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Abstract

Difference equations in an ordered Banach space are considered. Conditions
for the existence of positive periodic solutions are derived.

1 Statement of The Main Result

Periodic solutions of difference equations in a Euclidean space have been considered by
many authors, see e.g. [2, 5-7, 9] and the references therein. In particular, the paper
[1] should be mentioned, in which nonpositive periodic solutions of abstract difference
equations are examined.
Let X be a real Banach space with a normal order cone X+, which has a nonempty

interior (see e.g. [3, 6] for background material). In the present paper we derive
conditions for the existence of positive periodic solutions to the following difference
equations in X:

xk+1 = Akxk + Fk(xk), k = 0, 1, 2, ..., (1)

where {Ak}∞k=0 is a sequence of positive linear operators in X such that for an integer
T > 0,

Ak = Ak+T , k ≥ 0, (2)

and {Fk}∞k=0 is a sequence of mappings of X into itself such that

Fk(h) = Fk+T (h), k ≥ 0, h ∈ X. (3)

Let us set

U(k, j) =
k−1

i=j

Ai, 0 ≤ j < k,
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and

U(j, j) = IX .

Here and below I = IX is the identity operator in X . It is assumed that the spectral
radius rs(U(T, 0)) of the operator U(T, 0) satisfies the inequality

rs(U(T, 0)) < 1. (4)

THEOREM 1. In additions to conditions (2)-(4), let there be a linear operator S
in X which has a positive inverse operator such that the operators AkS

−1 are compact
and that the functions SFk are positive, continuous in X and monotone decreasing.
Moreover, suppose there is a z ∈ X such that

SFk(u) ≤ z, k = 0, 1, ..., T − 1 (5)

for all u ∈ X. Then equation (1) has at least one positive periodic solution.

2 Proof of Theorem 1

It is easily checked that the unique solution of the equation

yk+1 = Akyk + fk, fk ∈ X, k = 0, 1, ...,

is given by

yk = U(k, 0)y0 +
k−1

j=0

U(k, j + 1)fj, k = 1, 2, ... .

Thus, the periodic boundary value problem

yk+1 = Akyk + fk, fk ∈ X, k = 0, 1, ..., T − 1,
y0 = yT

has a solution provided

y0 = yT = U(T, 0)y0 +
T−1

j=0

U(T, j + 1)fj ,

or

y0 = (I − U(T, 0))−1
T−1

j=0

U(T, j + 1)fj ,

and in such a case, this solution is given by

yk = U(k, 0) (I − U(T, 0))−1
T−1

j=0

U(T, j + 1)fj +
k−1

j=0

U(k, j + 1)fj , 0 ≤ k ≤ T.
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Hence the periodic problem for (1) can be written as

xk = U(k, 0) (I − U(T, 0))−1
T−1

j=0

U(T, j + 1)Fj(xj)

+
k−1

j=0

U(k, j + 1)Fj(xj)

=
T−1

j=0

Mk,jFj(xj), (6)

where
Mk,j = U(k, 0) (I − U(T, 0))−1 U(T, j + 1) +W (k, j), 0 ≤ k ≤ T, (7)

and W (k, j) = U(k, j + 1) for j < k and W (k, j) = 0 for j ≥ k. Let c(T,X) be the
space of sequences h = {hk ∈ X}Tk=1 with the norm

nhnc = max
k=1,...,T

nhknX .

Rewrite (6) as
x = BΦ(x),

where B is defined by

(Bh)k =
T−1

j=0

Mk,jS
−1hj , h = {hk}Tk=1 ∈ c(T,X)

and Φ(h) = {SFk(hk)}Tk=1. Since AkS−1 are compact in X and B is a finite sum of
AkS

−1, B is compact in c(T,X). Moreover, due to (4),

(I − U(T, 0))−1 =
∞

k=0

Uk(T, 0) ≥ 0.

So B ≥ 0.
We now invoke the following result (see Theorem 7.G(c) in [6, pp.309-310]: Let Y

and Z be real ordered Banach spaces. Let the order cone Y+ on Y be normal with
nonempty interior. In addition, let an operator F0 : Y → Z be continuous and an
operator K : Z → Y be linear, compact and positive. Then the equation

u = KF0(u) (8)

has a solution u ∈ Y , provided F is monotone decreasing and there is a z0 ∈ Z, such
that

F0(u) ≤ z0
for all u ∈ Y .
If we now take K = B and F0 = Φ in (8), we arrive at the proof of our result.
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3 Example

Let c0 be the Banach space of bounded sequences of real numbers with the supremum
norm. Take X = c0 and consider the system

xm+1,j =
∞

k=1

am,j,kxm,k + fmj(xmj), j, k = 1, 2, ...; m = 0, 1, ..., (9)

where am,j,k is a positive number sequence of three arguments with the properties

am,j,k = am+T,j,k (10)

and

sup
m=0,...,T−1,j=1,2,...

∞

k=1

am,j,k < 1. (11)

The functions fmj(v) are positive scalar-valued functions which are decreasing as the
argument v ∈ R increases. In addition

fmj(v) = fm+T,j(v), v ∈ R; m = 0, 1, 2, ...; j = 1, 2, ..., (12)

and

sup{jfmj(v) : m = 0, ..., T − 1; v ∈ R; j = 1, 2, ...} = z <∞. (13)

For instance, we can take

fmj(v) =
lm

j(1 + v2)
,

where lm is a positive constant for each m = 0, ..., T − 1.Then

z = max
m=0,...,T−1

lm.

Define operator S by

(Sh)j = jhj , j = 1, 2, ...; h = (hk)
∞
k=1 ∈ c0.

Let us apply Theorem 1 to system (9) with Am defined by

(Amh)j =
∞

k=1

am,j,khk

and

(Fmh)j = fmj(hj), j = 1, 2, ...; h = (hk)
∞
k=1 ∈ c0.

In view of (11), condition (4) holds (see [4], inequality (16.2)). Operators AmS
−1 are

compact in c0. Moreover, in view of (13), condition (5) holds. Now Theorem 1 implies
that system (9) under conditions (10)-(13) has at least one positive periodic solution
in the space c0.
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