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Abstract

Generalizations of Ostrowski integral inequality are derived. Applications in
numerical integration are also given.

1 Introduction

In 1938, A. Ostrowski ([8] or [7, p. 468]) proved the following integral inequality:

THEOREM 1. Let f : I → R, where I ⊆ R is an interval, be a mapping differ-
entiable in the interior Io of I, and let a, b ∈ Io with a < b. If |f 3(x)| ≤ M for all
x ∈ [a, b], then�����f(x)− 1

b− a
] b

a

f(t)dt

����� ≤
%
1

4
+
(x− (a+ b)/2)2

(b− a)2
&
(b− a)M, ∀x ∈ [a, b] . (1)

In recent years a number of authors have generalized the above inequality, for
example see [2], [3] and [9]. These generalizations can be applied to special means, in
numerical integration (for quadrature formulas) etc.
In [1] the authors gave various estimates of the next 3-point quadrature rule:

R(f ; a, b, x) =

] b

a

f(t)dt− 1
2
[(x− a)f(a) + (b− a)f(x) + (b− x)f(x)] , (2)

where x ∈ [a, b] and f : I ⊂ R → R is a differentiable function in Io, a, b ∈ Io, a < b.
They also suppose that f 3 ∈ L1(a, b) and γ ≤ f 3(t) ≤ Γ, t ∈ [a, b] , where γ,Γ ∈ R are
constants. For example, in [1] we can find the following estimates

|R(f ; a, b, x)| ≤ Γ− γ

4

�
b− a
2

+

����x− a+ b2
����� (b− a), (3)

|R(f ; a, b, x)| ≤ Γ− γ

4
√
3
(b− a)

%
(b− a)2
4

+ 3

�
x− a+ b

2

�2&1/2
(4)
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and

|R(f ; a, b, x)| ≤ 1
4

%
(b− a)2
4

+

�
x− a+ b

2

�2&�
Γ− γ

2
+

����S − Γ+ γ

2

����� , (5)

where S = (f(b)− f(a))/(b− a). In [2] we can find the estimate:

|R(f ; a, b, x)| ≤ Γ− γ

8

�
(x− a)2 + (b− x)2� . (6)

In this paper we establish some new estimates of (2). We also use a completely new
way of estimation (Theorem 3). Finally, we give applications in numerical integration.

2 Inequalities of Ostrowski Type

Let g : [a, b]→ R be an absolutely continuous function. Let γ,Γ be real numbers such
that γ ≤ g3(t) ≤ Γ, t ∈ [a, b] (a.e.). If g3(t0) does not exist, for some t0 ∈ [a, b], then we
set g3(t0) = (Γ+ γ)/2, by definition. This restriction does not affect the validity of the
results obtained in this paper. That is, we consider such types of problems that the
above restriction has no practical importance. It is only important from a theoretical
point of view.

THEOREM 2. Let f : [a, b] → R be an absolutely continuous function. If there
exist constants γ,Γ ∈ R such that γ ≤ f 3(t) ≤ Γ, t ∈ [a, b] (a.e.), then we have�����12 [(x− a)f(a) + (b− a)f(x) + (b− x)f(b)]−

] b

a

f(t)dt

�����
≤ S − γ

2
(b− a)

�
b− a
2

+

����x− a+ b2
����� (7)

and �����12 [(x− a)f(a) + (b− a)f(x) + (b− x)f(b)]−
] b

a

f(t)dt

�����
≤ Γ− S

2
(b− a)

�
b− a
2

+

����x− a+ b2
����� , (8)

where S = (f(b)− f(a))/(b− a) and x ∈ [a, b].
PROOF. Let us define the function

p(x, t) =

�
t− a+x

2 , t ∈ [a, x]
t− x+b

2 , t ∈ (x, b]
(9)

Integrating by parts, we have] b

a

p(x, t)f 3(t)dt
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=

] x

a

�
t− a+ x

2

�
f 3(t)dt+

] b

x

�
t− x+ b

2

�
f 3(t)dt

=
1

2
[(x− a)f(a) + (b− a)f(x) + (b− x)f(b)]−

] b

a

f(t)dt. (10)

We also have] b

a

p(x, t)dt =

] x

a

�
t− a+ x

2

�
dt+

] b

x

�
t− x+ b

2

�
dt = 0. (11)

If C ∈ R is a constant then we have] b

a

p(x, t)f 3(t)dt =
] b

a

p(x, t) [f 3(t)− C] dt. (12)

If we choose C = γ in (12) then we have�����
] b

a

p(x, t) [f 3(t)− γ] dt

����� ≤ max |p(x, t)|
] b

a

|f 3(t)− γ| dt. (13)

where max is taken for t ∈ [a, b].
We also have

max |p(x, t)| = max
�
x− a
2

,
b− x
2

�
=
1

2

�
b− a
2

+

����x− a+ b2
����� (14)

and ] b

a

|f 3(t)− γ| dt = f(b)− f(a)− γ(b− a) = (S − γ)(b− a). (15)

From (10), (12) and (13)-(15) we easily get (7). If we choose C = Γ in (12), then we
get �����

] b

a

p(x, t) [f 3(t)− Γ] dt
����� ≤ max |p(x, t)|

] b

a

|f 3(t)− Γ| dt

=
Γ− S
2

(b− a)
�
b− a
2

+

����x− a+ b2
����� .

This completes the proof.

REMARK 1. If we set x = a or x = b in the above theorem then we get corre-
sponding trapezoid inequalities.

REMARK 2. If we choose C = (Γ+ γ)/2 in (12) then we have�����
] b

a

p(x, t)

�
f 3(t)− Γ+ γ

2

�
dt

����� ≤ max
����f 3(t)− Γ+ γ

2

���� ] b

a

|p(x, t)| dt. (16)

From (16) and

max

����f 3(t)− Γ+ γ

2

���� ≤ Γ− γ

2
, t ∈ [a, b] , (17)
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] b

a

|p(x, t)| dt = 1

2

%
1

4
+
(x− a+b

2 )
2

(b− a)2
&
(b− a)2 (18)

we get �����12 [(x− a)f(a) + (b− a)f(x) + (b− x)f(b)]−
] b

a

f(t)dt

�����
≤ Γ− γ

4

%
1

4
+
(x− a+b

2 )
2

(b− a)2
&
(b− a)2, (19)

where x ∈ [a, b]. The same result is obtained in [2] under different conditions.
We now define the functional

SΨ(f, g) =

] b

a

f(t)g(t)dt− 1

b− a
] b

a

f(t)dt

] b

a

g(t)dt−

− 1

nΨn22

] b

a

f(t)Ψ(t)dt

] b

a

g(t)Ψ(t)dt,

where Ψ is a given square integrable function such that
U b
a
Ψ(t)dt = 0, f, g ∈ L2(a, b)

and n·n2 is the usual norm in L2(a, b).
Some properties of such a functional are established in [10].

THEOREM 3. Let f : [a, b] → R be an absolutely continuous function such that
f 3 ∈ L2(a, b). Then we have�����12 [(x− a)f(a) + (b− a)f(x) + (b− x)f(b)]−

] b

a

f(t)dt

�����
≤ SΨ(f

3, f 3)1/2
�
b− a
12

�
(b− a)2
4

+ 3(x− a+ b
2
)2
��1/2

, (20)

where x ∈ [a, b] and

Ψ(t) =


t− 5a+x

6 , t ∈ �a, a+x2 �
t− a+5x

6 , t ∈ �a+x2 , x�
t− 5x+b

6 , t ∈ �x, x+b2 �
t− x+5b

6 , t ∈ �x+b2 , b�
. (21)

Proof. Let p(x, t) be defined by (9). Then we have] b

a

p(x, t)Ψ(t)dt

=

] (a+x)/2

a

(t− a+ x
2

)(t− 5a+ x
6

)dt+

] x

(a+x)/2

(t− a+ x
2

)(t− a+ 5x
6

)dt

+

] (x+b)/2

x

(t− x+ b
2
)(t− 5x+ b

6
)dt+

] b

(x+b)/2

(t− x+ b
2
)(t− x+ 5b

6
)dt

= 0. (22)
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From (10), (11) and (22) it follows

SΨ(p, f
3) =

] b

a

p(x, t)f 3(t)dt− 1

b− a
] b

a

p(x, t)dt

] b

a

f 3(t)dt

− 1

nΨn22

] b

a

p(x, t)Ψ(t)dt

] b

a

f 3(t)Ψ(t)dt

=
1

2
[(x− a)f(a) + (b− a)f(x) + (b− x)f(b)]−

] b

a

f(t)dt. (23)

On the other hand, we have ([10]),

|SΨ(p, f 3)| ≤ SΨ(p, p)1/2SΨ(f 3, f 3)1/2. (24)

We also have

SΨ(p, p) = npn22 −
1

b− a

#] b

a

p(x, t)dt

$2
− 1

nΨn22

#] b

a

p(x, t)Ψ(t)dt

$2
=

1

12

�
(x− a)3 + (b− x)3�

=
b− a
12

�
(b− a)2
4

+ 3(x− a+ b
2
)2
�
. (25)

From (23)-(25) we easily get (20).

REMARK 3. Estimate (20) is better than (4). This is a consequence of the fact
that SΨ(g, g) ≤ (b− a)T (g, g), where T (., .) is the Chebyshev functional - see [10].
COROLLARY 1. Under the assumptions of Theorem 3 we have�����f(a) + f(b)2

(b− a)−
] b

a

f(t)dt

����� ≤ SΨ(f 3, f 3)1/2 (b− a)3/22
√
3

(26)

and �����f(a) + 2f(a+b2 ) + f(b)4
(b− a)−

] b

a

f(t)dt

����� ≤ SΨ(f 3, f 3)1/2 (b− a)3/24
√
3

. (27)

PROOF. We set x = a and x = (a+ b)/2 in (20) to get (26) and (27), respectively.

3 Applications in Numerical Integration

THEOREM 4. Let the assumptions of Theorem 2 hold. If π = {x0 = a < x1 < · · · < xn = b}
is a given subdivision of the interval [a, b] then we have] b

a

f(t)dt = A(f, ξ,π) +R(f, ξ,π), (28)



76 Ostrowski Type Inequalities

where

A(f, ξ,π) =
1

2

n−1[
i=0

[(ξi − xi)f(xi) + hif(ξi) + (xi+1 − ξi)f(xi+1)] (29)

and

|R(f, ξ,π)| ≤ Γ− γ

4

n−1[
i=0

%
1

4
+
(ξi − xi+xi+1

2 )2

h2i

&
h2i , (30)

for hi = xi+1 − xi, xi ≤ ξi ≤ xi+1, i = 0, 1, 2, ..., n− 1.
PROOF. We apply (19) to the intervals [xi, xi+1], i = 0, 1, 2, ..., n − 1 and sum.

Then the triangle inequality gives the proof.

COROLLARY 2. Under the assumptions of Theorem 4 we have] b

a

f(t)dt = AT (f,π) +RT (f,π), (31)

where

AT (f,π) =
1

2

n−1[
i=0

[f(xi) + f(xi+1)]hi (32)

and

|RT (f,π)| ≤ Γ− γ

8

n−1[
i=0

h2i . (33)

Indeed, we only need to apply Theorem 4 with ξi = xi for i = 0, 1, 2, ..., n− 1.
COROLLARY 3. Under the assumptions of Theorem 4 we have] b

a

f(t)dt = AS(f,π) +RS(f,π), (34)

where

AS(f,π) =
1

4

n−1[
i=0

�
f(xi) + 2f(

xi + xi+1
2

) + f(xi+1)

�
hi (35)

and

|RS(f,π)| ≤ Γ− γ

16

n−1[
i=0

h2i . (36)

Indeed, we only need to apply Theorem 4 with ξi = (xi+xi+1)/2 for i = 0, 1, 2, ..., n−
1.

In a similar way we can apply the rest of results obtained in Section 2 to establish
some new approximations of integrals.

THEOREM 5. Let the assumptions of Theorem 4 hold. Then we have] b

a

f(t)dt = A(f, ξ,π) +RQ(f, ξ,π), (37)
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where A(f, ξ,π) is defined in Theorem 4,

|RQ(f, ξ,π)| ≤
n−1[
i=0

Si − γ

2
hi

�
hi
2
+

����ξi − xi + xi+12

����� (38)

or

|RQ(f, ξ,π)| ≤
n−1[
i=0

Γ− Si
2

hi

�
hi
2
+

����ξi − xi + xi+12

����� (39)

and Si = (f(xi+1)− f(xi))/hi for i = 0, 1, 2, ..., n− 1.
PROOF. We apply (7) to the interval [xi, xi+1] to get����12 [(ξi − xi)f(xi) + hif(ξi) + (xi+1 − ξi)f(xi+1)]−

] xi+1

xi

f(t)dt

���� (40)

≤ Si − γ

2
hi

�
hi
2
+

����ξi − xi + xi+12

����� .
We also have

1

2
[(ξi − xi)f(xi) + hif(ξi) + (xi+1 − ξi)f(xi+1)]−

] xi+1

xi

f(t)dt

=

] xi+1

xi

p(ξi, t) [f
3(t)− γ] dt,

where

p(ξi, t) =

�
t− xi+ξi

2 , t ∈ [xi, ξi]
t− ξi+xi+1

2 , t ∈ (ξi, xi+1] (41)

If we sum the above relation over i from 0 to n − 1 then we get (37). If we now
apply the triangle inequality and (40) then we get (38).
In a similar way we can prove that (39) holds.

COROLLARY 4. Under the assumptions of Theorem 5 we have] b

a

f(t)dt = AT (f,π) +R
S
T (f,π), (42)

where AT (f,π) is defined in Corollary 2 and

��RST (f,π)�� ≤ n−1[
i=0

Si − γ

2
h2i (43)

or ��RST (f,π)�� ≤ n−1[
i=0

Γ− Si
2

h2i . (44)

PROOF. We set ξi = xi in (37) to obtain (42) and set ξi = xi in (38) and (39) to
obtain (43) and (44), respectively.
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COROLLARY 5. Under the assumptions of Theorem 5 we have] b

a

f(t)dt = AS(f,π) +R
Q
S (f,π), (45)

where AS(f,π) is defined in Corollary 3 and���RQS (f,π)��� ≤ n−1[
i=0

Si − γ

4
h2i (46)

or ���RQS (f,π)��� ≤ n−1[
i=0

Γ− Si
4

h2i . (47)

PROOF. We set ξi = (xi+xi+1)/2 in (37) to obtain (45) and set ξi = (xi+xi+1)/2
in (38) and (39) to obtain (46) and (47), respectively.

Finally, let us compare the results obtained in this section. From the practical
point of view, the most interesting results are contained in Corollary 3 and Corollary
5. Thus, we restrict our considerations to the mentioned corollaries.
In [3] we can find the following estimate

|RS(f,π)| ≤ nf
3n∞
8

n−1[
i=0

h2i , (48)

where RS(f,π) is defined in Corollary 3. If we choose γ = inf |f 3(t)| and Γ = sup |f 3(t)|,
t ∈ [a, b] then (Γ − γ)/16 ≤ nf 3n∞ /8. Thus, the estimation (36) is better than the
estimation (48). In fact, these two estimations are equal if and only if Γ = −γ. The
last mentioned case is very rare in practice.
Hence, we have seen that the result obtained in Corollary 3 is generally better than

the corresponding result obtained in [3]. On the other hand, the results obtained in
Corollary 5 can be (much) better than the result of Corollary 3. We now give the
following example to illustrate the last fact.

EXAMPLE 1. For the sake of simplicity we choose xi = a + ih, h = (b − a)/n,
i = 0, 1, 2, ..., n − 1, xn = b. Let us consider the integral

U 4
0
et

2−16dt. We here have
f(t) = et

2−16, f 3(t) = 2tet
2−16, a = 0, b = 4 such that γ = 0, Γ = 8, f(a) = e−16,

f(b) = 1. Then (36) becomes

|RS(f,π)| ≤ Γ− γ

16n
(b− a)2 = 8

n
(49)

and (46) becomes ���RQS (f,π)��� ≤ (b− a)24n

�
f(b)− f(a)
b− a − γ

�
≤ 1

n
. (50)

It is obvious that (50) is better than (49). (Note that RS(f,π) = R
Q
S (f,π).)
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REMARK 4. The results obtained in Corollary 5 are not always better than the
result obtained in Corollary 3. For example, if we consider the monomial tλ, λ ∈ (1, 4),
t ∈ [0, b] (b > 0), then we easily find that the estimate (36) is better than the estimate
(46). Thus, both results have their fields of applicability.
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