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Abstract

Two-body problem of classical electrodynamics is considered. The equations
of motion form a nonlinear neutral system with delays depending on the unknown
trajectories. It is shown that a sequence of successive approximations for a global
solution cannot be constructed.

1 Introduction

In 1940, J. L. Synge [1] formulates for the first time two-body problem of classical
electrodynamics using retarded Lineard-Wiechert potentials and the relativistic form
of the Lorenz force derived by Pauli [2]. In the same paper [1] Synge proposes a method
of successive approximations for solving the system of equations of motion. His method
is only heuristic because there is no proof of convergence. The main difficulty is caused
by the presence of delays which are not defined explicitly in [1]. In view of the particular
type of the system Synge constructs a sequence of successive approximations in such
a way that on every step one has to solve a system of ordinary differential equations.
On every next step this solution is replaced in another group of equations so that one
obtains again an ordinary differential system. Synge assumes implicitly that the system
possesses a global solution on (−∞,∞). In the present paper we show that even as
early as the second step (which is a Kepler problem) one cannot obtain a solution of
the system existing on (−∞, t0], where t0 is the initial point. Therefore, one cannot
define the next approximation. Thus, we conclude that not only a convergence theorem
cannot be proved, but even a sequence of successive approximations does not exist. An
immediate consequence is that a correct formulation of the initial value problem for
electromagnetic two-body problem is given in [3] for 1-dimensional case and later for
3-dimensional case in [4], [5].

2 Synge’s Equations of Motion

As in [1] we denote by x(p) = (x
(p)
1 (t), x

(p)
2 (t), x

(p)
3 (t), x

(p)
4 (t) = ict), p = 1, 2, where

i2 = −1, the space-time coordinates of the moving particles, bymp their proper masses,

∗Mathematics Subject Classifications: 34K40, 78A25.
†Department of Mathematics, University of Mining and Geology “St. I. Rilski”, 1700 Sofia, Bulgaria

163



164 Synge Electromagnetic Problem

by ep their charges and c the speed of light. The coordinates of the velocity vectors are

u(p) = (u
(p)
1 (t), u

(p)
2 (t), u

(p)
3 (t)), p = 1, 2. The coordinates of the unit tangent vectors

to the world-lines are (cf. [2], [3]):

λ(p)α =
γpu

(p)
α (t)

c
=
u
(p)
α (t)

∆p
, α = 1, 2, 3;λ

(p)
4 = iγp =

ic

∆p
(1)

where

γp = 1− 1

c2

3

α=1

[u(p)α (t)]2
− 1
2

,∆p = c2 −
3

α=1

[u(p)α (t)]2

1
2

.

It follows γp = c/∆p.
By ., . 4 we denote the scalar product in the Minkowski space, while by ., . the

scalar product in 3-dimensional Euclidean subspace. The equations of motion modelling
the interaction of two moving charged particles are the following (cf. [1], [6]):

mp
dλ

(p)
r

dsp
=
ep
c2
F (p)rn λ(p)n , r = 1, 2, 3, 4, (2)

where the elements of proper time are dsp =
c
γp
dt = ∆pdt, p = 1, 2. Recall that in (2)

there is a summation in n for n = 1, 2, 3. The elements F
(p)
rn of the electromagnetic

tensors are derived by the retarded Lienard-Wiechert potentials A
(p)
r = − epλ

(p)
r

λ(p),ξ(pq) 4
,

r = 1, 2, 3, 4, that is, F
(p)
rn =

∂A(p)n

∂x
(p)
r

− ∂A(p)
r

∂x
(p)
n

. By ξ(pq) we denote the isotropic vectors (cf.

[4], [5])

ξ(pq) = (x
(p)
1 (t)−x(q)1 (t−τpq(t)), x(p)2 (t)−x(q)2 (t−τpq(t)), x(p)3 (t)−x(q)3 (t−τpq(t)), icτpq(t))

where ξ(p,q), ξ(p,q) 4 = 0 or

τpq(t) =
1

c

 3

β=1

[x
(p)
β (t)− x(q)β (t− τpq(t))]

2

 1
2

, (pq) = (12), (21). (3)

Calculating F
(p)
rn as in [1] and [4] we write equations from (2) in the form:

dλ
(p)
α

dsp
=

Qp
c2

ξ
(pq)
α λ(p),λ(q) 4 − λ

(q)
α λ(p), ξ(pq) 4

λ(q), ξ(pq) 34
1 + ξ(pq),

dλ(q)

dsq 4

+

+
1

λ(q), ξ(pq) 24
λ(p), ξ(pq) 4

dλ
(q)
α

dsq
− ξ(pq),

dλ(q)

dsq 4

ξ(pq)α , (4)

for α = 1, 2, 3 and

dλ
(p)
4

dsp
=

Qp
c2

ξ
(pq)
4 λ(p),λ(q) 4 − λ

(q)
4 λ(p), ξ(pq) 4

λ(q), ξ(pq) 34
1 + ξ(pq),

dλ(q)

dsq 4

+

+
1

λ(q), ξ(pq) 24
λ(p), ξ(pq) 4

dλ
(q)
4

dsq
− ξ(pq),

dλ(q)

dsq 4

ξ
(pq)
4 (5)
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where Qp = e1e2/mp for p = 1, 2. Further on we denote u
(q) ≡ u(q)(t− τpq),

λ(q) = (γpqu
(q)
1 /c, γpqu

(q)
2 /c, γpqu

(q)
3 /c, iγpq) = (u

(q)
1 /∆pq, u

(q)
2 /∆pq, u

(q)
3 /∆pq, ic/∆pq)

where

γpq = 1− 1

c2

3

α=1

[u(q)α (t− τpq(t)]
2

− 1
2

,

∆pq = c2 −
3

α=1

[u(q)α (t− τpq(t))]
2

1
2

and

dλ
(p)
α

dsp
=
d(

γp
c u

(p)
α )

c
γp
dt

=
d(
u(p)α

∆p
)

∆pdt
=

1

∆2p
u̇(p)α +

u
(p)
α

∆4p
u(p), u̇(p) , α = 1, 2, 3,

dλ
(p)
4

dsp
=
d(iγp)
c
γp
dt

=
icd( 1∆p

)

∆pdt
=
ic

∆4p
u(p), u̇(p) ,

where the dot means a differentiation in t.
In order to calculate dλα

dsq
we need the derivative dt

dtpq
≡ Dpq which should be calcu-

lated from the relation

t− tpq = 1

c

3

α=1

[x(p)α (t)− x(q)α (tpq)]
2

1
2

where tpq < t; t− τpq(t) = tpq by assumption. So we have

dt

dtpq
− 1 =

3
α=1[x

(p)
α (t)− x(q)α (tpq)][u

(p)
α (t) dt

dtpq
− u(q)α (tpq)]

c 3
α=1[x

(p)
α (t)− x(q)α (tpq)]2

1
2

.

Since (3) has a unique solution (cf. [4], [5]) we can solve the above equation with

respect to Dpq: Dpq =
c2τpq− ξpq,u(q)

c2τpq− ξpq,u(p)
.We have also d

dsp
= d
∆pdt

. Then d
dsq

= 1
∆pq

d
dtpq

=

1
∆pq

d
dtpq

d
dt =

Dpq

∆pq

d
dt ;

dλ
(p)
α

dsq
=

d(
γpq
c u

(q)
α )

c
γpq
dtpq

=
d

u(q)α

∆pq

∆pqdtpq
= Dpq

d
u(q)α

∆pq

∆pqdtpq

= Dpq u̇(q)α

1

∆2pq
+
u
(q)
α

∆4pq
u(q), u̇(q) , α = 1, 2, 3;

dλ
(q)
4

dsq
=
icDpq
∆4pq

u(q), u̇(q) ; λ(p)λ(q) 4 =
u(p), u(q) − c2
∆p∆pq

;
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λ(p), ξ(pq) 4 =
u(p), ξ(pq) − c2τpq

∆p
; λ(q), ξ(pq) 4 =

u(q), ξ(pq) − c2τpq
∆pq

;

ξ(pq),
dλq

dsq
4 = Dpq

1

∆2pq
ξ(pq), u̇(q) +

ξ(pq), uq − c2τpq
∆4pq

u(q), u̇(q) ;

λ(p),
dλq

dsq
4 =

Dpq
∆p∆2pq

u(p), u̇(q) +
u(p), uq − c2
∆2pq

u(q), u̇(q) .

We note that in the above expressions ξ(pq) is 4-dimensional vector in the left-
hand sides, while in the right-hand sides ξ(pq) is 3-dimensional part of the first three
coordinates.
Replacing the above expressions in (4) and (5) and performing some obvious trans-

formations we obtain for (pq) = (12), (21), and α = 1, 2, 3 :

1

∆p
u̇(p)α +

u
(p)
α

∆3p
u(p), u̇(p)

=
Qp
c2

[c2 − u(p), u(q) ]ξ
(pq)
α − [c2τpq − u(p), ξ(pq) ]uqα

[c2τpq − u(q), ξ(pq) ]3

×∆
4
pq +Dpq ∆

2
pq ξ(pq), u̇(q) + ( ξ(pq), u(q) − c2τpq) u(q), u̇(q)

∆2pq

+Dpq
[ u(p), ξ(pq) − c2τpq][u̇(q)α + uqα u

(q), u̇(q) /∆2pq]

[c2τpq − u(q), ξ(pq) ]2

− Dpq
[ u(p), u̇(q) + ( u(p), u(q) − c2)/∆2pq] u(q), u̇(q) ξ(pq)α

[c2τpq − u(q), ξ(pq) ]2
, (6)

1

∆3p
u(p), u̇(p)

=
Qp
c2

u(p), ξ(pq) − τpq u
(p), u(q)

[c2τpq − u(q), ξ(pq) ]3

× ∆2pq +Dpq( ξ
(pq), u̇(q) + ( ξ(pq), u(q) − c2τpq) u(q), u̇(q) /∆2pq) +

+ Dpq

u(p),ξ(pq) u(q),u̇(q)

∆2
pq

− τpq u
(p),u̇(q) −τpq u(p),u(q) u(q),u̇(q)

∆2
pq

[c2τpq − u(q), ξ(pq) ]2

 (7)

One can prove (as in [5]) that (7) is a consequence of (6). Indeed, multiplying (6)

by u
(p)

α , summing up in α and dividing into c
2 we obtain (7). Therefore we can consider

a system consisting of the 1st, 2nd, 3rd, 5th, 6th and 7th equations. The last equations
form a nonlinear functional differential system of neutral type (cf. [7], [8]) with respect
to the unknown velocities. The delays τpq depend on the unknown trajectories by the
relations (3).



V. G. Angelov 167

Let us formulate the initial value problem for (6) in the following way: to find

unknown velocities u
(p)
α (t), p = 1, 2;α = 1, 2, 3, for t ≥ 0 satisfying equations (8), (9)

of motion (written in details below):

1

∆1
u̇(1)α +

u
(1)
α

∆31
u(1), u̇(1)

=
Q1
c2

[c2 − u(1), u(2) ]ξ
(12)
α − [c2τ12 − u(1), ξ(12) ]u

(2)
α

[c2τ12 − u(2), ξ(12) ]3

×[∆412 +D12∆212 ξ(12), u̇(2) + ( ξ(12), u(2) − c2τ12) u(2), u̇(2) ]/∆212 +

+D12
( u(1), ξ(12) − c2τ12)u̇(2)α − u(1), u̇(2) ξ

(12)
α +

( u(1),ξ(12) −c2τ12)u(2)α u(2),u̇(2)

∆2
12

[c2τ12 − u(2), ξ(12) ]2

+ D12
(c2 − u(1), u(2) )ξ

(12)
α u(2), u̇(2) /∆212

[c2τ12 − u(2), ξ(12) ]2
. (8)

Recall that in the above equations u(1) = u(1)(t), u(2) = u(2)(t− τ12). We also have

1

∆2
u̇(2)α +

u
(2)
α

∆32
u2, u̇(2)

=
Q2
c2

[c2 − u2, u(1) ]ξ
(21)
α − [c2τ21 − u(2), ξ(21) ]u

(1)
α

[c2τ21 − u(1), ξ(21) ]3

× [∆421 +D21∆
2
21 ξ(21), u̇(1) + ( ξ(21), u(1) − c2τ21) u(1), u̇(1) ]/∆221

+D21
( u(2), ξ(21) − c2τ21)u̇(1)α − u(2), u̇(1) ξ

(21)
α +

( u(2),ξ(21) −c2τ21)u(1)α u(1),u̇(1)

∆2
21

[c2τ21 − u(1), ξ(21) ]2

+ D21
(c2 − u(2), u(1) )ξ

(21)
α u(1), u̇(1) /∆221

[c2τ21 − u(1), ξ(21) ]2
. (9)

Recall that in the above equations u(2) = u(2)(t), u(1) = u(1)(t− τ21). We note the

delay functions τpq(t) satisfy functional equations (3) for t ∈ R1. For t ≤ 0, u(p)α (t) are

prescribed functions u
(p)
α (t), i.e.

u(p)α (t) = u(p)α (t), t ≤ 0,

where

u(p)α (t) =
dx

(p)
α (t)

dt
, t ≤ 0. (10)

This means that for prescribed trajectories (x
(1)
1 (t), x

(1)
2 (t), x

(1)
3 (t)), (x

(2)
1 (t), x

(2)
2 (t),

x
(2)
3 (t)) for t ≤ 0 one has to find trajectories, satisfying the above system of equations

for t > 0. (We recall, x
(p)
α (t) = x

(p)
α0 +

t

0
u
(p)
α (s)ds where x

(p)
α0 are the coordinates of the

initial positions).
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In what follows we consider the Kepler problem for equations (8), (9), (10), p = 1, 2;
α = 1, 2, 3; (pq) = (12), (21). We suppose that the first particle P1 is fixed at the origin
O(0, 0, 0), that is,

P1 :


x
(1)
1 (t) = 0,

x
(1)
2 (t) = 0, t ∈ (−∞,∞),
x
(1)
3 (t) = 0.

It follows by necessity 
x
(1)
1 (t) = 0

x
(1)
2 (t) = 0

x
(1)
3 (t) = 0

. (11)

For the velocities and accelerations of the particles we obtain
u
(1)
1 (t) = 0

u
(1)
2 (t) = 0

u
(1)
3 (t) = 0

,


w
(1)
1 (t) = 0

w
(1)
2 (t) = 0

w
(1)
3 (t) = 0

. (12)

Replacing coordinates velocities and acceleration from (11) and (12) in (8) we obtain

a system of three equations containing x
(2)
α (t − τ12) (respectively u

(2)
α (t − τ12) and

w
(2)
α (t− τ12)). In other words the unknown functions have arguments t− τ12(t). After
the same replacing of (11) and (12) in (9) we obtain again a system of 3-equations but

the unknown functions x
(2)
α (t) (respectively u

(2)
α , w

(2)
α (t);α = 1, 2, 3) are taken at the

instant t, i.e. their argument is t. Let us fix arbitrarily an initial point t0 ∈ (−∞,∞).
Since we have already assumed that there is no collision between moving particles for
t ≤ t0 one can suppose that τ12(t) ≥ τ0 > 0 or −τ12(t) ≤ −τ0 < 0. But for every
t ∈ (−∞, t0] we have t− τ12(t) ≤ t− τ0 ≤ t0 − τ0. Therefore ts = sup{t− τ12(t) : t ∈
(−∞, t0]} ≤ t0− τ0 < t0, i.e. the interval [ts, t0] has a non-empty interior. This implies
that even if the system (8) possesses any solution on (−∞, ts], it has no influence
on the solution of (9) on [t0,∞) through [ts, t0]. Consequently one can disregard the
system (8) and consider (9) as a “local” system on [t0,∞). Saying “local” we mean a
system with described initial conditions at the point t0 (without taking into account
the history for t ≤ t0). Thus to the Kepler problem one can assign the system (9)
on [t0,∞) and the delays vanish. This can be explained by the fact that a charged
particle at rest (at the origin point in our case) does not generate an electromagnetic
field. Let us recall that τpq(t) is generated by the finite velocity of propagation of the
electromagnetic field (cf.[2], [1], [6], [3]).
In order to discuss the method of successive approximations heuristically proposed

by Synge [1], we have to write down the equations of motion (8), (9) in the following
way:

du(1)(t)

dt
=
e1e2
m1

F ξ(12), u(1)(t), u(2)(t− τ12),
du(2)(t− τ12)

dt
(13)

du(2)(t)

dt
=
e1e2
m2

F ξ(21), u(2)(t), u(1)(t− τ21),
du(1)(t− τ21)

dt
(14)
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where

u(p)(t) = u
(p)
1 (t), u

(p)
2 (t), u

(p)
3 (t) , p = 1, 2,

ξ(pq) = ξ
(pq)
1 , ξ

(pq)
2 , ξ

(pq)
3 , (p, q) = (12), (21).

The above system (13), (14) consists of six equations because we have already proved
in [5] the 4-th and 8-th equations from the original system (4), (5) are consequences of
the rest ones (that is, (5) is a consequence of (4)).
Let us briefly recall the original reasonings from [1]. Denote by L(1) and L(2) the

world-lines for the two particles. Let A(1) and A(2) be any two events in space-time

and let (λ
(1)
r )A(1) , (λ

(2)
r )A(2) be time-like unit tangent vectors arbitrarily assigned at

these events. The problem is to find world-lines L(1) and L(2) such that (13) and (14)

are satisfied and L(1) has to pass through A(1) with the direction (λ
(1)
r )A(1) and L(2)

- through A(2) with the direction (λ
(2)
r )A(2) . The condition, L(p), p = 1, 2, to pass

through A(p) with the direction (λ
(p)
r )A(p) , plays the role of an initial condition.

As a basic approximation for L(1), Synge chooses L
(1)
0 - the world-line which passes

through A(1) in the direction (λ
(1)
r )A(1) and satisfies (13) with the right-hand side

replaced by zero, i.e. L
(1)
0 is a geodesic.

Then he finds L
(2)
0 to pass through A(2) with the direction (λ

(2)
r )A(2) and to satisfy

(14), in which the field is taken to be that due to L
(1)
0 . Obviously L

(2)
0 is the orbit of

the Kepler problem discussed above.

Further on, he finds L
(1)
1 to pass through A(1) with the direction (λ

(1)
r )A(1) and to

satisfy (13) and so on. Thus he gets a sequence of world-lines

L
(1)
0 → L

(2)
0 → L

(1)
1 → L

(2)
1 → L

(1)
2 → L

(2)
2 → ...→ L(1)n → L(2)n → ...

The idea becomes more clear if we notice that the system (13)-(14) is a particular
case of a general neutral system of functional differential equations (cf. [7], [8]). Indeed

(13) does not contain du(1)(t−τ12)
dt while (14) does not contain du(2)(t−τ21)

dt . Therefore

following the Synge method [1] we replace in (14) the solution of (13) with F ≡ 0 and
thus we obtain an ordinary differential system

du(2)(t)

dt
=
e1e2
m2

F ξ(21), u(2)(t), u(1)(t− τ21),
du(1)(t− τ21)

dt
,

because u(1)(t − τ21) and
du(1)(t−τ21)

dt taking a part in the right-hand sides of the last

system are already known functions. Solving the last system we can replace u(2)(t−τ12)
and du(2)(t−τ12)

dt in (13) and again (13) becomes an ordinary differential system without
delays and so on.
Our main goal is already obvious. The process just describing cannot be continued

beyond L
(2)
0 . Indeed since L

(2)
0 is the Kepler problem we have already established

that it can be solved only on an interval of the type [t0,∞), that is, we do not know
what happens to the left from t0 and therefore we cannot obtain (replacing in (13))
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an ordinary differential system. The last reasonings warrant the correctness of the
considerations in [3]-[5].

As a final remark, in the original paper [1] the system (13), (14) is presented in the

form du(1)(t)
dt = −µkF and du(2)(t)

dt = −kF , where µ = m2

m1
, k = − e1e2

m2c2
(µ is a small

parameter). In view of the above exposition this fact does not play an essential role.
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