(N,a)µ−s(Nn,a) = QµAλczr,

where

c =
b

l=1

Ml(1 + µ+ · · ·+ µml−1),

r =
b

l=1

Mlµ
ml + j,

Pµ =
a

l=1

pNlµ
l ,



162 Power Function Solutions

and

Qµ =
b

l=1

qMlµ
ml

l .

This leads to two requirements

Pµλ
s(N,a)(µ)s(N,a)na (µ− na)s(N,a−1)na−1−na · · · (µ− n2)s(N,1)n1−n2 = QµAλ

c (6)

and

s (N,a)µ− s (Nn, a) =
b

l=1

Mlµ
ml + j, (7)

or
f(µ) = 0.

Note that the polynomial f(z) does not have any nonnegative real roots if s (N, a) ≤
s (M, b). Indeed, f (0) = s (Nn, a) + j > 0. For real z ≥ 1, from s (N,a) ≤ s (M, b),
we get s (N, a) z ≤ s (M, b) z ≤M1z

m1 + · · ·+Mbz
mb and so f (z) ≥ s (Nn, a)+ j > 0.

For real z ∈ (0, 1), we have f (z) > 0 − s (N, a) + s (Nn, a) + j ≥ 0. Thus none of
µ1, . . . , µm is a nonnegative real number. Substitute µ = µi into (6), we may then
solve for λ = λi = 0 and conclude that λiz

µi is a desired solution. The proof is
complete.

We remark that if the condition s (N, a) ≤ s (M, b) fails to hold, the theorem is not
true as can be seen from the following example.

EXAMPLE 1. Consider the equation

x(3) (z) x(1) (z)
3

= x[1] (z) .

Here s (N, 2) = 4 > s (M, 1) = 1, f (z) = z−4z+6 has a unique root µ = 2 with λ = 0,
yielding only the trivial power function solution.

In certain cases, the number of solutions can be strengthened to m1 as follows:

COROLLARY 1. In addition to the hypotheses in Theorem 1, suppose m1, . . . ,mb

are all even, or, m1 is odd but m2,, . . . ,mb are even. Then there exist m1 distinct,
single-valued, nonzero, analytic power function solutions.

Indeed, in the proof above, we already have f (z) > 0 for each z ≥ 0. If m1, . . . ,mb

are even, then Descartes’ rule of sign (see e.g. Barbeau [2, p.171]), tells us that f (z)
has no negative real root, while if m1 is odd but m2, . . . ,mb are even, then f (z) has
at most one negative real root. In either case, f (z) cannot have repeated roots, other
roots being complex conjugates. Hence, all m1 roots of f (z) are distinct.

We remark that since s (N, a) = 1 ≤ s (M, b) = k for equation (1), and s (N, a) =
1 ≤ s (M, b) = k1 + · · ·+ kb for equation (2), we see that our result is an extension of
the main results in [2] and [3].
Observe that each solution xi(z) = λiz

µi has a nontrivial fixed point αi of the form

αi = λ
1

1−µi
i = λ

1
s(M,b)+s(Nn,a)−s(N,a)+j
i = 0,
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thus we may write each solution xi(z) as

xi(z) = α1−µii zµi .

Expanding such solution about its fixed point, we immediately get the following con-
sequence.

COROLLARY 2. Let µ1, . . . , µm be the distinct roots of (7), and

αi = λ
1

1−µi
i , i = 1, 2, ...,m,

where λi is defined by (5). Then in a neighborhood of each point αi, the iterative
functional differential equation (3) has an analytic solution of the form

xi(z) = αi +
(µi)1
1!

(z − αi) +
(µi)2
2!αi

(z − αi)
2 + · · ·+ (µi)n

n!αn−1i

(z − αi)
n + · · · .
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