Stability In A Nonlinear Four-Term Recurrence Equation*

Shu-rong Sun ${ }^{\dagger}$, Zhenlai Han ${ }^{\ddagger}$

Received 9 September 2003

Abstract

In this paper, we provide sufficient conditions for the existence of unbounded solutions and the global attractivity of solutions of a four-term recurrence equation.

1 Introduction

Difference equations appear naturally as discrete analogues and as numerical solutions of differential and delay differential equations having applications in biology, ecology, physics, etc. Recently there has been a lot of work concerning the boundedness, and the global asymptotic stability of the solutions of nonlinear difference equations (see [1-6] and the references cited therein). In this paper, we study the difference equation

$$
\begin{equation*}
x_{n+2}=f\left(x_{n+1}, x_{n}, x_{n-1}\right), n=0,1, \ldots \tag{1}
\end{equation*}
$$

under the initial conditions $x_{-1}, x_{0}, x_{1} \geq 0$ and $x_{-1}^{2}+x_{0}^{2}+x_{1}^{2}>0$, where the function f satisfies some of the following conditions:
$\left(\mathrm{H}_{1}\right) f \in C\left[[0, \infty)^{3} \backslash\{(0,0,0)\},(0, \infty)\right]$;
$\left(\mathrm{H}_{2}\right) f(u, v, w)$ is decreasing in u, v and w;
$\left(\mathrm{H}_{3}\right)$ the equation $x=f(x, x, x)$ has a unique positive equilibrium $x=\bar{x}>0$, that is, \bar{x} is a positive fixed point of f;
$\left(\mathrm{H}_{4}\right)$ there exist $M_{1}, M_{2}, M_{3} \geq \bar{x}$ such that

$$
f\left(M_{1}, 0,0\right) \leq \bar{x}, f\left(0, M_{2}, 0\right) \leq \bar{x}, f\left(0,0, M_{3}\right) \leq \bar{x}
$$

$\left(\mathrm{H}_{5}\right) H^{2}(x)>x$ for $0<x<\bar{x}$, where $H(x)=f(x, x, x)$;
$\left(\mathrm{H}_{6}\right)$ there exists a $K \geq \bar{x}$ such that for all $u>K$,

$$
G(u)=f(f(0,0, u), f(0, u, 0), f(u, 0,0))>u
$$

[^0]Our aim in this paper is to investigate the existence of unbounded solutions and the attractivity of solutions of (1).

The initial conditions $x_{-1}, x_{0}, x_{1} \geq 0$ and $x_{-1}^{2}+x_{0}^{2}+x_{1}^{2}>0$ determine a corresponding unique solution $\left\{x_{n}\right\}_{n=-1}^{\infty}$ of (1). The set of all such solutions will be denoted by Ω. The equilibrium \bar{x} of (1) is called a global attractor if every solution $\left\{x_{n}\right\}$ in Ω satisfies $\lim _{n \rightarrow \infty} x_{n}=\bar{x}$. A real interval I is called an invariant interval for (1) if the additional conditions $x_{-1}, x_{0}, x_{1} \in I$ imply the corresponding solution $\left\{x_{n}\right\}_{n=-1}^{\infty} \subset I$. \bar{x} is a global attractor for solutions of (1) originated from I if every solution in Ω under the additional condition that $x_{-1}, x_{0}, x_{1} \in I$ satisfies $\lim _{n \rightarrow \infty} x_{n}=\bar{x}$.

2 Existence of Unbounded Solutions

We first establish the existence of an unbounded solution of (1).
THEOREM 1. Assume that the hypotheses $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{4}\right)$ and $\left(\mathrm{H}_{6}\right)$ are satisfied. Then there exist unbounded solutions in Ω.

PROOF. Consider any solution $\left\{x_{n}\right\}_{n=-1}^{\infty}$ in Ω that satisfies $x_{1}>K>0$. Then $x_{2}=f\left(x_{1}, x_{0}, x_{-1}\right)<f\left(x_{1}, 0,0\right), x_{3}=f\left(x_{2}, x_{1}, x_{0}\right)<f\left(0, x_{1}, 0\right), x_{4}=f\left(x_{3}, x_{2}, x_{1}\right)<$ $f\left(0,0, x_{1}\right)$ and

$$
x_{5}=f\left(x_{4}, x_{3}, x_{2}\right)>f\left(f\left(0, x_{1}, 0\right), f\left(0, x_{1}, 0\right), f\left(x_{1}, 0,0\right)\right)>x_{1}
$$

By induction, we obtain

$$
\begin{equation*}
x_{4 k+5}>f\left(f\left(0,0, x_{4 k+1}\right), f\left(0, x_{4 k+1}, 0\right), f\left(x_{4 k+1}, 0,0\right)\right)>x_{4 k+1} \tag{2}
\end{equation*}
$$

for $k=0,1,2, \ldots$. Assume to the contrary that $\left\{x_{4 k+1}\right\}$ is bounded above. Since $\left\{x_{4 k+1}\right\}$ is increasing, it must converge. Let

$$
\lambda=\lim _{k \rightarrow \infty} x_{4 k+1}
$$

Since $\lambda>K$, from $\left(H_{5}\right)$, it follows that

$$
f(f(0,0, \lambda), f(0, \lambda, 0), f(\lambda, 0,0))>\lambda
$$

On the other hand, by letting $k \rightarrow \infty$ in (2), we find

$$
\lambda \geq f(f(0,0, \lambda), f(0, \lambda, 0), f(\lambda, 0,0))
$$

which is a contradiction. The proof is complete.
EXAMPLE 1. Consider the Equation

$$
\begin{equation*}
x_{n+2}=\frac{1}{x_{n+1}^{2}+x_{n}^{2}+x_{n-1}^{2}}, n=0,1, \ldots \tag{3}
\end{equation*}
$$

Let $M_{1}=M_{2}=M_{3}=\sqrt[6]{3}, K=3$ and $\bar{x}=\frac{1}{\sqrt[3]{3}}$. Then it is easy to show that $f(u, v, w)=\frac{1}{u^{2}+v^{2}+w^{2}}$ satisfies the hypotheses $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{4}\right)$ and $\left(\mathrm{H}_{6}\right)$. Hence by Theorem 1 , there exists a solution of (3) that is unbounded.

3 Attractivity

In this section, we study the attractivity of the positive equilibrium \bar{x} of (1). Let $I \subset(0, \infty)$ denote the maximal interval containing \bar{x} such that the function h, defined by

$$
\begin{equation*}
h(x)=f(f(x, x, x), f(x, x, x), f(x, x, x)) \tag{4}
\end{equation*}
$$

satisfies the weak negative feedback condition

$$
(h(x)-x)(x-\bar{x}) \leq 0, x \in I
$$

Also, let $a=\inf I$ and $b=\sup I$.
LEMMA 1. Assume that the hypotheses $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{4}\right)$ are satisfied. Then the following statements are true:
(a) $0 \leq a \leq \bar{x} \leq b \leq \infty$.
(b) If $a>0$, then $a \in I$ and $h(a)=a$.
(c) If $b<\infty$, then $b \in I$ and $h(b)=b$.
(d) If either $a=\bar{x}$ or $b=\bar{x}$, then $I=\{\bar{x}\}$.
(e) $a>0$ if, and only if, $b<\infty$. If $a>0$, then $a=f(b, b, b)$ and $b=f(a, a, a)$.
(f) $a=0$ if, and only if, $b=\infty$.

PROOF.
(a) This is trivial.
(b) Clearly, $h(x) \geq x$ for $a<x \leq \bar{x}$. Assume to the contrary that $a \notin I$. Then $h(a)<a$. Since h is continuous, there exists an $\epsilon>0$ such that $h(x)<x$ for $x \in$ $(a-\epsilon, a+\epsilon)$, which is a contradiction. Therefore, $h(a) \geq a$. If $h(a)>a$, there exists an $\epsilon>0$ such that $h(x)>x$ for $x \in(a-\epsilon, a+\epsilon)$. So $a \neq \inf I$, which is a contradiction. Consequently, we obtain $h(a)=a$.
(c) Similar to (b).
(d) Let $a=\bar{x}$. Assume to the contrary that $b>\bar{x}$. Then for all $x \in[\bar{x}, c]$, where $\bar{x}<c<b$, we have

$$
f(x, x, x) \leq f(\bar{x}, \bar{x}, \bar{x})=\bar{x}, f(x, x, x) \geq f(c, c, c), h(x) \leq x
$$

Furthermore, $f(x, x, x) \in[f(c, c, c), \bar{x}]$ and

$$
h(f(x, x, x))=f(h(x), h(x), h(x)) \geq f(x, x, x)
$$

so that $[f(c, c, c), \bar{x}] \subset I$, which is a contradiction. The case where $b=\bar{x}$ is similarly proved.
(e) Let $0<a<\bar{x}$. Since $f(x, x, x)$ is continuous and decreasing, we find

$$
f([a, \bar{x}],[a, \bar{x}],[a, \bar{x}])=[\bar{x}, f(a, a, a)]
$$

For every $x \in[\bar{x}, f(a, a, a)]$, there exists a unique $x^{\prime} \in[a, \bar{x}]$ such that $f\left(x^{\prime}, x^{\prime}, x^{\prime}\right)=x$. As a result, $h\left(x^{\prime}\right) \geq x^{\prime}$ and

$$
h(x)=h\left(f\left(x^{\prime}, x^{\prime}, x^{\prime}\right)\right)=f\left(h\left(x^{\prime}\right), h\left(x^{\prime}\right), h\left(x^{\prime}\right)\right) \leq f\left(x^{\prime}, x^{\prime}, x^{\prime}\right)=x
$$

which implies $[\bar{x}, f(a, a, a)] \subset I$ and $f(a, a, a) \leq b$. Assume to the contrary that $f(a, a, a)<b$. Let $c \in(f(a, a, a), b)$. Using similar arguments as above, we find

$$
f([\bar{x}, c],[\bar{x}, c],[\bar{x}, c])=[f(c, c, c), \bar{x}] \subset I
$$

and

$$
a \leq f(c, c, c)
$$

Since $c>f(a, a, a)$ and $h(a)=a$, we find

$$
f(c, c, c)<f(f(a, a, a), f(a, a, a), f(a, a, a))=h(a)=a
$$

which is a contradiction. Therefore, $b=f(a, a, a)<\infty$. The case when $b<\infty$ is similarly proved.
(f) This follows from (e).
COROLLARY 1. Assume that the hypotheses $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{4}\right)$ are satisfied. Then I can be $\{\bar{x}\},[a, b]$, or $(0, \infty)$, where $0<a<\bar{x}<b<\infty, a=f(b, b, b)$ and $b=f(a, a, a)$.

LEMMA 2. Assume that the hypotheses $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{4}\right)$ are satisfied. Then I is an invariant interval of (1).

PROOF. If $I=\{\bar{x}\}$ or $I=(0, \infty)$, the proof is easy. The remaining case is when $I=[a, b]$, where $0<a<\bar{x}<b<\infty, a=f(b, b, b)$ and $b=f(a, a, a)$. Let $x_{-1}, x_{0}, x_{1} \in[a, b]$. Then

$$
\begin{gathered}
a=f(b, b, b) \leq x_{2}=f\left(x_{1}, x_{0}, x_{-1}\right) \leq f(a, a, a)=b, \\
a=f(b, b, b) \leq x_{3}=f\left(x_{2}, x_{1}, x_{0}\right) \leq f(a, a, a)=b,
\end{gathered}
$$

and

$$
a=f(b, b, b) \leq x_{4}=f\left(x_{3}, x_{2}, x_{1}\right) \leq f(a, a, a)=b
$$

If $x_{k-1}, x_{k}, x_{k+1} \in[a, b]$, then by induction,

$$
a=f(b, b, b) \leq x_{k+2}=f\left(x_{k+1}, x_{k}, x_{k-1}\right) \leq f(a, a, a)=b .
$$

The proof is complete.
THEOREM 2. Assume that the hypotheses $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{5}\right)$ are satisfied. Then \bar{x} is a global attractor for solutions of (1) originated from I.

PROOF. The case where $I=\{\bar{x}\}$ is trivial, so we will assume $I \neq\{\bar{x}\}$. Let $x_{-1}, x_{0}, x_{1} \in I$. Then the solution $\left\{x_{n}\right\}$ is bounded. So

$$
0<\lambda=\lim _{n \rightarrow \infty} \inf x_{n} \leq \bar{x} \leq \mu=\lim _{n \rightarrow \infty} \sup x_{n}<\infty
$$

Clearly,

$$
\lambda, \mu \in I, h(\lambda) \geq \lambda, h(\mu) \leq \mu
$$

Let $\left\{x_{n_{i}}\right\}$ be a subsequence of $\left\{x_{n}\right\}$ such that

$$
\lim _{i \rightarrow \infty} x_{n_{i}+1}=\mu
$$

Then for every $\epsilon>0$, there exists an integer N_{0} such that $x_{n_{i}-1}, x_{n_{i}}, x_{n_{i}+1}>\lambda-\epsilon$, and $x_{n_{i}+2}=f\left(x_{n_{i}+1}, x_{n_{i}}, x_{n_{i}-1}\right)<f(\lambda-\epsilon, \lambda-\epsilon, \lambda-\epsilon)$. Hence $\mu \leq f(\lambda-\epsilon, \lambda-\epsilon, \lambda-\epsilon)$ for every $\epsilon>0$, which implies $\mu \leq f(\lambda, \lambda, \lambda)$. Similarly, we may show that

$$
\lambda \geq f(\mu, \mu, \mu)
$$

In view of the fact that $H^{2}(x)>x$ for $0<x<\bar{x}$, we have

$$
\begin{equation*}
H(\mu)=f(\mu, \mu, \mu) \leq \lambda \leq \bar{x} \leq \mu \leq f(\lambda, \lambda, \lambda)=H(\lambda) \tag{5}
\end{equation*}
$$

It is easy to see that $\lambda=\mu=\bar{x}$ for $\lambda=\bar{x}$. Hence, we can assume that $\lambda<\bar{x}$. By (5), the properties of $H(x)$ and $\left(\mathrm{H}_{5}\right)$, we have

$$
H^{2}(\mu) \geq H(\lambda)>\bar{x}>\lambda \geq H(\mu) \geq H^{2}(\lambda)>\lambda
$$

This is a contradiction. Therefore, $\lambda=\bar{x}$ and $\lambda=\mu=\bar{x}$. The proof is complete.
COROLLARY 2. Assume that the hypotheses $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{4}\right)$ are satisfied. Let

$$
(h(x)-x)(x-\bar{x}) \leq 0, x \in(0, \infty)
$$

where h is defined by (4). Then \bar{x} is a global attractor for Ω.
EXAMPLE 2. Consider the equation

$$
x_{n+2}=\frac{1}{\sqrt{x_{n+1}}+\sqrt{x_{n}}+\sqrt{x_{n-1}}}, n=0,1,2, \ldots
$$

Let $M_{1}=M_{2}=M_{3}=3 \sqrt[3]{3}, h(x)=H^{2}(x)=\frac{\sqrt[2]{3}}{3} x^{\frac{3}{4}}, f(u, v, w)=\frac{1}{\sqrt{u}+\sqrt{v}+\sqrt{w}}$. We can check that the hypotheses of Theorem 2 are satisfied. Thus, \bar{x} is an attractor of all solutions $\left\{x_{n}\right\}$ with initial conditions $x_{-1}, x_{0}, x_{1} \in I$. In fact, $\bar{x}=\frac{\sqrt[3]{3}}{3}$ is a global attractor for all the solutions $\left\{x_{n}\right\}_{n=1}^{\infty}$ with initial conditions $\left(x_{-1}, x_{0}, x_{1}\right) \in$ $[0, \infty)^{3} \backslash\{(0,0,0)\}$.

References

[1] V. L. Kocić and G. Ladas, Global behavior of nonlinear difference equations of higher order with applications, Kluwer Academic, Dordrecht, 1993.
[2] R. DeVault and L. Galminas, Global stability of $x_{n+1}=A / x_{n}^{p}+B / x_{n-1}^{q}$, J. Math. Anal. Appl., 231(1999), 459-466.
[3] R. DeVault, G. Ladas and S. W. Schultz, Necessary and sufficient conditions for the boundedness of $x_{n+1}=A / x_{n}^{p}+B / x_{n-1}^{q}$, J. Difference Equations Appl., 3(1998), 259-266.
[4] R. DeVault, G. Ladas and S. W. Schultz, On the recursive sequence $x_{n+1}=$ $A / x_{n}^{p}+B / x_{n-1}^{q}$, in Proceedings of Second International Conference on Difference Equations, Gordon and Breach Science Publishers, New York, 1997, pp.125-136.
[5] C. G. Philos, I. K. Purnaras and Y. G. Sficas, Global attractivity in a nonlinear difference equation, Appl. Math. Comp, 62(1994), 246-258.
[6] V. L. Kocić and D. Stutson, Global behavior of solutions of a nonlinear second order difference equation, J. Math. Anal. Appl., 246(2000), 608-626.

[^0]: *Mathematics Subject Classifications: 39A10
 †School of Mathematics and System Science, Shandong University, Jinan, Shandong 250100, P. R. China
 ${ }^{\ddagger}$ School of Sciences, Jinan University, Jinan, Shandong 250022, P. R. China

