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Abstract

This paper presents an optimal singular stochastic problem on harvesting sys-
tem. For the first time we introduce the running function into the total expected
discounted harvested value. By relying on both stochastic calculus and the classi-
cal theory of singular control, we give a set of sufficient conditions for its solution
in terms of optimal return function. Moreover, we also derive its optimal harvest-
ing strategies and explicit form of optimal return function.

1 Introduction

Most models on stochastic harvesting model can be divided into two types. One is im-
pulse rotation control problem (see e.g. [1]), and the other is singular control problem
(see e.g. [2, 3, 4]). The above cited papers consider the determination of a harvesting
planning maximizing the expected cumulative present value of future yields. How-
ever, they overlook an important factor affecting realistic models of stochastic control.
Namely, they neglect the running costs in harvesting systems. We consider a class of
singular harvesting problem that includes the running function in the total expected
discounted harvested value. Other similar singular and impulse control problems can
be found in [5, 6].
Let (Ω,F , P ;Ft) be a complete probability space with filtration {Ft}, which is

assumed to be right-continuous, and F0 contains all the P -null sets in F . We assume
that a one-dimensional Brownian motion W = {W (t) : t ≥ 0} with respect to {Ft} is
given on this probability space.
Consider a large population having a size X̂ = {X̂(t); t ≥ 0} which in the absence

of harvesting evolves according to the Itô stochastic differential equation,

dX̂(t) = µ(X̂(t))dt+ σ(X̂(t))dW (t), X̂(0) = x, (1)

where x > 0, µ : R+ → R and σ : R+ → R are known to be sufficiently smooth (at
least continuous) mapping guaranteeing the existence of a solution to the differential
equation (1) (see [7]). In line with standard models for the size dynamics of a population
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134 Singular Stochastic Problem

stand, we assume that the upper boundary∞ of the state space is nature and the lower
boundary 0 is unattainable for the controlled diffusion (1).
If the population is subjected to harvesting, and ξt is the total number of individuals

harvested up to time t, then the size of the harvested population, X = {X(t) : t ≥ 0},
satisfies the stochastic differential equation

dX(t) = µ(X(t))dt+ σ(X(t))dW (t)− dξt, X(0) = x,

where x > 0, the harvesting admissible strategy ξt is assumed to be non-negative, non-
decreasing, left-continuous, {Ft}-adapted process with ξ0 = 0, and such that X(t) > 0.
We denote all the admissible strategies by Π. For every harvesting strategy ξ =

{ξt} ∈ Π, t ≥ 0, define the expected total time-discounted value of the harvested indi-
viduals starting with a population of size, x, i.e.

Vξ(x) = Ex

∞

0

e−αt{λdξt − f(X(t))dt}.

where λ > 0 represents the value of per unit harvested population, f is non-negative
running function which represents the running cost.
As usual, we denote by L1(R+) the class of π(x) with finite expected cumulative

present cost and denote this present cost by

(Rαπ)(x) = Ex

∞

0

e−αsπ(X(s))ds. (2)

In order to guarantee the finiteness of the objective function (2), we shall assume further
that the expected cumulative running cost is finite. i.e. f ∈ L1(R+).
Our objective is to choose an optimal harvesting strategy ξ∗ = {ξ∗t , t ≥ 0} ∈ Π such

that
V (x) = Vξ∗(x) = sup

ξ∈Π
Vξ(x). (3)

In the terminological spirit of Operations Research, we call the function V given by
(3) the optimal return function.

2 A Verification Theorem for Harvesting System

In this section, by applying the theory of stochastic calculus and Doléans-Dade-Meyer
formula, we obtain the verification theorem that the optimal return function and strat-
egy satisfy.

LEMMA 1. There exists a unique control strategy ξ∗ ∈ Π such that (i) 0 < X∗(t) =
x +

t

0
µ(X∗(s))ds + t

0
σ(X∗(s))dW (s) − ξt

∗ ≤ b for t > 0; (ii) ξ∗ is flat off for
{t > 0 : X∗(t) > b}; and (iii) ξ∗0+ = (x− b)I{x>b}.
PROOF. Let

ξt
∗ = max 0, max

u∈(0,t]
{x+

u

0

µ(X∗(s))ds+
u

0

σ(X∗(s))dW (s)− b} .
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Then Lemma 1 is a straight consequence of the properties of the Skorokhod equation
(see [8]).

REMARK 1. Except for a possible initial jump at t = 0 for x > b, which brings
X∗0+ on (0, b], the functions ξ∗ are actually continuous. Intuitively, if the initial size
x ≤ b, ξ∗ increases only when X∗ is at the point b so as to ensure X∗ ≤ b. On the
other hand, if the initial size x > b, the conclusion (iii) implies that ξ0+

∗ = x− b, that
is, X∗(0) jumps to point b immediately and such that X∗(0+) = b, then evolves on as
the case of X∗ with the initial point b.
As usual, we denote the infinitesimal generator A associated with the controlled

process X(t) by A = 1
2σ

2(x) d
2

dx2 + µ(x)
d
dx .

THEOREM 1.
(I) Suppose the mapping F : R+ → R is continuous, has two continuous derivatives,

and satisfies the conditions (i) F (x) ≥ λ for all x ∈ R+, (ii) ((A− α)F )(x) ≤ f(x) for
all x ∈ R+, and (iii) lim inft→∞ Ee−αtF (X(t)) = 0. Then, V (x) ≤ F (x) for all x ∈ R+.
(II) Suppose the mapping F , in addition to the conditions of (I), also satisfies the

following conditions: (iv) (A − α)F (x) = f(x) for all x ∈ (0, c], and (v) F (x) =
λ(x − c) + k for all x ≥ c, where k, c are constants and c > 0. Then, there exists an
optimal strategy ξ∗ ∈ Π such that

F (x) = Vξ∗(x), (4)

that is, F (x) is the optimal return function and ξ∗ is the corresponding optimal strategy.

PROOF. Let ξ ∈ Π be an arbitrary admissible strategy. Then, according to the
Doléans-Dade-Meyer formula (see [8]) and conditions (i) and (ii), we have

F (x) ≥ e−αT
∗
F (X(T ∗))−

T∗

0

e−αtf(X(t))dt−
T∗

0

e−αtF (X(t))σ(X(t))dW (t)

+
T∗

0

e−αtλdξtc −
0≤t≤T∗

e−αt[F (X(t+))− F (X(t))], (5)

where ξt
c denotes the continuous part of the admissible strategy ξt, T

∗ = r ∧ τ(r),
τ(r) = inf{t ≥ 0 : X(t) ≥ r}, and r > 0.
The definition of T ∗ implies Ex

T∗

0
e−αtF (X(t))σ(X(t))dW (t) = 0. Therefore, by

taking expectations to (5) and rearranging terms, we obtain

F (x) ≥ Exe
−αT∗F (X(T ∗))− Ex

T∗

0

e−αtf(X(t))dt+Ex
T∗

0

e−αtλdξtc

−Ex


0≤t≤T∗

e−αt[F (X(t+))− F (X(t))]
 .

In addition, we have that

F (X(t+))− F (X(t)) = −F (θ)∆ξt ≤ −λ∆ξt,
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here θ ∈ (X(t+),X(t)), ξt = X(t) −X(t+). Therefore, for any admissible strategy
ξ ∈ Π and all x ∈ R+, we have

F (x) ≥ Exe−αT∗F (X(T ∗)) + Ex
T∗

0

e−αtλdξt − Ex
T∗

0

e−αtf(X(t))dt.

Now invoking the condition (iii), by letting r →∞ and applying monotone conver-
gence theorem (see [8]), we see that

F (x) ≥ Ex
∞

0

e−αt{λdξt − f(X(t))dt},

i.e., F (x) ≥ supξ∈Π Vξ(x) = V (x), which completes the proof of (I).
Next, we will find a strategy ξ∗ ∈ Π such that F (x) = Vξ∗(x). First, let

ξt
∗ = max 0, max

u∈(0,t]
{x+

t

0

µ(X∗(s))ds+
t

0

σ(X∗(s))dW (s)− c} ,

then we will finish our job in two steps.
Step 1. Suppose x ∈ (0, c]. From Lemma 1, we know that ξ∗ is continuous for all

x ∈ (0, c] and increases only when X∗ = c. Moreover, F (x) implies that F (c) = λ.
Then by applying Doléans-Dade-Meyer formula once more and condition (iv), we see
that

F (x) = e−αT
∗
F (X∗(T ∗))

−
T∗

0

e−αt {f(X∗(t)dt− F (X∗(t))σ(X∗(t))dW (t)− λdξ∗t } .

For all x ∈ (0, c], by taking expectation and letting r→∞, we see that F (x) = Vξ∗(x).
Step 2. Suppose x > c. Applying Lemma 1 we know that Vξ∗(x) = λ(x−c)+Vξ∗(c).

Step 1 has shown that Vξ∗(c) = F (c). In light of the continuous property of F (x), we
know that F (c) = k. Thus, for all x > c, Vξ∗(x) = λ(x− c) + Fξ∗(c) = F (x).
The proof of (II) is complete.

3 Determination of the Optimal Return Function
and Corresponding Controls

If a function satisfies all the conditions of Theorem 1, then it is the optimal function
to problem (3). Therefore, we will find a value function that have all the properties of
F (x) of Theorem 1 in this section.

LEMMA 2. The mapping Rαf : R+ → R+ satisfies the following equation

((A− α)(Rαf))(x) + f(x) = 0.

The proof can be found in [9].
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Let ϕ(x) and φ(x) be two linearly independent fundamental solutions, with ϕ(x)
monotonically increasing and φ(x) monotonically decreasing, which span the set of
solutions of the ordinary differential equation (Au)(x) = αu(x).

LEMMA 3. Suppose Λ(x) = λ(µ(x)−αx)−f(x) satisfies Λ (x) ≥ 0 for x ∈ (0,M1],
Λ (x) ≤ 0 for x ∈ [M1,∞) and limx→∞ Λ(x) < 0, where M1 is a positive constant.
Then there exists some point m ≥M1 such that

m = arg max
x∈(0,∞)

λ+ (Rαf) (x)

ϕ (x)

= x∗ :
λ+ (Rαf) (x

∗)
ϕ (x∗)

≥ λ+ (Rαf) (x)

ϕ (x)
, x ∈ (0,∞) (6)

and
λ+ (Rαf) (x)

ϕ (x)
x=m

= 0. (7)

PROOF. Our assumption f ∈ L1(R+) implies that the expected cumulative running
costs value (Rαf)(x) can be expressed in terms of the Green function [7] as

(Rαf)(x) = B
−1φ(x)

x

0

ϕ(y)f(y)m (y)dy +B−1ϕ(x)
∞

x

φ(y)f(y)m (y)dy (8)

where m (x) = 2/(σ2(x)S (x)); B = (ϕ (x)φ(x) − φ (x)ϕ(x))/S (x) > 0 denotes the

constant Wronskian of the fundamental solutions and S (x) = exp − x 2µ(s)
σ2(s)ds .

Since B is a constant independent of x, standard differentiation of (8) and rearrange-
ments of terms yield

ϕ (x)

S (x)
(Rαf)(x)− (Rαf) (x)

S (x)
ϕ(x) =

x

0

ϕ(y)f(y)m (y)dy. (9)

Observe that if h : R+ → R is a twice continuously differentiable mapping on R+, then
applying Dynkin’s theorem (see [9]) to h(x), we have

Ex[e
−ατ(a,b)h(X(τ(a, b)))] = h(x) + Ex

τ(a,b)

0

e−αtL(X(t))dt, (10)

where L(x) = (Ah)(x)−αh(x) and τ(a, b) = inf{t ≥ 0 : X(t) ∈(a, b)} denotes the first
exit time of the underlying process X(t) from the open set (a, b) for which 0 < a < b <
∞. Since the left-hand side of equation (10) satisfies the ordinary differential equation
(Au)(x)− αu(x) = 0 subject to the boundary conditions u(a) = h(a) and u(b) = h(b)
we observe that

Ex[e
−ατ(a,b)h(X(τ(a, b)))] = h(a)

φ̂(x)

φ̂(a)
+ h(b)

ϕ̂(x)

ϕ̂(b)
, (11)

where ϕ̂(x) = ϕ(x) − ϕ(a)φ(x)φ(a) and φ̂(x) = φ(x) − φ(b)ϕ(x)ϕ(b) . On the other hand, since

the expected cumulative value in the right hand side of (10) satisfies the ordinary
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differential equation (Av)(x) − αv(x) + L(x) = 0 subject to the boundary conditions
v(a) = v(b) = 0, we see that

Ex

τ(a,b)

0

e−αsL(X(t))ds = B̂−1φ̂(x)
x

a

ϕ̂(y)L(y)m (y)dy

+B̂−1ϕ̂(x)
b

x

φ̂(y)L(y)m (y)dy.

where B̂ = Bφ̂(a)/φ(a) = Bϕ̂(b)/ϕ(b) denotes the constant Wronskian of ϕ̂(x) and

φ̂(x). Combining these results, (10) can now be expressed as

h(x) = h(a)
φ̂(x)

φ̂(a)
+ h(b)

ϕ̂(x)

ϕ̂(b)
− B̂−1φ̂(x)

x

a

ϕ̂(y)L(y)m (y)dy

−B̂−1ϕ̂(x)
b

x

φ̂(y)L(y)m (y)dy,

which, in turn, implies that

h(x)

ϕ̂(x)
=

h(a)φ̂(x)

φ̂(a)ϕ̂(x)
+
h(b)

ϕ̂(b)
− B̂−1 φ̂(x)

ϕ̂(x)

x

a

ϕ̂(y)L(y)m (y)dy

−B̂−1
b

x

φ̂(y)L(y)m(y)dy. (12)

By differentiation of (12) and rearranging terms, we see that

h (x)

S (x)
ϕ̂(x)− ϕ̂ (x)

S (x)
h(x) =

x

a

ϕ̂(y)L(y)m (y)dy − Bh(a)
φ(a)

.

Since the lower boundary 0 is unattainable for controlled process, then φ(0+) = ∞.
And if h(x) is bounded at the origin and L ∈ L1(R+), then letting a ↓ 0 yields

h (x)

S (x)
ϕ(x)− ϕ (x)

S (x)
h(x) =

x

0

ϕ(y)L(y)m (y)dy. (13)

Applying now (13) to the mapping λx gives rise to

λϕ(x)

S (x)
− ϕ (x)

S (x)
λx =

x

0

ϕ(y)(λ(µ(y)− αy))m (y)dy. (14)

Combining (14) and (9), we see that

λ+ (Rαf) (x)

S (x)
ϕ(x)− ϕ (x)

S (x)
(λx+ (Rαf)(x)) =

x

0

ϕ(y)Λ(y)m (y)dy. (15)

Equation (8) still holds for f(x) ≡ 1, that is ϕ (x)
S (x) = α

x

0
ϕ(y)m (y)dy. Thus

Λ(x)
ϕ (x)

S (x)
− α

x

0

ϕ(y)Λ(y)m (y)dy = g(x)



R. C. Yang and K. H. Liu 139

where

g(x) = α Λ(x)
x

0

ϕ(y)m (y)dy −
x

0

ϕ(y)Λ(y)m (y)dy .

Since ϕ(x) is non-negative, and the assumptions on Λ(x) imply Λ(M2) < 0 for some
M2 > M1, thus, for x > M2,

x

0

ϕ(y)Λ(y)m (y)dy ≥ Λ(x)
x

0

ϕ(y)m (y)dy. (16)

From (13), we know that g (x) = αΛ (x)
x

0
ϕ(y)m (y)dy. By the definition of g(x) and

(16), we know that g(0) = 0 and lim
x→∞ g(x) ≤ 0. Then, there exists some m > M1 such

that g(m) = 0, g(x) ≥ 0 for all x ∈ (0,m), and g(x) ≤ 0 for x > m.
On the other hand,

d

dx

λ+ (Rαf) (x)

ϕ (x)
=
(Rαf) (x)ϕ (x)− (λ+ (Rαf) (x))ϕ (x)

(ϕ (x))2
. (17)

Since ((A − α)(Rαf))(x) + f(x) = 0 and ((A − α)ϕ)(x) = 0, together with (15), we
can rewrite the right side of (17) as follows:

2S (x)

σ2(x)ϕ 2(x)
Λ(x)

ϕ (x)

S (x)
− α

x

0

ϕ(y)Λ(y)m (y)dy .

Consequently, (17) can be written as

d

dx

λ+ (Rαf) (x)

ϕ (x)
=

2S (x)

σ2(x)ϕ 2(x)
g(x). (18)

From the properties of g(x) just shown, we know that λ+(Rαf) (x)
ϕ (x) ≥ 0 for all

x ∈ (0,m), λ+(Rαf) (x)
ϕ (x) ≤ 0 for all x ∈ (m,∞) and d

dx
λ+(Rαf) (x)

ϕ (x)
x=m

= 0, the

conclusion of our Lemma follows readily from the above results, which completes the
proof.

THEOREM 2. Suppose that for any control strategy ξ ∈ Π,
lim inf
t→∞ Exe

−αtX(t) = 0, (19)

and Λ(x) = λ(µ(x)−αx)−f(x) satisfies the conditions in Lemma 3. Then, there exists
a function w(x) satisfies all the conditions of Theorem 1 for all x ∈ R+.
PROOF. Define w(x) by

w(x) =
−(Rαf)(x) +

λ+(Rαf) (m)
ϕ (m) ϕ(x) x ≤ m

λ(x−m)− (Rαf)(m) +
λ+(Rαf) (m)

ϕ (m) ϕ(m) x ≥ m . (20)

Eq. (20) implies that w(x) ∈ C(R+) ∩C1(R+). And (6) as well as (7) show that
(Rαf) (m)ϕ (m)− (λ+ (Rαf) (m))ϕ (m) = 0.
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Therefore, w (x) is continuous on (0,∞). Since λ+(Rαf) (x)
ϕ (x) ≤ λ+(Rαf) (m)

ϕ (m) , then,

−(Rαf) (x) +
λ+ (Rαf) (m)

ϕ (m)
ϕ (x) ≥ λ.

This implies that condition (i) in Theorem 1 is satisfied. Put c = m and k =

−(Rαf)(m) +
λ+(Rαf) (m)

ϕ (m) ϕ(m). Then w(x) satisfies condition (v) in Theorem 1. Ob-

viously, for all x ∈ (0,m], Lemma 2 and the definition of ϕ(x) show that
(A− α)w(x) = f(x),

thus, condition (iv) in Theorem 1 is satisfied.
Next we will prove (A − α)w(x) ≤ f(x) for all x ≥ m. That is, λµ(x) − α(λ(x −

m) + w(m)) ≤ f(x). Since λ(µ(x)− αx)− f(x) is decreasing for x > m, we have that
λ(µ(x)− αx)− f(x) ≤ λ(µ(m)− αm)− f(m).

And (20) implies that λµ(m)− αw(m)− f(m) = 0, we have that
λµ(x)− λα(x−m)− αw(m)− f(x) ≤ λµ(m)− αw(m)− f(m) = 0,

condition (ii) in Theorem 1 follows.
Obviously, condition (iii) in Theorem 1 holds for X(t) ∈ (0,m]. And for X(t) > m,

by the definition of w(x) and assumption (19), we know that condition (iii) in Theorem
1 is satisfied. Therefore, for all x ∈ R+, condition (iii) in Theorem 1 is satisfied. An
application of Theorem 1 yields our conclusion.

From the above knowledge, we arrive at the following result.

THEOREM 3. Suppose the assumption in Lemma 3 and (19) hold. Then w(x)
given by (20) is the optimal return function to problem (3), and the corresponding
singular control strategy ξ∗ is given by

ξt
∗ = max[0, max

u∈(0,t]
{x+

t

0

µ(X∗(s))ds+
t

0

σ(X∗(s))dW (s)−m}].
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