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Abstract

Integrability conditions of type Lp along straight lines within a strip in C are
derived for holomorphic functions which are integrable over the area of the strip.

The Phragmén—Lindelöf principle is a substitute for the maximum-modulus prin-
ciple when the domain under consideration is unbounded. One of its innumerable ap-
plications is Hadamard’s Three-Lines Theorem, see Section 5.65 in [1], which roughly
states that the growth order of a holomorphic function in a strip in C is determined by
the growth order on the boundary of the strip, and that the suprema over straight lines
within the strip are logarithmically convex. This convexity result was generalized by
Littlewood [2, 3] from suprema to Lp-norms, which in turn has numerous applications,
most notably in harmonic analysis and to Hardy spaces [4].
Not much is known, however, about sufficient conditions for the Lp-integrability of

a holomorphic function along straight lines in a strip. Here we remark on some small
steps in that direction. For our discussion, fix the strip

Y :=R+ i[y1, y2], with −∞ < y1 < y2 <∞.

Denote by Oc(Y ) the set of functions which are holomorphic in Y ◦ and continuous
on the boundary ∂Y . Let d(λ) be the Lebesgue measure on C. The Lp-means of a
function f ∈ Oc(Y ) are defined as

Mp(y, f) :=

Im z=y

|f(z)|p|dz|
1/p

, for y1 ≤ y ≤ y2,

for 0 < p <∞, whenever they exist.
One basic convexity result concerning Lp-means goes back to Hardy, Ingham and

Pólya. We cite it following Narasimhan, see Proposition 4 on page 244 in [5].
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THEOREM 1. Let Mp(y, f) be locally uniformly bounded in y ∈ (y1, y2) for f ∈
Oc(Y ). Then logMp(y, f) is convex in y.

Our basic result gives a sufficient condition for the assumption of local uniform
boundedness in the above Theorem in a special case.

THEOREM 2. Let f ∈ Oc(Y ) ∩ L1(Y,d(λ)). Then M1(y, f) is finite and locally
uniformly bounded in y ∈ (y1, y2), and logM1(y, f) is convex there.

PROOF. Let I be a compact subset of (y1, y2) and Γ(y) = {z Im z = y}, y ∈ I.
Divide Γ(y) in unit intervals

Lj = x+ iy ∈ Γ(y) x ∈ [j, j + 1] , for j ∈ Z.
Choose neighbourhoods

Wj = z ∈ C dist(z, Lj) < ε

whose boundary has distance ε from Lj , where 0 < ε < 1/2 is chosen such that
Wj ⊂ R + iI. Choose a smooth function φ0 ∈ C∞c (W0) such that φ0 ≡ 1 in a
neighbourhood of L0. Let φj(z) = φ0(z − j) ∈ C∞c (Wj) be the translates of φ0 for
j ∈ Z, and set

Dj = z ∈ C 0 < φj(z) < 1 , Dj = z ∈ C 0 < φj(z) .

Then, Dj = D0 + j is relatively compact in Wj \ Lj , and δ = dist(Dj , Lj) > 0 is
independent of j. This situation is sketched below.

The integral formula of Cauchy—Stokes, see Theorem 1.2.1 in [6], yields

f(z) = (φjf)(z) =
1

2πi ∂Dj

(φjf)(w)

w − z dw +
Dj

∂w(φjf)(w)

w − z dw ∧ dw ,

for all z ∈ Lj . Now φj = 0 on ∂Dj , and thus the first term vanishes. For the second

term, we use the holomporphy of f in Dj to conclude ∂w(φjf) = ∂wφj · f , and since
∂wφj = 0 on Dj \Dj we can restrict the integral to Dj . The result is

f(z) =
−1
π Dj

∂φj
∂w

f(w)

w − zdλ(w), for z ∈ Lj ,
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taking −2idλ(w) = dw ∧ dw into account. Therefore we can estimate

sup
z∈Lj

|f(z)| ≤ K
Dj

|f(w)|dλ(w), with K =
1

πδ
· sup
w∈Dj

dφj
dw

.

The constant K is independent of j, allowing us to estimate

M1(y, f) =
Γ(y)

|f(z)||dz|

≤
+∞

j=−∞
sup
z∈Lj

|f(z)|

≤ K
+∞

j=−∞ Dj

|f(w)|dλ(w)

≤ 2KnfnL1(I)
≤ 2KnfnL1(Y ) <∞.

Here, a factor 2 appears since we have chosen ε such that at most two neighbouring
Wj have nonempty intersection. Since I ⊂⊂ (y1, y2) was arbitrary, M1(y, f) exists in
(y1, y2) and is locally uniformly bounded there, with local bound 2KnfnL1(I) on I.
Theorem 1 then shows the claimed convexity.

Our first generalization is that to Lp, 0 < p < ∞. Here we use subharmonic
functions, which we avoided in the elementary proof of the L1-case above.

THEOREM 3. Let f ∈ Oc(Y ) ∩ Lp(Y,d(λ)), for 0 < p < ∞. Then Mp(y, f) is
finite and locally uniformly bounded in y ∈ (y1, y2), and logMp(y, f) is convex.

PROOF. We use the notation of the proof of Theorem 2. Let Dε(z) be the open
disc of radius ε around z ∈ Lj . Now, the function g(z) = |f(z)|p is subharmonic on Y ◦,
and it has the sub-mean-value property, see Theorem 1.4 in [4], which can be written
in the form

rg(z) ≤ 1

2π

2π

0

g(z + reiθ)rdθ,

for z ∈ Lj , and all 0 < r < ε, using that the right hand side is nondecreasing in r, see
Theorem 1.6 in [4]. This inequality can be integrated with respect to r over the range
(0, ε) to yield

g(z) ≤ 1

πε2 Dε(z)

g(w)dλ(w).

Letting z vary in Lj, the discs Dε(z) sweep out Wj , and thus

sup
z∈Lj

g(z) ≤
Wj

g(z)dλ(z).

The same summation argument as in the proof of Theorem 2 can be applied to conclude
the proof, where the local constant of uniform boundedness K has to be replaced by
K3 = 1/(πε2).
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Both proofs above require Γ(y) to have an arbitrarily small, but finite, distance
from ∂Y . To obtain a condition for the existence of Mp in the strip that depends
only on the boundary as in the original Phragmén-Lindelöf Theorem, we have to pose
additional conditions. One problem is here, that even if f is Lp on the boundary, it
still can behave rather badly there (it need not even vanish at infinity). We give a
sufficient condition for f to behave good enough on ∂Y , valid if f is exact for the
Cauchy—Riemann operator ∂.

COROLLARY 4. Assume there exists F ∈ C1(Y ◦) such that |f |p = ∂F on Y ◦, and

∂Y

F (z)dz <∞, and I = sup
x∈R

y2

y1

F (x+ iy)dy <∞.

Then Mp(y, f) is finite and locally uniformly bounded in y ∈ (y1, y2), and logMp(y, f)
is convex.

PROOF. Set Rj = [−j, j] + i[y1, y2]. Then Stokes’ Theorem implies

Rj

|f |pdλ(z) =
Rj

∂F (z)dλ(z) =
1

2i ∂Rj

F (z)dz,

where we chose ∂Rj to be positively oriented. Thus

Y

|f |pdλ(z) = lim
j→∞

1

2i ∂Rj

F (z)dz

≤ 1

2 ∂Y

F (z)dz + I <∞

by assumption. The claim now follows from Theorem 3.

One natural generalization of Theorem 3 concerns integrability with respect to a
weight function on the strip. We consider the case of polynomial weights to exhibit the
method. This has been used in [7] to construct the duality theory of hyperfunctions
with polynomial growth order in one dimension.

COROLLARY 5. Let γ ∈ R and f ∈ Oc(Y ) ∩ Lp Y, (1 + |Re z|)γdλ(z) . Then

Mp,γ(y, f) :=

Im z=y

|f(z)|p(1 + |Re z|)γ |dz|
1/p

<∞,

for all y1 ≤ y ≤ y2, and Mp,γ(y, f) is convex in (y1, y2).

PROOF. The function

jγ(z) = (y2 − y1)2 + (z − iy1)2 (γ−p)/2

is holomorphic in a neighbourhood of Y and does not vanish there. Furthermore
jγ = O(|Re z|γ−p), and thus the function jγf satisfies the assumption of Theorem 3 if
and only if f satisfies the one of this Corollary.
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