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Abstract

We propose necessary and sufficient conditions for the existence of Hermitian
nonnegative-definite or positive-definite solutions to the matrix equation AXB =
C. A representation of these solutions is also given.

1 Introduction

Many authors have studied various solutions to the matrix equation

AXB = C (1)

with unknown matrixX. For instance, Kuo [7] has studied the structure of the solutions
to (1) by using the tensor product representation of (1). Dai [3] and Khatri and
Mitra [6] have obtained different sufficient and necessary conditions for the existence
of Hermitian (symmetric) solutions and given the general expressions of all Hermitian
(symmetric) solutions to (1). The Hermitian nonnegative-definite solutions to the
special case B = A∗ of (1) have been studied by Baksalary [2], Dai and Lancaster [4],
Groß [5], Khatri and Mitra [6] and also Zhang and Cheng [8]. Furthermore, Khatri
and Mitra [6] investigated a necessary and sufficient condition for the existence of
Hermitian nonnegative definite solutions to (1), and deduced a representation of all
Hermitian nonnegative-definite solutions to (1) if such solutions exist.
The purpose of this paper is to provide a new approach which gives a representation

of all Hermitian nonnegative-definite (respectively, positive-definite) solution to (1).
The proposed approach is different from that of Khatri and Mitra [6] which lies on the
generalized inverses of matrices.
Let Cm×n be the set of m× n complex matrices. We denote by H>

n , H
≥
n , Un and

GLn the subsets of C
n×n consisting of Hermitian positive-definite matrices, Hermitian

nonnegative-definite matrices, unitary matrices and nonsingular matrices, respectively.
For X ∈ Cm×n, let X∗, X+ and R(X) be, respectively, the conjugate transpose, the
Moore-Penrose inverse and the column space of X. The notation ⊕ denotes the direct
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sum. We denote by Ik and Om×n the k×k identity matrix and the m×n zero matrix,
respectively; We also write them as I and O respectively when their dimensions are
clear.
Let A ∈ Cm×n, B ∈ Cn×p and C ∈ Cm×p. Since

R(C) ⊆ R(A), R(C∗) ⊆ R(B∗) (2)

are necessary conditions for the existence of solutions to (1), in the following we will
always assume that (2) is satisfied. Furthermore, we have the following two observa-
tions.

NOTE 1. If A = O or B = O, then there exists a Hermitian nonnegative-definite
(respectively, positive-definite) solution to (1) if and only if C = O. In this case,
any matrix in H≥n (respectively, H>

n ) is a Hermitian nonnegative-definite (respectively,
positive-definite) solution to (1).

NOTE 2. If rankA < m, then A = PA
�
AT1 O

�T
, where PA ∈ Um and A1 is of

full-row rank. Let
P ∗AC =

�
CT1 CT2

�T
, (3)

where C1 and C2 have appropriate sizes. Combining (2) and (3) yields C2 = O. This
implies that the pair of matrix equations (1) and A1XB = C1 have the same solutions.
Therefore, we may assume that rankA = m. Similarly, we may also assume that
rankB = p.

Based on the above two notes, in the rest of this paper we assume

0 < m = rankA ≤ rankB = p ≤ n. (4)

Obviously, (2) holds if (4) is satisfied. Therefore, we are now concerned with the
following problem.

PROBLEM 1. Given matrices A ∈ Cm×n, B ∈ Cn×p and C ∈ Cm×p satisfying
(4). Determine a necessary and sufficient condition for the existence of Hermitian
nonnegative-definite (respectively, positive-definite) solutions to (1). Furthermore, give
a representation of all Hermitian nonnegative-definite (respectively, positive-definite)
solutions to (1) when it has such solutions.

Now we introduce two special equivalent decompositions of matrices. For an arbi-
trary but fixed E ∈ Cm×n with rankE = r, let

E = U1(Σ⊕O)V1 (5)

be a singular value decomposition of E, where U1 ∈ Um, V1 ∈ Un and Σ ∈ H>
r is

diagonal. Denote V = (Σ⊕ In−r)V1 and U = U1(Σ⊕ Im−r). Then
E = U1(Ir ⊕O)V = U(Ir ⊕O)V1 (6)

are two equivalent decompositions of E. For the sake of convenience, we stipulate in
the following that any mentioned equivalent decomposition possesses one of the two
forms in (6). Note that the calculations of E+ = V ∗1 (Σ

−1 ⊕ O)U∗1 , U−1 and V −1 are
transformed into calculating Σ−1 and matrix product. Therefore, this convenience can
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ensure good numerical reliability. Furthermore, (5) can be easily obtained by using the
function svd in MATLAB.

In order to solve problem 1, some preliminary results are given in the next section.
We solve Problem 1 in Section 3. An example is presented in Section 4 to illustrate
our approach.

2 Preliminary results

We first introduce the following lemma.

LEMMA 1. ([1]) Given matrix Ψ =

�
M Y
Y ∗ N

�
with M ∈ Cn1×n1 , N ∈ Cn2×n2

and Y ∈ Cn1×n2 . Then
(i) Ψ ∈ H≥n1+n2 if and only if M ∈H≥n1 , N − Y ∗M+Y ∈ H≥n2 and R(Y ) ⊆ R(M).
(ii) Ψ ∈ H>

n1+n2 if and only if M ∈H>
n1 and N − Y ∗M−1Y ∈ H>

n2 .

To solve Problem 1, we need the following algorithm which produces an integer
s and three matrices P ∈ GLm, T ∈ GLp and Q ∈ GLn based on two matrices
A ∈ Cm×n and B ∈ Cn×p satisfying (4).
ALGORITHM 1.

Step 1 Find P1 ∈ GLm and Q1 ∈ Un satisfying the equivalent decomposition A =
P1
�
Im O

�
Q1.

Step 2 If m = n (this implies from (4) that m = p = n and B is nonsingular), let
s = 0, P = P1, Q = Q1 and T = Q1B, and then terminate the algorithm.
Otherwise, continue with the following steps.

Step 3 Calculate the matrices B1 ∈ Cm×p and B2 ∈ C(n−m)×p according to�
B1
B2

�
= Q1B. (7)

Step 4 Calculate the integer s according to s = rankB2.

Step 5 Find P2 ∈ Un−m and Q2 ∈ GLp satisfying the equivalent decomposition

B2 = P2(Is ⊕O)Q2. (8)

Step 6 Calculate the matrices B11 ∈ Cm×s and B12 ∈ Cm×(p−s) according to�
B11 B12

�
= B1Q

−1
2 . (9)

Step 7 If s = p, let P3 = Im and Q3 be the 0 × 0 empty matrix. Otherwise, find
P3 ∈ Um and Q3 ∈ GLp−s satisfying the equivalent decomposition B12 =
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P3

�
Ip−s
O

�
Q3. (Note that: by (4), (7), (8) and (9), rankB12 = p − s can be

deduced as follows.)

rankB12 = rank

 B11 B12
Is O
O O

 =

�
B11 B12

�
Q2

P2

�
Is O
O O

�
Q2

− s
= rank

�
B1
B2

�
− s = rankB − s = p− s.

Step 8 Calculate the matrices P ∈ GLm, Q ∈ GLn and T ∈ GLp according to

P = P1P3, T =

�
O Q3
Is O

�
Q2

and

Q =

 P ∗3 O O
B∗11 Is O
O O In−m−s

� Im O
O P ∗2

�
Q1.

To some extent the following lemma reveals the sense of the above algorithm.

LEMMA 2. Given matrices A ∈ Cm×n and B ∈ Cn×p satisfying (4). Let the
integer s and the matrices P , Q and T be obtained by Algorithm 1. Then

A = P
�
Im O

�
Q, B = Q∗

�
Ip−s O O O
O Os×(m−p+s) Is O

�T
T. (10)

PROOF. It can be easily completed by following the steps of Algorithm 1.

REMARK 1. It follows from (10) that rank
�
A∗ B

�
= m+ s. This implies that

the integer s can be direct obtained from A and B.

3 The Solution to Problem 1

Based on Algorithm 1 and Lemmas 1 and 2 in Section 2, the solution to Problem 1
can be stated as follows.

THEOREM 1. Given matrices A ∈ Cm×n, B ∈ Cn×p and C ∈ Cm×p satisfying
(4). Furthermore, assume the integer s and the matrices P , Q and T are obtained by
Algorithm 1, and let

P−1CT−1 =
�
C1 C2
C3 C4

�
, C1 ∈ C(p−s)×(p−s). (11)

Then

(i) the matrix equation (1) has at least a Hermitian nonnegative-definite solution if
and only if

C1 ∈ H≥p−s, R
��
C∗3 C2

�� ⊆ R (C1) . (12)



44 Hermitian Solutions of AXB = C

(ii) when (12) is met, a representation of all Hermitian nonnegative-definite solutions
to (1) is given by

X = Q−1


C1 C∗3 C2 X14
C3 X22 C4 X24
C∗2 C∗4 X33 X34
X∗14 X∗24 X∗34 X44

 (Q∗)−1 , (13)

where X14, X22, X24, X33, X34 and X44 are parameter matrices with appropriate
sizes which satisfy

R (X14) ⊆ R (C1)
Y1 ∈H≥m−p+s
R �� C0 Y2

�� ⊆ R (Y1)
Y3 − C∗0Y +1 C0 ∈ H≥s
R (Z) ⊆ R �Y3 − C∗0Y +1 C0�
Y5 − Y ∗2 Y +1 Y2 − Z∗

�
Y3 − C∗0Y +1 C0

�+
Z ∈H≥n−m−s

(14)

with 

C0 = C4 − C3C+1 C2
Y1 = X22 − C3C+1 C∗3
Y2 = X24 − C3C+1 X14
Y3 = X33 − C∗2C+1 C2
Y4 = X34 − C∗2C+1 X14
Y5 = X44 −X∗14C+1 X14
Z = Y4 − C∗0Y +1 Y2

. (15)

PROOF. (i) The “if” part. Denote

X0 = Q
−1


C1 C∗3 C2 O
C3 C3C

+
1 C
∗
3 + C0C

∗
0 C4 O

C∗2 C∗4 C∗2C
+
1 C2 + C

∗
0 (C0C

∗
0 )
+C0 O

O O O O

 (Q∗)−1 ,
(16)

where C0 is defined in (15). Firstly, in view of (i) of Lemma 1 and (12), it is easy
to verify X0 ∈ H≥n . Secondly, by (11) and Lemma 2, we can deduce that X0 defined
in (16) is a solution to (1). Because of the above two aspects, X0 is a Hermitian
nonnegative-definite solution to (1).
The “only if” part. Suppose X̃ is a Hermitian nonnegative-definite solution to (1).

Then
AX̃B = C. (17)

Let

QX̃Q∗ =


X11 X12 X13 X14
X∗12 X22 X23 X24
X∗13 X∗23 X33 X34
X∗14 X∗24 X∗34 X44

 , (18)
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where X11 ∈ H≥p−s, X22 ∈ H≥m−p+s and X33 ∈ H≥s . Using Lemma 2, (17) and (18)
yields

C = P

�
X11 X13
X∗12 X23

�
T.

This, together with (11), implies

QX̃Q∗ =


C1 C∗3 C2 X14
C3 X22 C4 X24
C∗2 C∗4 X33 X34
X∗14 X∗24 X∗34 X44

 . (19)

Combining (19), (i) of Lemma 1 and X̃ ∈ H≥n deduces (12).
(ii) It follows from (i) and (12) that the matrix equation (1) has at least a Her-

mitian nonnegative-definite solution. Suppose X is an arbitrary but fixed Hermitian
nonnegative-definite solution to (1). Then, by a similar argument to the proof of (19),
the matrix X possesses the form (13). Now, to complete the proof, it suffices to show
that X ∈ H≥n is equivalent to (14). Indeed, by (i) of Lemma 1, (12) and (13), we have
that X ∈ H≥n if and only if

R (X14) ⊆ R (C1) ,
 Y1 C0 Y2
C∗0 Y3 Y4
Y ∗2 Y ∗4 Y5

 ∈ H≥n−p+s, (20)

where C0 and Yi, i = 1, · · · , 5, are defined in (15). Again applying (i) of Lemma 1 to
the second relation in (20), we see that (20) is equivalent to

R (X14) ⊆ R (C1)
Y1 ∈ H≥m−p+s
R �� C0 Y2

�� ⊆ R (Y1)�
Y3 − C∗0Y +1 C0 Y4 − C∗0Y +1 Y2
Y ∗4 − Y ∗2 Y +1 C0 Y5 − Y ∗2 Y +1 Y2

�
∈ H≥n−m

. (21)

Similarly, (21) is equivalent to (14). The proof is complete.

Using (ii) of Lemma 1 and an argument similar to the proof of Theorem 1, we can
easily deduce the following theorem concerning the positive-definite solutions (i.e., the
nonnegative-definite solution with rank n) to (1).

THEOREM 2. Suppose the hypothesis of Theorem 1 is satisfied. Then the matrix
equation (1) has at least a Hermitian positive-definite solution if and only if

C1 ∈ H>
p−s. (22)

When this condition is met, a representation of all Hermitian positive-definite solutions
to (1) is given by (13), where X14, X22, X24, X33, X34 and X44 are parameter matrices
with appropriate sizes which satisfy

Y1 ∈ H>
m−p+s

Y3 − C∗0Y +1 C0 ∈H>
s

Y5 − Y ∗2 Y +1 Y2 − Z∗
�
Y3 − C∗0Y +1 C0

�+
Z ∈ H>

n−m−s

with (15).
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4 An Example

Consider a matrix equation in the form of (1) with the parameter matrices:

A =

�
0 5 9 3
2 2 1 3

�
, B =


1 2 0
−1 2 1
6 2 −2
3 1 −1

 , C = � 1 −1 2
1 0 2

�
.

Obviously,m = 2, n = 4, p = 3 and (4) is satisfied. Following the steps in Algorithm
1, it is easy to show that

s = 2, Q =


0.0964 0.4979 0.7709 0.3854
0.5903 0.1559 −0.4868 0.6247
−0.1667 0.3152 −1.3266 −0.6633
−1.4985 −1.4020 −1.7901 −0.8950

 ,

P =

�
10.5837 −1.7278
3.1157 2.8797

�
, T =

 0.1061 −0.0496 0.2410
−4.2002 0.3163 1.9140
−0.1933 −1.3730 −0.1974

 .
Therefore, n = m + s, C1 = 1.1078, C2 =

� −0.0034 0.0177
�
, C3 = 1.6457 and

C4 =
� −0.0023 −0.1233 �. Using Theorem 1, a representation of all Hermitian

nonnegative-definite solutions to the matrix equation is given by

X = Q−1


1.1078 1.6457 −0.0034 0.0177
1.6457 a −0.0023 −0.1233
−0.0034 −0.0023 b c
0.0177 −0.1233 c̄ d

 (Q∗)−1 , (23)

where a, b, c, d ∈ C are parameters satisfying a > 2.4448 and

�
b1 c1
c̄1 d1

�
∈ H≥2 with


b1 = b− 10−3 × 0.0106− 0.0000

a−2.4448
c1 = c+ 10

−3 × 0.0546 + 0.0004
a−2.4448

d1 = d− 10−3 × 0.2824− 0.0004
a−2.4448

.

Furthermore, using Theorem 2, a representation of all Hermitian positive-definite so-
lutions to the matrix equation is given by (23), where a, b, c, d ∈ C are parameters
satisfying a > 2.4448, b1 > 0 and d1 > c̄1b

+
1 c1.
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