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Received 3 February 2003

Abstract

Lacunary polynomials are polynomials of the form
Pn

i=1 aix
ki . We introduce

the problem of Birkhoff interpolation with lacunary polynomials and formulate
a generalized Pólya condition. In the framework of Birkhoff interpolation with
lacunary polynomials, the generalized Pólya condition characterizes conditionally
regular interpolation matrices. The generalized Pólya condition is simpler than
the Pólya condition for algebraic Birkhoff interpolation and it is equivalent to the
Pólya condition when kj = j − 1.

1 Introduction

An algebraic Birkhoff interpolation problem is defined by (X,E,C,Pn−1), where X =
(x1, . . . , xm) consists of m distinct real points (called nodes), E = (ei,j)

m, q
i=1,j=0 is an

interpolation matrix with ei,j ∈ {0, 1} and with exactly n ones, C is a vector formed
by n real values (ci,j : ei,j = 1), and Pn−1 is the space of real polynomials of degree at
most n− 1. The objective of the algebraic Birkhoff interpolation problem is to find a
polynomial p(x) in Pn−1 that satisfies the n conditions:

D(j)p(xi) = ci,j , ei,j = 1. (1)

If we write the polynomial p(x) ∈ Pn−1 in the form

p(x) =
n−1

i=0

ai
xi

i!
,

then the n conditions (1) determine a system of n linear equations with n unknowns.
The interpolation problem (X,E,C,Pn−1) has a unique solution if and only if the
generalized Vandermonde determinant

D(E,X) = det
x−ji
(−j)! , . . . ,

xn−j−1i

(n− j − 1)! ; ei,j = 1
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does not vanish (1/k! is defined 0 if k < 0). An interpolation matrix E is called
conditionally regular if D(E,X) = 0 for some system of nodes X.
Let |E| denote the number of ones in E. An interpolation matrix is called a normal

matrix if it has exactly |E| columns. If the highest derivative specified in E do not
exceed |E|−1, we always can normalize E by adding a suitable number of zero columns.
Obviously, matrices which have elements ei,j = 1 with j ≥ |E| cannot be normalized.
Nevertheless, those matrices are irrelevant for algebraic interpolation since, in this case,
we have D(E,X) = 0 for all system of nodes X. So, in algebraic interpolation, we can
suppose without loss of generality that E is a normal matrix.

For a normal matrix E = (ei,j)
m, |E|−1
i=1,j=0 , the Pólya constants are the numbers:

Mj =

j

s=0

m

i=1

ei,s, j = 0, . . . , |E|− 1.

Note that some of the Pólya constants are undefined if E has less than |E|−1 columns.
In [1], Ferguson proved that conditionally regular normal matrices can be characterized
by the Pólya condition:

Mj ≥ j + 1, j = 0, . . . , |E|− 1. (2)

THEOREM 1. A normal matrix E is conditionally regular if and only if it satisfies
the Pólya condition.

A review on algebraic Birkhoff interpolation can be found in the book of Lorentz,
Jetter and Riemenschneider [2, pp. 1-12].
In this paper, a lacunary polynomial is a polynomial of the form

p(x) =
n

j=1

ajx
kj ,

where 0 ≤ k1 < · · · < kn are integers, in general, no consecutive. These polynomials are
a restricted case of Müntz polynomials (where the numbers k1, . . . , kn can take real
values). A complete study on the regularity for the one-node Birkhoff interpolation
problem with lacunary polynomials can be found in [3]. To the authors’ knowledge,
there exist no more general results on Birkhoff interpolation with lacunary polynomials.
The aim of this work is to characterize conditionally regular interpolation matrices for
Birkhoff interpolation with lacunary polynomials, this is carried out by means of a
simple and elegant generalization of the Pólya condition.

2 Lacunary-polynomial interpolation

Given an increasing sequence of nonnegative integers K = (k1, . . . , kn), we denote by
PK the real linear space of lacunary polynomials spanned by the powers xk1 , . . . , xkn .
We will refer to K as the degree sequence of the space PK . The system (X,E,C,PK)
defines a lacunary-polynomial Birkhoff interpolation problem, whose objective is to
determine a polynomial p(x) in PK that satisfies the n = |E| conditions (1). Note
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that the algebraic Birkhoff interpolation problem is obtained as a particular case of
lacunary-polynomial interpolation when the degree sequence is K = (0, . . . n− 1) . If
we express the polynomial p(x) ∈ PK in the form

p(x) =
n

j=1

aj
xkj

kj !
,

we obtain the generalized Vandermonde determinant

D(E,X,K) = det
xk1−ji

(k1 − j)! , . . . ,
xkn−ji

(kn − j)! ; ei,j = 1 . (3)

As with the algebraic case, the interpolation problem (X,E,C,PK) has a unique solu-
tion if and only if D(E,X,K) = 0.

DEFINITION 1. Given a degree sequence K, we say that an interpolation matrix
E is conditionally K-regular if D(E,X,K) = 0 for some system of nodes X.

3 Generalized Pólya condition

In an interpolation matrix E, elements ei,j = 1 correspond to the derivative orders that
are prescribed in the interpolation conditions. We define the derivative sequence of an
interpolation matrix as the nondecreasing sequence Q(E) = (q1, . . . , qn) whose ele-
ments are the derivative orders specified in E, that is, the column index corresponding
to nonzero entries in E. For the interpolation matrix:

E =

 1 1 0 0 0 0 0 0
1 0 0 0 0 0 1 1
0 0 0 0 0 0 1 0

 , (4)

the derivative sequence is Q(E) = (0, 0, 1, 6, 6, 7). Note that columns in interpolation
matrices are indexed from 0.

DEFINITION 2. Let K = (k1, . . . , kn) be a degree sequence, E an interpolation
matrix with n ones and Q(E) = (q1, . . . , qn) the derivative sequence of E. We say
that E satisfies the Pólya condition with respect to K, (or more briefly, the Pólya
K-condition) if

qi ≤ ki for i = 1, . . . , n. (5)

In lacunary-polynomial interpolation, we must consider non-normal matrices. For
instance, if we take the degree sequence K = (0, 1, 2, 6, 7, 8) and the interpolation
matrix (4), we have D(E,X,K) = 0 for every system of nodes X. We can see that the
Pólya K-condition is well defined for every interpolation matrix with |E| = n.
The following proposition shows that the PólyaK-condition actually generalizes the

Pólya condition. Here, we say that a normalizable matrix (ei,j = 1 only for j < |E|) sat-
isfies the Pólya condition if its normal form does; we also agree on that non-normalizable
matrices (ei,j = 1 for some j ≥ |E|) do not satisfy the Pólya condition.
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PROPOSITION 1. An interpolation matrix E satisfies the Pólya condition if
and only if it satisfies the Pólya condition with respect to the degree system K =
(0, 1, . . . , n− 1).
PROOF. Let Q(E) = (q1, . . . , qn) be the derivative sequence of E. If E is non-

normalizable, then E does not satisfy the Pólya condition. As kn = n − 1 and for
some j ≥ n is ei,j = 1, we have qn ≥ n > kn; therefore, E does not satisfy the
Pólya K-condition either. If E is a normalizable matrix, we can suppose without loss
of generality that E is, in fact, normal. If the normal matrix E satisfies de Pólya
condition (2), then, for every j with 0 ≤ j ≤ n− 1, there are in E at least j + 1 ones
in columns 0 to j. Hence, we have

qj+1 ≤ j = kj+1 for j = 0, . . . , n− 1.

If we set j + 1 = i, then condition (5) results. Conversely, suppose that qj ≤ kj for
j = 1, . . . , n. Then q1 ≤ . . . ≤ qj ≤ j−1 holds, and we obtainMj−1 ≥ j for j = 1, . . . n.
Making the change of index s = j − 1, we get Ms ≥ s+ 1 for s = 0, . . . , n− 1.
Before dealing with the regularity problem, we will prove a technical lemma. We

use the notation Q ≤ K to indicate qj ≤ kj for j = 1, . . . , n.
LEMMA 1. Let K = (k1, . . . , kn) and Q = (q1, . . . , qn) be nondecreasing sequences

and let K , Q , represent the nondecreasing sequences obtained from K and Q after
inserting, in the right place, a new element r. If Q ≤ K, then Q ≤ K .

PROOF. Let K = k1, . . . , kn+1 and Q = (q1, . . . , qn+1) be the extended se-
quences. If r < q1, then we have

Q = (r, q1, . . . , qn), K = (r, k1, . . . , kn)

and Q ≤ K holds immediately.
Now, suppose that q1 ≤ r < k1 and define i0 = max{i : qi ≤ r}, then the extended

sequences take the form

Q = (q1, . . . qi0 , r, qi0+1, . . . , qn), K = r, k1, . . . , ki0 , ki0+1 , . . . , kn .

The relation

q1 ≤ · · · ≤ qi0+1 = r = k1 ≤ · · · ≤ ki0+1
holds for the first i0+1 elements in Q and K . If i0 < n, then

qi = qi−1 ≤ ki−1 = ki for i = i0 + 2, . . . , n+ 1.

Finally, if k1 < r, we also define j0 = max{j : kj ≤ r}. First, we observe that it must
be j0 ≤ i0, for otherwise, under the hypothesis j0 > i0, one obtain the contradictory
inequality kj0 ≤ r < qj0. If equality holds, that is, if j0 = i0, then the extended
sequences Q and K have the following structure

Q = (q1, . . . , qi0 , r, qi0+1, . . . , qn), K = (k1, . . . , ki0 , r, ki0+1, . . . , kn) ,
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and Q ≤ K is straightforward. When j0 < i0, we get the following structure for Q
and K

1 · · · j0 j0 + 1 · · · i0 i0 + 1 i0 + 2 · · · n+ 1
k1 . . . kj0 r . . . ki0−1 ki0 ki0+1 . . . kn
q1 . . . qj0 qj0+1 . . . qi0 r qi0+1 . . . qn

.

For i = j0 + 1, . . . , i0 + 1, we obtain the inequality qi ≤ r ≤ ki. For other values of i,
the relation qi ≤ ki is immediate.
Now, we can prove the main result.

THEOREM 2. The interpolation matrix E is regularly K-conditional if and only
if it satisfies the Pólya K-condition.

PROOF. Let K = (k1, . . . , kn) be the degree sequence and Q = (q1, . . . , qn) the
derivative sequence of E. First, we shall prove that the Pólya K-condition is necessary
for regularity. Suppose that E does not satisfy the PólyaK-condition, then there exists
an i0, with 1 ≤ i0 ≤ n, such that qi0 > ki0 . Let us organize the elements ei,j = 1 in the
lexicographical order of the pairs (i, j) with prevalence of the second coordinate, that
is, (i, j) precedes (i , j ) if and only if j < j or j = j and i < i . As k1 < · · · < ki0 < qi0 ,
the determinant (3) takes the following structure:

ei,qi0

M1

∗
...
∗

∗ · · · ∗
...

. . .
...

∗ · · · ∗
0 · · · 0 0 ∗ · · · ∗
0 · · · 0
...

. . .
...

0 · · · 0

0
...
0

M2

,

where M1 is a square matrix with order i0 − 1 and M2 is a square matrix with order
n− i0. Thus, D(E,X,K) = 0 for every system of nodes X and the Pólya K-condition
is necessary for E to be conditionally K-regular.
Suppose now that E satisfies the Pólya K-condition. If kn = n − 1, then PK

coincides with Pn−1. From Proposition 1 and Theorem 1, E is conditionally K-regular.
In the case kn > n − 1, let K∗ = (k∗1 , . . . , k

∗
s) be the degree sequence consisting

of the elements of Kkn = (0, 1, . . . , kn) which are not in K. The sequence K
∗ has

s = kn−n+1 distinct elements. We construct a new interpolation matrix E∗ adding a
new first row to E, this new first row has ones in places k∗1 , . . . , k∗s , and zeros elsewhere.
More precisely, if m is the number of rows of E, then E∗ = (e∗i,j) is a matrix with m+1
rows and kn + 1 columns, whose elements verify e

∗
1,k∗j

= 1, for j = 1, . . . , s; e∗i+1,j = 1
if ei,j = 1 and e

∗
i,j = 0 otherwise.

Let Q∗ and Q be, respectively, the derivative systems of E∗ and E. One can form
Q∗ inserting, in the right place, the s numbers k∗1 , . . . , k∗s , in Q. Analogously, adding
the elements of K∗ to K, we can obtain Kkn .
As E satisfies the Pólya K-condition, we have Q ≤ K and, applying Lemma 1

s times, it results that E∗ satisfies the Pólya condition with respect to Kkn . By
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Theorem 1, E∗ is conditionally regular and there exists a system of nodes X∗ =
x∗1, . . . , x

∗
m+1 such thatD(E∗,X∗) = 0.We now recall that the determinantD(E∗,X∗)

is invariant under translations of the nodes, that is,

D E∗, x∗1, . . . , x
∗
m+1 = D E∗, x∗1 + α, . . . , x∗m+1 + α

(see [2, p. 5]). Consequently, we can set x∗1 = 0.
Next, we organize the elements e∗i,j = 1 in the lexicographic order of the pairs (i, j),

this time with prevalence of the first coordinate, we also rearrange the basis of Pkn in
the form

xk
∗
1

k∗1 !
, . . . ,

xk
∗
s

k∗s !
,
xk1

k1!
, . . . ,

xkn

kn!
.

The generalized Vandermonde matrix

V (E∗,X∗) =
x
k∗1−j
i

(k∗1 − j)!
, . . . ,

x
k∗s−j
i

(k∗s − j)!
,
xk1−ji

(k1 − j)! , . . . ,
xkn−ji

(kn − j)! ; e
∗
i,j = 1

will have the following structure

V (E∗,X∗) =
Is Os×n
M V (E,X,K)

,

were Is is the s× s unity matrix, Os×n is the s× n zero matrix, M is an n× s matrix
and

V (E,X,K) =
xk1−ji

(k1 − j)! , . . . ,
xkn−ji

(kn − j)! ; ei,j = 1

is a generalized Vandermonde matrix corresponding to the problem (E,X,PK , C)
whose system of nodes is X = x∗2, . . . , x

∗
m+1 . It follows that

D (E,X,K) = D (E∗,X∗)

and, consequently, E is conditionally K-regular.
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