A Note On The Integral Criterion For Spectral Dichotomy Of Regular Pencils*

Miloud Sadkane ${ }^{\dagger}$

Received 3 September 2003

Abstract

Perturbations of spectral projectors generated by linear matrix pencils are investigated. Estimates for norms of perturbed projectors are derived.

1 Introduction

Let A and B be $n \times n$ complex matrices such that the pencil $\lambda B-A$ is regular having no eigenvalues on the positively oriented closed contour γ. The spectral dichotomy methods compute the spectral projector

$$
\begin{equation*}
P_{\gamma}(A, B)=\frac{1}{2 i \pi} \int_{\gamma}(\lambda B-A)^{-1} B d \lambda \tag{1}
\end{equation*}
$$

onto the deflating subspace of $\lambda B-A$ corresponding to the eigenvalues inside γ. Along with $P_{\gamma}(A, B)$, these methods compute the so-called integral criterion for spectral dichotomy, a quantity that gives an idea about the confidence to be placed in the numerical quality of the computed spectral projector $P_{\gamma}(A, B)$. This quantity is the spectral norm $\left\|H_{\gamma}(A, B)\right\|_{2}$ of the matrix integral

$$
\begin{equation*}
H_{\gamma}(A, B)=\frac{1}{L_{\gamma}} \int_{\gamma}(\lambda B-A)^{-*}(\lambda B-A)^{-1}|d \lambda| \tag{2}
\end{equation*}
$$

where $L_{\gamma}=\int_{\gamma}|d \lambda|$ is the length of γ. Here and throughout this note, an expression like $(\lambda B-A)^{-*}$ means the conjugate transpose of the inverse of $\lambda B-A$. As will be shown later, the smaller $\left\|H_{\gamma}(A, B)\right\|_{2}$, the better the stability of the projector $P_{\gamma}(A, B)$ with respect to perturbations in A in B. In case where the curve γ is a circle, there are now efficient algorithms that compute $P_{\gamma}(A, B)$ and $\left\|H_{\gamma}(A, B)\right\|_{2}[5]$ or $P_{\gamma}(A, B)$ and $H_{\gamma}(A, B)$ [3]. Moreover, in this case, $P_{\gamma}(A, B)$ and $H_{\gamma}(A, B)$ are related by a generalized Lyapunov equation (see first line of (14)).

The aim of this note is to show that for general closed contour γ, perturbation estimates for $P_{\gamma}(A, B)$ and $H_{\gamma}(A, B)$ can be derived showing that the two variables

[^0]functions $(A, B) \mapsto\left\|P_{\gamma}(A, B)\right\|_{2}$ and $(A, B) \mapsto\left\|H_{\gamma}(A, B)\right\|_{2}$ are continuous. Their modulus of continuity which involve the resolvent norm of the pencil $\lambda B-A$ give permissible bounds for the stable computation of $P_{\gamma}(A, B)$ and $H_{\gamma}(A, B)$. Also some relations connecting the norms of $P_{\gamma}(A, B)$ and $H_{\gamma}(A, B)$ are derived.

2 Perturbations of $P_{\gamma}(A, B)$ and $H_{\gamma}(A, B)$ and estimate on $\left\|H_{\gamma}(A, B)\right\|_{2}$

Let E and F be two perturbations on A and B respectively such that the perturbed pencil $\lambda(B+F)-(A+E)$ remains regular having no eigenvalues on γ. Assume that neither $\lambda B-A$ nor $\lambda(B+F)-(A+E)$ have the infinite eigenvalue $\lambda=\infty$ and that $\sqrt{\|E\|_{2}^{2}+\|F\|_{2}^{2}} \leq \epsilon$. Define

$$
\begin{equation*}
m_{\gamma}(A, B)=\max _{\lambda \in \gamma}\left(\left\|(\lambda B-A)^{-1}\right\|_{2} \sqrt{1+|\lambda|^{2}}\right) \tag{3}
\end{equation*}
$$

This quantity appears in a natural way when comparing the projectors $P_{\gamma}(A, B)$ with $P_{\gamma}(A+E, B+F)$. It was analyzed in the framework of ϵ-pseudospectrum of the pencil $\lambda B-A$ defined as (see [4]):

$$
\begin{equation*}
\Sigma_{\epsilon}(A, B)=\left\{\lambda: \quad\left\|(\lambda B-A)^{-1}\right\|_{2} \sqrt{1+|\lambda|^{2}} \geq \frac{1}{\epsilon}\right\} . \tag{4}
\end{equation*}
$$

The following proposition gives a perturbation result on the spectral projector $P_{\gamma}(A, B)$. It is a generalization to matrix pencils of the result given in [2, Sec. 8.3].

PROPOSITION 2.1. Let $m_{\gamma} \equiv m_{\gamma}(A, B)$ and assume that $\epsilon m_{\gamma}<1$. Then

$$
\begin{equation*}
\left\|P_{\gamma}(A+E, B+F)-P_{\gamma}(A, B)\right\|_{2} \leq \frac{1}{2 \pi} L_{\gamma} \epsilon m_{\gamma} \frac{1+m_{\gamma}\|B\|_{2}}{1-\epsilon m_{\gamma}} \tag{5}
\end{equation*}
$$

PROOF. A direct computation gives

$$
\begin{gathered}
P_{\gamma}(A+E, B+F)=\frac{1}{2 i \pi} \int_{\gamma}(\lambda(B+F)-(A+E))^{-1}(B+F) d \lambda= \\
\frac{1}{2 i \pi} \int_{\gamma}\left(I+(\lambda B-A)^{-1}(\lambda F-E)\right)^{-1}(\lambda B-A)^{-1}(B+F) d \lambda .
\end{gathered}
$$

Let

$$
X(\lambda)=(\lambda B-A)^{-1}(\lambda F-E)
$$

Then

$$
\begin{gathered}
P_{\gamma}(A+E, B+F)-P_{\gamma}(A, B)= \\
\frac{1}{2 i \pi} \int_{\gamma}(I+X(\lambda))^{-1}(\lambda B-A)^{-1}\left(F-(\lambda F-E)(\lambda B-A)^{-1} B\right) d \lambda
\end{gathered}
$$

Taking the norm we obtain

$$
\begin{aligned}
& \left\|P_{\gamma}(A+E, B+F)-P_{\gamma}(A, B)\right\|_{2} \leq \\
& \frac{1}{2 \pi} \int_{\gamma}\left\|(I+X(\lambda))^{-1}\right\|_{2}\left\|(\lambda B-A)^{-1}\right\|_{2} \\
& \times\left(\|F\|_{2}+\|\lambda F-E\|_{2}\left\|(\lambda B-A)^{-1}\right\|_{2}\|B\|_{2}\right)|d \lambda| .
\end{aligned}
$$

But

$$
\|X(\lambda)\|_{2} \leq\left\|(\lambda B-A)^{-1}\right\|_{2} \sqrt{1+|\lambda|^{2}} \sqrt{\|E\|_{2}^{2}+\|F\|_{2}^{2}} \leq \epsilon m_{\gamma}<1
$$

Therefore

$$
\left\|(I+X(\lambda))^{-1}\right\|_{2} \leq \frac{1}{1-\epsilon m_{\gamma}}
$$

from which the proof easily follows.

REMARKS

1. The proof of Proposition 2.1 excludes the case where $\lambda=\infty$ is an eigenvalue of the pencil $\lambda B-A$. This happens when B is singular. Then the pencil $\lambda A-B$ has the eigenvalue $\lambda=0$ (see [6]) and it suffices to consider the projector

$$
\begin{equation*}
P_{\infty}(A, B):=P_{\gamma_{0}}(B, A)=\frac{1}{2 i \pi} \int_{\gamma_{0}}(\lambda A-B)^{-1} A d \lambda \tag{6}
\end{equation*}
$$

onto the deflating subspace of $\lambda A-B$ corresponding to the eigenvalue $\lambda=0$ enclosed by a contour γ_{0}. Similarly to Proposition 2.1, it can be shown that

$$
\begin{equation*}
\left\|P_{\infty}(A+E, B+F)-P_{\infty}(A, B)\right\|_{2} \leq \frac{1}{2 \pi} L_{\gamma_{0}} \epsilon m_{\gamma_{0}} \frac{1+m_{\gamma_{0}}\|A\|_{2}}{1-\epsilon m_{\gamma_{0}}} \tag{7}
\end{equation*}
$$

where $L_{\gamma_{0}}$ is the length of $\gamma_{0}, m_{\gamma_{0}}=\max _{\lambda \in \gamma_{0}}\left(\left\|(\lambda A-B)^{-1}\right\|_{2} \sqrt{1+|\lambda|^{2}}\right), E$ and F are perturbations such that $\sqrt{\|E\|_{2}^{2}+\|F\|_{2}^{2}} \leq \epsilon$ and $\epsilon m_{\gamma_{0}}<1$.
2. The condition $\epsilon m_{\gamma}<1$ in Proposition 2.1 is clearly satisfied if $\partial \Sigma_{\epsilon}(A, B) \cap \gamma=\emptyset$ where $\partial \Sigma_{\epsilon}(A, B)$ denotes the boundary of $\Sigma_{\epsilon}(A, B)$. The stability of the projector $P_{\gamma}(A, B)$, as a function of the variables A and B, is ensured provided that $\epsilon m_{\gamma}<$ 1 and $L_{\gamma} \epsilon m_{\gamma}\left(1+m_{\gamma}\|B\|_{2}\right) \ll 1$. This implies that the number of eigenvalues enclosed by γ remains constant. For example, the condition $m_{\gamma}^{2} \ll 1 / \epsilon$ is sufficient for the stability of $P_{\gamma}(A, B)$ with respect to perturbations E and F. The quantity m_{γ} is actually a modification (up to the term $\sqrt{1+|\lambda|^{2}}$) of the stability radius of the pencil $\lambda B-A$. It is difficult to compute and our aim (see Proposition 2.4) is to show that the largest eigenvalue of the Hermitian positive definite matrix $H_{\gamma}(A, B)$ gives the same information as m_{γ}.

Using analogous perturbation techniques, the following proposition shows the continuity of the function $(A, B) \mapsto\left\|H_{\gamma}(A, B)\right\|_{2}$.

PROPOSITION 2.2. Assume that $\epsilon m_{\gamma}<1$. Then

$$
\begin{equation*}
\left\|H_{\gamma}(A+E, B+F)-H_{\gamma}(A, B)\right\|_{2} \leq \frac{\epsilon m_{\gamma}\left(2+\epsilon m_{\gamma}\right)}{\left(1-\epsilon m_{\gamma}\right)^{2}}\left\|H_{\gamma}(A, B)\right\|_{2} \tag{8}
\end{equation*}
$$

PROOF.

$$
H_{\gamma}(A+E, B+F)=\frac{1}{L_{\gamma}} \int_{\gamma}(\lambda(B+F)-(A+E))^{-*}(\lambda(B+F)-(A+E))^{-1}|d \lambda|
$$

A few calculations show that
$(\lambda(B+F)-(A+E))^{-*}(\lambda(B+F)-(A+E))^{-1}=(\lambda B-A)^{-*}(I-S(\lambda))(\lambda B-A)^{-1}$ where

$$
\begin{aligned}
I-S(\lambda) & =(I+X(\lambda))^{-*}(I+X(\lambda))^{-1} \\
X(\lambda) & =(\lambda B-A)^{-1}(\lambda F-E)
\end{aligned}
$$

Thus

$$
\begin{gathered}
\left\|H_{\gamma}(A+E, B+F)-H_{\gamma}(A, B)\right\|_{2}= \\
\max _{\|x\|_{2}=1} \frac{1}{L_{\gamma}}\left|\int_{\gamma} x^{*}(\lambda B-A)^{-*} S(\lambda)(\lambda B-A)^{-1} x\right| d \lambda| | \leq \\
\max _{\lambda \in \gamma}\|S(\lambda)\|_{2} \max _{\|x\|_{2}=1} \frac{1}{L_{\gamma}} \int_{\gamma} x^{*}(\lambda B-A)^{-*}(\lambda B-A)^{-1} x|d \lambda|= \\
\max _{\lambda \in \gamma}\|S(\lambda)\|_{2}\left\|H_{\gamma}(A, B)\right\|_{2} .
\end{gathered}
$$

The proof terminates by noting that (see the proof of Proposition 2.1)

$$
\|X(\lambda)\|_{2} \leq \epsilon m_{\gamma}, \quad\left\|(I+X(\lambda))^{-1}\right\|_{2} \leq \frac{1}{1-\epsilon m_{\gamma}}
$$

and that $\|S(\lambda)\|_{2} \equiv\left\|(I+X(\lambda))^{-*}\left(X(\lambda)+X(\lambda)^{*}+X(\lambda)^{*} X(\lambda)\right)(I+X(\lambda))^{-1}\right\|_{2} \leq$ $\frac{\epsilon m_{\gamma}\left(2+\epsilon m_{\gamma}\right)}{\left(1-\epsilon m_{\gamma}\right)^{2}}$.

The following proposition shows how the norms of $P_{\gamma}(A, B)$ and $H_{\gamma}(A, B)$ are related.

PROPOSITION 2.3. The projector $P_{\gamma}(A, B)$ and the matrix $H_{\gamma}(A, B)$ satisfy

$$
\begin{equation*}
\left\|P_{\gamma}(A, B)\right\|_{2} \leq \frac{L_{\gamma}}{2 \pi} \sqrt{\left\|B^{*} H_{\gamma}(A, B) B\right\|_{2}} \tag{9}
\end{equation*}
$$

PROOF.

$$
\begin{aligned}
\left\|P_{\gamma}(A, B)\right\|_{2}^{2} & =\max _{\|x\|_{2}=1}\left\|P_{\gamma}(A, B) x\right\|_{2}^{2} \\
& \leq \max _{\|x\|_{2}=1} \frac{1}{4 \pi^{2}}\left(\int_{\gamma}\left\|(\lambda B-A)^{-1} B x\right\|_{2}|d \lambda|\right)^{2} \\
& \leq \max _{\|x\|_{2}=1} \frac{L_{\gamma}}{4 \pi^{2}} \int_{\gamma}\left\|(\lambda B-A)^{-1} B x\right\|_{2}^{2}|d \lambda| \\
& =\frac{L_{\gamma}^{2}}{4 \pi^{2}}\left\|B^{*} H_{\gamma}(A, B) B\right\|_{2}
\end{aligned}
$$

The second inequality above comes from the Cauchy-Schwarz inequality.
Next we show how m_{γ} is related to the norm of $H_{\gamma}(A, B)$. But first we need the following lemma.

LEMMA 2.1. If $\lambda_{0} \in \gamma$ and $\alpha>0$, then

$$
\int_{\gamma} \frac{|d \lambda|}{\left(1+\alpha\left|\lambda-\lambda_{0}\right|\right)^{2}} \geq \frac{L_{\gamma}}{1+\alpha L_{\gamma}}
$$

PROOF. Consider the parametric representation of the contour γ as : $\lambda=\lambda(\theta)$ and denote by $L(\theta)=\int_{\theta_{0}}^{\theta}\left|\lambda^{\prime}(\varphi)\right| d \varphi$ the arc length between $\lambda_{0} \equiv \lambda\left(\theta_{0}\right)$ and $\lambda(\theta)$. Then

$$
\int_{\gamma} \frac{|d \lambda|}{\left(1+\alpha\left|\lambda-\lambda_{0}\right|\right)^{2}}=\int_{\theta_{0}}^{\theta_{0}+L_{\gamma}} \frac{\left|\lambda^{\prime}(\theta)\right|}{\left(1+\alpha\left|\lambda(\theta)-\lambda\left(\theta_{0}\right)\right|\right)^{2}} d \theta
$$

But

$$
\left|\lambda(\theta)-\lambda\left(\theta_{0}\right)\right|=\left|\int_{\theta_{0}}^{\theta} \lambda^{\prime}(\varphi) d(\varphi)\right| \leq L(\theta)
$$

Hence

$$
\int_{\gamma} \frac{|d \lambda|}{\left(1+\alpha\left|\lambda-\lambda_{0}\right|\right)^{2}} \geq \int_{\theta_{0}}^{\theta_{0}+L_{\gamma}} \frac{\left|L^{\prime}(\theta)\right|}{(1+\alpha L(\theta))^{2}} d \theta=\frac{L_{\gamma}}{1+\alpha L_{\gamma}}
$$

PROPOSITION 2.4. We have

$$
\begin{align*}
\frac{1}{1+\left|\lambda_{0}\right|^{2}} \frac{m_{\gamma}^{2}}{1+m_{\gamma}\|B\|_{2} L_{\gamma}} & \leq\left\|H_{\gamma}(A, B)\right\|_{2} \leq m_{\gamma}^{2} \tag{10}\\
\frac{d_{\gamma}^{2}}{1+d_{\gamma}\|B\|_{2} L_{\gamma}} & \leq\left\|H_{\gamma}(A, B)\right\|_{2} \leq d_{\gamma}^{2} \tag{11}
\end{align*}
$$

where $\lambda_{0} \in \gamma$ and $d_{\gamma}=\max _{\lambda \in \gamma}\left\|(\lambda B-A)^{-1}\right\|_{2}$.
PROOF.

$$
\begin{aligned}
\left\|H_{\gamma}(A, B)\right\|_{2} & =\max _{\|x\|_{2}=1}\left(H_{\gamma}(A, B) x, x\right) \\
& =\max _{\|x\|_{2}=1} \frac{1}{L_{\gamma}} \int_{\gamma}\left\|(\lambda B-A)^{-1} x\right\|_{2}^{2}|d \lambda| \\
& \leq \frac{1}{L_{\gamma}} \int_{\gamma} d_{\gamma}^{2}|d \lambda|=d_{\gamma}^{2} \leq m_{\gamma}^{2}
\end{aligned}
$$

Now let $\lambda_{0} \in \gamma$ and $x_{0} \in \mathbf{C}^{n}$ with $\left\|x_{0}\right\|_{2}=1$ such that

$$
m_{\gamma}(A, B)=\left\|\left(\lambda_{0} B-A\right)^{-1}\right\|_{2} \sqrt{1+\left|\lambda_{0}\right|^{2}}
$$

and

$$
\left\|\left(\lambda_{0} B-A\right)^{-1}\right\|_{2}=\left\|\left(\lambda_{0} B-A\right)^{-1} x_{0}\right\|_{2}
$$

From the identity

$$
(\lambda B-A)^{-1}=\left(\lambda_{0} B-A\right)^{-1}+\left(\lambda_{0}-\lambda\right)\left(\lambda_{0} B-A\right)^{-1} B(\lambda B-A)^{-1}
$$

we obtain
$\left\|(\lambda B-A)^{-1} x_{0}\right\|_{2} \geq\left\|\left(\lambda_{0} B-A\right)^{-1} x_{0}\right\|_{2}-\left|\lambda-\lambda_{0}\right|\left\|\left(\lambda_{0} B-A\right)^{-1}\right\|_{2}\|B\|_{2}\left\|(\lambda B-A)^{-1} x_{0}\right\|_{2}$.
Hence

$$
\left\|(\lambda B-A)^{-1} x_{0}\right\|_{2} \geq \frac{\left\|\left(\lambda_{0} B-A\right)^{-1}\right\|_{2}}{1+\left|\lambda-\lambda_{0}\right|\left\|\left(\lambda_{0} B-A\right)^{-1}\right\|_{2}\|B\|_{2}}
$$

Therefore

$$
\begin{aligned}
\left\|H_{\gamma}(A, B)\right\|_{2} & \geq \frac{1}{L_{\gamma}} \int_{\gamma}\left\|(\lambda B-A)^{-1} x_{0}\right\|_{2}^{2}|d \lambda| \\
& \geq \frac{1}{L_{\gamma}}\left\|\left(\lambda_{0} B-A\right)^{-1}\right\|_{2}^{2} \int_{\gamma} \frac{|d \lambda|}{\left(1+\left\|\left(\lambda_{0} B-A\right)^{-1}\right\|_{2}\|B\|_{2}\left|\lambda-\lambda_{0}\right|\right)^{2}}
\end{aligned}
$$

and from Lemma 2.1 we obtain

$$
\begin{aligned}
\left\|H_{\gamma}(A, B)\right\|_{2} & \geq \frac{1}{L_{\gamma}}\left\|\left(\lambda_{0} B-A\right)^{-1}\right\|_{2}^{2} \frac{L_{\gamma}}{1+\left\|\left(\lambda_{0} B-A\right)^{-1}\right\|_{2}\|B\|_{2} L_{\gamma}} \\
& \geq \frac{1}{1+\left|\lambda_{0}\right|^{2}} \frac{m_{\gamma}^{2}}{1+m_{\gamma}\|B\|_{2} L_{\gamma}} .
\end{aligned}
$$

With the same reasoning, we prove the bounds (11).

REMARKS

1. Proposition 2.3 shows that when $\left\|P_{\gamma}(A, B)\right\|_{2}$ is large, then so is the quantity $\sqrt{\left\|B^{*} H_{\gamma}(A, B) B\right\|_{2}}$. Then Proposition 2.4 shows that $d_{\gamma}\|B\|_{2}$ and hence $m_{\gamma}\|B\|_{2}$ are also large. Conversely, a large m_{γ} means that the $\epsilon-$ pseudospectrum of $\lambda B-A$ intersects the contour γ (see [4]) and therefore that the projector $P_{\gamma}(A, B)$ may not be well defined.
Also, Proposition 2.4 shows that $\left\|H_{\gamma}(A, B)\right\|_{2}$ can be as large as d_{γ}^{2}. The lower bounds in (10) and (11) are probably not optimal, but they show that

$$
\mathcal{O}\left(m_{\gamma}\right) \leq\left\|H_{\gamma}(A, B)\right\|_{2} \leq d_{\gamma}^{2} \leq m_{\gamma}^{2}
$$

2. The case where γ is a circle is important in stability analysis of discrete-time systems (or difference equations). If for instance $\gamma=C$ is the unit circle, then the projector $P_{\gamma}(A, B)$ and the matrix $H_{\gamma}(A, B)$ become

$$
\begin{align*}
P & \equiv P_{C}(A, B) \tag{12}\\
H & =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(B-e^{-i \theta} A\right)^{-1} B d \theta \tag{13}\\
H H_{C}(A, B) & =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(B-e^{-i \theta} A\right)^{-*}\left(B-e^{-i \theta} A\right)^{-1} d \theta
\end{align*}
$$

Using the Kronecker decomposition $[1,6]$ of A and B, it can easily be shown that P and H satisfy the following properties

$$
\left\{\begin{array}{l}
B^{*} H B-A^{*} H A=P^{*} P-(I-P)^{*}(I-P) \\
P^{2}=P,(\tilde{H} P)^{*}=\tilde{H} P \text { with } \tilde{\mathrm{H}}=(\mathrm{A} \pm \mathrm{B})^{*} \mathrm{H}(\mathrm{~A} \pm \mathrm{B}) \tag{14}
\end{array}\right.
$$

For that special case, an algorithm has recently been proposed in [3]. It computes in a stable way the projector P and the scaled matrix H taken in the following form:

$$
H=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(B-e^{-i \theta} A\right)^{-*} H^{(0)}\left(B-e^{-i \theta} A\right)^{-1} d \theta
$$

where $H^{(0)}$ is an arbitrary hermitian positive definite matrix used for scaling purposes.
3. It would be interesting to derive systems analogous to (14) for the contour γ.

References

[1] F. R. Gantmacher, Théorie des matrices, Vol 2., Dunod, Paris, 1966.
[2] S. K. Godunov, Modern Aspects of Linear Algebra, The Scientific Book, Novosibirsk, 1997, (In Russian). English transl. Amer. Math. Soc., Vol. 175, 1998.
[3] S. K. Godunov and M. Sadkane, Some new algorithms for the spectral dichotomy methods, Lin. Alg. Applic, 358(2003), 173-194.
[4] P.-F. Lavallée and M. Sadkane, Pseudospectra of linear matrix pencils by block diagonalization, Computing, 60(1998), 133-156.
[5] A. N. Malyshev, Parallel algorithm for solving some spectral problems of linear algebra, Lin. Alg. Applic, 188-189(1993), 489-520.
[6] G. Stewart and J.-G. Sun, Matrix Perturbation Theory, Academic Press, New York, 1990.

[^0]: *Mathematics Subject Classifications: 34D09, 15A22.
 ${ }^{\dagger}$ Université de Bretagne Occidentale. Département de Mathématiques. 6, Av. Le Gorgeu. BP 809. 29285 Brest Cedex. France

