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Abstract

In this paper, we study the global stability and periodic character of the
positive solution of the difference equation xn+1 = (a− bxn−k)/(A+ xn), where
a ≥ 0, b, A > 0 and k ∈ {1, 2, · · · }, and initial conditions x−k, · · · , x0 are arbitrary
real numbers. We show that the positive equilibrium of the equation is a global
attractor with a basin that depends on certain conditions posed on the coefficients.

1 Introduction

The global asymptotic stability of the rational recursive relation

xn+1 = (α− βxn)/(γ + xn−k), n = 0, 1, ..., (1)

and

xn+1 = (α− βxn)/(γ − xn−k), n = 0, 1, ..., (2)

is investigated when α,β, γ are nonnegative real numbers and k ∈ {1, 2, ...}, and suf-
ficient conditions for the global attractivity of the positive equilibriums of (1) and (2)
are obtained, see [1, 3, 7]. Also, Yan et al. [8] studied the rational recursive equation

xn+1 = (α+ βxn)/(γ − xn−1), n = 0, 1, ..., (3)

where α ≥ 0, β, γ > 0 are real numbers, and obtained the global attractivity of positive
equilibrium of (3).
Other related results can be found in [2, 4, 5, 6].
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Our aim in this paper is study the global attarctivity and periodic character of
positive solution of the rational recursive relation

xn+1 =
a− bxn−k
A+ xn

, n = 0, 1, ..., (4)

where a ≥ 0, A, b > 0 are real numbers and the initial values x−k, ..., x0 are arbitrary
real numbers. We show that the nonnegative equilibrium point of the equation is a
global attractor with a basin that depends on certain conditions of the coefficients.
We first recall some results which will be useful in the sequel.
Let I be some real interval and let F be a continuous function defined on Ik+1.

Then, for initial conditions x−k, ..., x0 ∈ I, it is easy to see that the difference equation
xn+1 = F (xn, ..., xn−k), n = 0, 1, ..., (5)

has a unique solution {xn}.
A point x is called an equilibrium of (5) if x = F (x, ..., x). That is, xn = x for n ≥ 0

is a solution of (5), or equivalently, is fixed point of F .
An interval J ⊂ I is called an invariant interval of (5) if

x−k, ..., x0 ∈ J ⇒ xn ∈ J, n > 0.
That is, every solution of Eq.(5) with initial conditions in J remains in J.

DEFINITION 1.1. The difference equation (5) is said to be permanent, if there
exist numbers P and Q with 0 < P ≤ Q < ∞ such that for any initial conditions
x−k, ..., x0 there exists a positive integer N which depends on the initial conditions
such that P ≤ xn ≤ Q for n ≥ N.
The linearized equation associated with (5) about the equilibrium x is

yn+1 =
k

i=0

∂F

∂ui
(x, ..., x)yn−i, n = 0, 1, ... . (6)

Its characteristic equation is

λn+1 =
k

i=0

∂F

∂ui
(x, ..., x)λn−i. (7)

THEOREM A [5]. Assume that F is a C1 function and let x be an equilibrium of
(5). Then the following statements are true:
(a) If all the roots of the equation (7) lie in the open unit disk | λ |< 1, then the

equilibrium x of (5) is asymptotically stable.
(b) If at least one root of (5) has absolute value greater than one, then the equilib-

rium x of (5) is unstable.

THEOREM B [2, 5]. Assume that p, q ∈ R and k ∈ {1, 2, ...}. Then
|p|+ |q| < 1 (8)
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is a sufficient condition for asymptotic stability of the difference equation

xn+1 − pxn + qxn−k = 0, n = 0, 1, ... . (9)

Suppose in addition that one of the following two cases holds: (a) k is odd and q < 0,
or, (b) k is even and pq < 0. Then (8) is also a necessary condition for asymptotic
stability of (9).

2 The Case a > 0

In this section, we discuss the periodic character and global attractivity of positive
solutions of (4).
Consider the difference equation (4) with

a > 0 and A, b > 0. (10)

The unique positive equilibrium point of (4) is

x =
−(A+ b) + (A+ b)2 + 4a

2
.

The linearized equation associated with (4) about the equilibrium x is

yn+1 +
x

A+ x
yn +

b

A+ x
yn−k = 0, n = 0, 1, ... .

Its characteristic equation is

λk+1 +
−(A+ b) + (A+ b)2 + 4a

A− b+ (A+ b)2 + 4a
λk +

2b

A− b+ (A+ b)2 + 4a
= 0.

By using Theorem B, we have the following result.

LEMMA 2.1. The following statements are true.
(i) Assume that k is even. Then the positive equilibrium x of (4) is locally asymp-

totically stable if and only if A > b.
(ii) Assume that k is odd. Then the positive equilibrium x of (4) is locally asymp-

totically stable if A > b.

In the following, we always assume that

a > 0 and A > b > 0. (11)

Set f(u, v) = (a−bv)/(A+u), then it is easy to see that f(u, v) satisfies the following
properties.

LEMMA 2.2. Assume that (11) holds. Then the following statements are true.
(i) 0 < x < a

A <
a
b .

(ii) f(x, x) is a strictly decreasing function in [0,∞).
(iii) If (u, v) ∈ [0,∞] × (−∞, a/b), then f(u, v) is a strictly decreasing function in

each of its arguments.
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THEOREM 2.1. Assume that (11) holds. Then Eq.(4) has no positive solution
with prime period two for all a ∈ [0,∞).
PROOF. Assume for the sake of contradiction that there exist distinctive positive

real numbers φ and ψ, such that

...,φ,ψ,φ,ψ, ...

forms a period-two solution of Eq.(4). There are two cases to consider.
Case (a) k is odd.
In this case xn+1 = xn−k, φ and ψ satisfy the system

φ(A+ ψ) = a− bφ and ψ(A+ φ) = a− bψ.
Subtracting these equations, we get (A + b)(φ + ψ) = 0. Since φ = ψ, then we have
A+ b = 0, this is a contradiction.
Case (b) k is even.
In this case xn = xn−k, φ and ψ satisfy the system

φ(A+ ψ) = a− bψ and ψ(A+ φ) = a− bφ.
Subtracting these equations, we obtain (A−b)(φ−ψ) = 0, so φ = ψ, which contradicts
the hypothesis φ = ψ. The proof is complete.

THEOREM 2.2. Assume that (11) holds, and let initial conditions x−k, ..., x0 ∈
[0, a/b]. Then Eq.(4) is permanent, that is, there exist constants P and Q with 0 <
P ≤ Q <∞ such that P ≤ xn ≤ Q, for n ≥ 0.
PROOF. Set Q = f(0, 0), P = f(Q,Q). Then we have

0 < P < Q = f(0, 0) = a/A < a/b.

By part (iii) of Lemma 2.1, we have

0 = f(a/b, a/b) ≤ x1 = f(x0,x−k) ≤ f(0, 0) = Q,
0 = f(Q, a/b) ≤ x2 = f(x1,x−k+1) ≤ f(0, 0) = Q,

and

0 < P = f(Q,Q) ≤ x2 = f(x1,x−k+1) ≤ f(0, 0) = Q.
Hence, the result follows by induction. The proof is complete.

By Theorem 2.2, we know that the interval [0, a/b] is an invariant interval of Eq.(4).

THEOREM 2.3. Assume that (11) holds. Then the positive equilibrium x of Eq.(4)
is a global attractor with the basin S = [0, a/b]k+1.

PROOF. Let {xn} be a solution of Eq.(4) with initial condition (x−k, · · · , x0) ∈ S.
Then, by part (iii) of Lemma 2.1, for any u, v ∈ [0, a/b], we have

0 < f(u, v) =
a− bv
A+ u

< a/b.
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Hence, f ∈ C([0, a/b]2, [0, a/b]) and is strictly decreasing in each of its arguments.
Let λ = lim infn→∞ xn, Λ = lim supn→∞ xn, and let ε > 0 such that ε < min{a/b−

Λ,λ}. Then there exist n0 ∈ N such that λ− ε ≤ xn ≤ Λ+ ε. Thus

a− b(Λ+ ε)

A+ (Λ+ ε)
< xn+1 <

a− b(λ− ε)

A+ (λ− ε)
, n ≥ n0 + 1.

Then we get the following inequality

a− b(Λ+ ε)

A+ (Λ+ ε)
≤ λ ≤ Λ ≤ a− b(λ− ε)

A+ (λ− ε)
.

This inequality yields

a− bΛ
A+ Λ

≤ λ ≤ Λ ≤ a− bλ
A+ λ

,

which implies that a− bΛ−Aλ ≤ λΛ ≤ a− bλ−AΛ. In view of A > b, Λ ≤ λ. Hence
λ = Λ = x, that is limn→∞ xn = x. This completes the proof.

3 The Case a = 0

In the section, we study the asymptotic stability for the difference equation

xn+1 =
−bxn−k
A+ xn

, n = 0, 1, ..., (12)

where

b,A ∈ (0,∞), k ∈ {1, 2, ...}, (13)

and the initial condition x−k, ..., x0 are arbitrary real numbers.
By putting xn = byn, Eq.(4) yields

yn+1 =
−yn−k
C + yn

, n = 0, 1, ..., (14)

where C = A/b > 0. Eq.(14) has two equilibria y1 = 0 and y2 = −(C + 1). The
linearized equations of the Eq.(14) about the equilibria y1 and y2 are

Zn+1 +
yi

C + yi
Zn +

1

C + yi
Zn−k = 0, i = 1, 2, n = 0, 1, ... .

For y2 = −(C + 1), by Theorem A we can see that it is unstable. For y1 = 0, we have

Zn+1 +
1

C
Zn−k = 0, n = 0, 1, ... . (15)

The characteristic equation of Eq.(15) is λk+1 + 1/C = 0. Hence, by Theorem A ,
we have
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(i) if A > b, then y1 is locally asymptotically stable.
(ii) if A < b, then y1 is unstable.
(iii) if A = b, then linearized stability analysis fails.
In the sequel, we discuss the global attractivity of the zero equilibrium of Eq.(14).

So, we assume that A > b, namely, C > 1.

LEMMA 3.1. Assume that the initial conditions y−k, ..., y0 ∈ [−C+1, C−1]. Then
yn ∈ [−C + 1, C − 1] for n ≥ −1.
PROOF. Suppose y−k, · · · , y0 ∈ [−C + 1, C − 1]. Then we have

−C + 1 = −C + 1
C − C + 1 ≤

−C + 1
C + y0

≤ y1 = −y−k
C + y0

≤ C − 1
C + y0

≤ C − 1
C − C + 1 = C − 1,

and

−C + 1 = −C + 1
C − C + 1 ≤ y2 =

−y−k+1
C + y1

≤ C − 1
C + y1

≤ C − 1
C − C + 1 = C − 1.

Our result now follows by induction.

By Lemma 3.1, we know that the interval [−C + 1, C − 1] is an invariant interval
of Eq.(14). Also, Lemma 3.1 implies that the following is true.

THEOREM 3.1. The equilibrium y1 = 0 of Eq.(14) is a global attractor with a
basin S = [−C + 1, C − 1]k+1.
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