Power Function Solutions Of Iterative Functional Differential Equations *

Sukrawan Talwong ${ }^{\dagger}$, Vichian Laohakosol ${ }^{\ddagger}$, Sui Sun Cheng ${ }^{\S}$

Received 29 March 2004

Abstract

In three recent papers [1-3], solutions of the form $x(z)=\lambda z^{\mu}$ are found for iterative functional differential equations. We find similar solutions for a more

 general equation$$
\prod_{i=1}^{a}\left(x^{\left(n_{i}\right)}\left(p_{i} z\right)\right)^{N_{i}}=A z^{j} \prod_{i=1}^{b}\left(x^{\left[m_{i}\right]}\left(q_{i} z\right)\right)^{M_{1}}
$$

Given a function f, its m-th iterate is defined as $f^{[0]}(z)=z, f^{[1]}(z)=f(z)$, and $f^{[m+1]}(z)=f\left(f^{[m]}(z)\right)$. In [1], it is noted that power solutions of the form $x(z)=\beta z^{\gamma}$ can be found for the iterative functional differential equation

$$
x^{\prime}(z)=x^{[m]}(z)
$$

provided that $\gamma^{m}=\gamma-1$ and $\beta^{\gamma^{m-1}+\cdots+\gamma}=\gamma$. In 2001, Li et al. [2] found solutions of the form $x(z)=\lambda z^{\mu}$ for the iterative functional differential equation of the form

$$
\begin{equation*}
x^{(n)}(z)=a z^{j}\left(x^{[m]}(z)\right)^{k} \tag{1}
\end{equation*}
$$

where k, m, n are positive integers, j is a nonnegative integer, a is a complex number and $x^{(n)}(z)$ is the n-th derivative of $x(z)$. As in [1], the proof is based on directly substituting $x(z)=\lambda z^{\mu}$ into the above equation and deduce necessary conditions on the exponent μ and the coefficient λ from the functional differential equation. Using essentially the same proof, Li et al. [3] in 2002, found power solutions for iterative equations of the form

$$
\begin{equation*}
x^{(n)}(z)=a \prod_{i=1}^{l}\left(x^{\left[m_{i}\right]}\left(q_{i} z\right)\right)^{k_{i}} \tag{2}
\end{equation*}
$$

where $n, l, k_{1}, k_{2}, \ldots, k_{l}$ are positive integers, $m_{1}, m_{2}, \ldots, m_{l}$ are nonnegative integers such that $m_{l} \geq 2$ and $0<m_{1}<m_{2}<\cdots<m_{l}$, and $a, q_{1}, q_{2}, \ldots, q_{l}$ are nonzero complex numbers.

[^0]In this note, we prove the existence of power solutions for the more general equation

$$
\begin{equation*}
\left(x^{\left(n_{1}\right)}\left(p_{1} z\right)\right)^{N_{1}} \cdots\left(x^{\left(n_{a}\right)}\left(p_{a} z\right)\right)^{N_{a}}=A z^{j}\left(x^{\left[m_{1}\right]}\left(q_{1} z\right)\right)^{M_{1}} \cdots\left(x^{\left[m_{b}\right]}\left(q_{b} z\right)\right)^{M_{b}} \tag{3}
\end{equation*}
$$

where $a, b, N_{1}, \ldots, N_{a}, M_{1}, \ldots, M_{b}$ and $n_{1}, \ldots, n_{a}, m_{1}, \ldots, m_{b}$ are positive integers such that $n_{1}>n_{2}>\cdots>n_{a}$ and $m_{1}>m_{2}>\cdots>m_{b}$. The number j is a nonnegative integer and $A, p_{1}, \ldots, p_{a}, q_{1}, \ldots, q_{b}$ are nonzero complex numbers.

By taking $a=b=1, N_{1}=1, M_{1}=k$ and $p_{1}=q_{1}=1$ in (3), we obtain (1). By taking $a=1, b=l, N_{1}=1, p_{1}=1, M_{i}=k_{i}$ for $i=1,2, \ldots, l$ in (3), we obtain (2).

For the sake of convenience, we employ the notation

$$
(\mu)_{n}=\mu(\mu-1) \cdots(\mu-n+1)
$$

THEOREM 1. Let Ω be a domain in the complex plane \mathbf{C} which does not include the negative real axis nor the origin. Put $s(N, a)=N_{1}+\cdots+N_{a}, s(M, b)=M_{1}+\cdots+M_{b}$ and $s(N n, a)=N_{1} n_{1}+\cdots+N_{a} n_{a}$. Let μ_{1}, \ldots, μ_{m}, where $1 \leq m \leq m_{1}$, be distinct roots of the polynomial

$$
\begin{equation*}
f(z)=M_{1} z^{m_{1}}+\cdots+M_{b} z^{m_{b}}-s(N, a) z+s(N n, a)+j . \tag{4}
\end{equation*}
$$

If $s(N, a) \leq s(M, b)$, then (3) has m distinct, single-valued, nonzero, analytic power solutions of the form

$$
x_{i}(z)=\lambda_{i} z^{\mu_{i}}, i=1,2, \ldots, m ; z \in \Omega,
$$

where

$$
\begin{equation*}
\lambda_{i}=\left[\frac{\prod_{l=1}^{a} p_{l}^{N_{l} \mu_{i}}}{A \prod_{l=1}^{b} q_{l}^{M_{l} \mu_{i}^{m l}}}\left(\mu_{i}\right)_{n_{a}}^{s(N, a)}\left(\mu_{i}-n_{a}\right)_{n_{a-1}-n_{a}}^{s(N, a-1)} \cdots\left(\mu_{i}-n_{2}\right)_{n_{1}-n_{2}}^{s(N, 1)}\right]^{B_{i}}, \tag{5}
\end{equation*}
$$

and

$$
B_{i}=\frac{1-\mu_{i}}{s(M, b)+s(N n, a)-s(N, a)+j} .
$$

PROOF. Substituting $x(z)=\lambda z^{\mu}$ into (3), we obtain

$$
P_{\mu} \lambda^{s(N, a)}(\mu)_{n_{a}}^{s(N, a)}\left(\mu-n_{a}\right)_{n_{a-1}-n_{a}}^{s(N, a-1)} \cdots\left(\mu-n_{2}\right)_{n_{1}-n_{2}}^{s(N, 1)} z^{s(N, a) \mu-s(N n, a)}=Q_{\mu} A \lambda^{c} z^{r}
$$

where

$$
\begin{gathered}
c=\sum_{l=1}^{b} M_{l}\left(1+\mu+\cdots+\mu^{m_{l}-1}\right) \\
r=\sum_{l=1}^{b} M_{l} \mu^{m_{l}}+j \\
P_{\mu}=\prod_{l=1}^{a} p_{l}^{N_{l} \mu}
\end{gathered}
$$

and

$$
Q_{\mu}=\prod_{l=1}^{b} q_{l}^{M_{l} \mu^{m_{l}}}
$$

This leads to two requirements

$$
\begin{equation*}
P_{\mu} \lambda^{s(N, a)}(\mu)_{n_{a}}^{s(N, a)}\left(\mu-n_{a}\right)_{n_{a-1}-n_{a}}^{s(N, a)} \cdots\left(\mu-n_{2}\right)_{n_{1}-n_{2}}^{s(N, 1)}=Q_{\mu} A \lambda^{c} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
s(N, a) \mu-s(N n, a)=\sum_{l=1}^{b} M_{l} \mu^{m_{l}}+j \tag{7}
\end{equation*}
$$

or

$$
f(\mu)=0
$$

Note that the polynomial $f(z)$ does not have any nonnegative real roots if $s(N, a) \leq$ $s(M, b)$. Indeed, $f(0)=s(N n, a)+j>0$. For real $z \geq 1$, from $s(N, a) \leq s(M, b)$, we get $s(N, a) z \leq s(M, b) z \leq M_{1} z^{m_{1}}+\cdots+M_{b} z^{m_{b}}$ and so $f(z) \geq s(N n, a)+j>0$. For real $z \in(0,1)$, we have $f(z)>0-s(N, a)+s(N n, a)+j \geq 0$. Thus none of μ_{1}, \ldots, μ_{m} is a nonnegative real number. Substitute $\mu=\mu_{i}$ into (6), we may then solve for $\lambda=\lambda_{i} \neq 0$ and conclude that $\lambda_{i} z^{\mu_{i}}$ is a desired solution. The proof is complete.

We remark that if the condition $s(N, a) \leq s(M, b)$ fails to hold, the theorem is not true as can be seen from the following example.

EXAMPLE 1. Consider the equation

$$
\left(x^{(3)}(z)\right)\left(x^{(1)}(z)\right)^{3}=x^{[1]}(z)
$$

Here $s(N, 2)=4>s(M, 1)=1, f(z)=z-4 z+6$ has a unique root $\mu=2$ with $\lambda=0$, yielding only the trivial power function solution.

In certain cases, the number of solutions can be strengthened to m_{1} as follows:
COROLLARY 1. In addition to the hypotheses in Theorem 1 , suppose m_{1}, \ldots, m_{b} are all even, or, m_{1} is odd but $m_{2, \ldots}, m_{b}$ are even. Then there exist m_{1} distinct, single-valued, nonzero, analytic power function solutions.

Indeed, in the proof above, we already have $f(z)>0$ for each $z \geq 0$. If m_{1}, \ldots, m_{b} are even, then Descartes' rule of sign (see e.g. Barbeau [2, p.171]), tells us that $f(z)$ has no negative real root, while if m_{1} is odd but m_{2}, \ldots, m_{b} are even, then $f(z)$ has at most one negative real root. In either case, $f(z)$ cannot have repeated roots, other roots being complex conjugates. Hence, all m_{1} roots of $f(z)$ are distinct.

We remark that since $s(N, a)=1 \leq s(M, b)=k$ for equation (1), and $s(N, a)=$ $1 \leq s(M, b)=k_{1}+\cdots+k_{b}$ for equation (2), we see that our result is an extension of the main results in [2] and [3].

Observe that each solution $x_{i}(z)=\lambda_{i} z^{\mu_{i}}$ has a nontrivial fixed point α_{i} of the form

$$
\alpha_{i}=\lambda_{i}^{\frac{1}{1-\mu_{i}}}=\lambda_{i}^{\frac{1}{s(M, b)+s(N n, a)-s(N, a)+j}} \neq 0
$$

thus we may write each solution $x_{i}(z)$ as

$$
x_{i}(z)=\alpha_{i}^{1-\mu_{i}} z^{\mu_{i}}
$$

Expanding such solution about its fixed point, we immediately get the following consequence.

COROLLARY 2. Let μ_{1}, \ldots, μ_{m} be the distinct roots of (7), and

$$
\alpha_{i}=\lambda_{i}^{\frac{1}{1-\mu_{i}}}, i=1,2, \ldots, m
$$

where λ_{i} is defined by (5). Then in a neighborhood of each point α_{i}, the iterative functional differential equation (3) has an analytic solution of the form

$$
x_{i}(z)=\alpha_{i}+\frac{\left(\mu_{i}\right)_{1}}{1!}\left(z-\alpha_{i}\right)+\frac{\left(\mu_{i}\right)_{2}}{2!\alpha_{i}}\left(z-\alpha_{i}\right)^{2}+\cdots+\frac{\left(\mu_{i}\right)_{n}}{n!\alpha_{i}^{n-1}}\left(z-\alpha_{i}\right)^{n}+\cdots
$$

Acknowledgment. The first and second authors wish to thank Dr. Amorn Wasanawichit for his help in the translation of the reference [3].

References

[1] S. S. Cheng, J. G. Si and X. P. Wang, Recent studies on smooth solutions of iterative functional differential equations (in Chinese), J. Binzhou Teachers College, 14(4)(1998), 17-21.
[2] W. R. Li, S. S. Cheng and T. T. Lu, Closed form solutions of iterative functional differential equations, Applied Math. E-Notes, 1(2001), 1-4.
[3] W. R. Li, S. S. Cheng and L. J. Cheng, Analytic solution of an iterative differential equation (in Chinese), Math. in Practice and Theory, 32(2002),994-998.
[4] E. J. Barbeau, Polynomials, Springer-Verlag, New York, 1989.

[^0]: *Mathematics Subject Classifications: 39B12, 34K05.
 ${ }^{\dagger}$ Department of Mathematics, Kasetsart University, Bangkok 10900, Thailand
 ${ }^{\ddagger}$ Department of Mathematics, Kasetsart University, Bangkok 10900, Thailand
 ${ }^{\text {§ }}$ Department of Mathematics, Tsing Hua University, Taiwan 30043, R. O. China

