Existence Of Solutions For Nonconvex Second Order Differential Inclusions *

Vasile Lupulescu ${ }^{\dagger}$

Received 20 April 2002

Abstract

In this paper we prove an existence result for a second order differential inclusion $$
x^{\prime \prime} \in F\left(x, x^{\prime}\right)+f\left(t, x, x^{\prime}\right), x(0)=x_{0}, x^{\prime}(0)=y_{0},
$$ where F is an upper semicontinuous, compact valued multifunction, such that $F(x, y) \subset \partial V(y)$, for some convex proper lower semicontinuous function V, and f is a Carathéodory function.

1 Introduction

For the Cauchy problem

$$
x^{\prime} \in F(x), x(0)=\xi
$$

where F is an upper semicontinuous, cyclically monotone, compact values multifunction, the existence of local solutions was obtained by Bressan, et al. [4]. For some extensions of this results we refer to [1], [7], [12] and [13]. On the other hand, for second order differential inclusions

$$
x^{\prime \prime} \in F\left(x, x^{\prime}\right), x(0)=x_{0}, x^{\prime}(0)=y_{0}
$$

existence results were obtained by many authors (we refer to [3], [8], [9], [11], [13]). The case when F is an upper semicontinuous, compact valued multifunction, such that $F(x, y) \subset \partial V(y)$, for some convex proper lower semicontinuous function V, was considered in [10].

In this paper we prove an existence result for a second order differential inclusion

$$
x^{\prime \prime} \in F\left(x, x^{\prime}\right)+f\left(t, x, x^{\prime}\right), x(0)=x_{0}, x^{\prime}(0)=y_{0},
$$

where F is an upper semicontinuous, compact valued multifunction, such that $F(x, y) \subset$ $\partial V(y)$, for some convex proper lower semicontinuous function V, and f is a Carathéodory function.

[^0]
2 Statement of Result

Let \mathbb{R}^{m} be the m-dimensional Euclidean space with scalar product $\langle.,$.$\rangle and norm \|$.$\| .$ For $x \in \mathbb{R}^{m}$ and $\varepsilon>0$ let

$$
B_{\varepsilon}(x)=\left\{y \in \mathbb{R}^{m}:\|x-y\|<\varepsilon\right\}
$$

be the open ball centered at x with radius ε, and let $\bar{B}_{\varepsilon}(x)$ be its closure. For $x \in \mathbb{R}^{m}$ and for a closed subsets $A \subset \mathbb{R}^{m}$ we denote by $d(x, A)$ the distance from x to A given by

$$
d(x, A)=\inf \{\|x-y\|: y \in A\}
$$

Let $V: \mathbb{R}^{m} \rightarrow \mathbb{R}$ be a proper lower semicontinuous convex function. The multifunction $\partial V: \mathbb{R}^{m} \rightarrow 2^{\mathbb{R}^{m}}$ defined by

$$
\partial V(x)=\left\{\xi \in \mathbb{R}^{m}: V(y)-V(x) \geqslant\langle\xi, y-x\rangle, \forall y \in \mathbb{R}^{m}\right\}
$$

is called the subdifferential (in the sense of convex analysis) of the function V.
We say that a multifunction $F: \mathbb{R}^{m} \rightarrow 2^{\mathbb{R}^{m}}$ is upper semicontinuous if for every $x \in \mathbb{R}^{m}$ and every $\varepsilon>0$ there exists $\delta>0$ such that

$$
F(y) \subset F(x)+B_{\varepsilon}(0), \forall y \in B_{\delta}(x)
$$

For a multifunction $F: \Omega \subset \mathbb{R}^{2 m} \rightarrow 2^{\mathbb{R}^{m}}$ and for any $\left(x_{0}, y_{0}\right) \in \Omega$ we consider the Cauchy problem

$$
\begin{equation*}
x^{\prime \prime} \in F\left(x, x^{\prime}\right)+f\left(t, x, x^{\prime}\right), x(0)=x_{0}, x^{\prime}(0)=y_{0}, \tag{1}
\end{equation*}
$$

under the following assumptions:
$\left(H_{1}\right) \Omega \subset \mathbb{R}^{2 m}$ is an open set and $F: \Omega \rightarrow 2^{\mathbb{R}^{m}}$ is an upper semicontinuous compact valued multifunction.
$\left(H_{2}\right)$ There exists a proper convex and lower semicontinuous function $V: \mathbb{R}^{m} \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
F(x, y) \subset \partial V(y), \forall(x, y) \in \Omega \tag{2}
\end{equation*}
$$

$\left(H_{3}\right) f: \mathbb{R} \times \mathbb{R}^{m} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ is a Carathéodory function, i.e. for every $x, y \in \mathbb{R}^{m}$, $t \mapsto f(t, x, y)$ is measurable, for $t \in \mathbb{R},(x, y) \mapsto f(t, x, y)$ is continuous and there exists $m(.) \in L^{2}\left(\mathbb{R}_{+}^{*}\right)$ such that:

$$
\begin{equation*}
\|f(t, x, y)\| \leq m(t),(\forall)(x, y) \in \mathbb{R}^{m} \times \mathbb{R}^{m} \text {, a.e. } t \in \mathbb{R} \tag{3}
\end{equation*}
$$

By a solution of the problem (1) we mean any absolutely continuous function x : $[0, T] \rightarrow \mathbb{R}^{m}$ with absolutely continuous derivative x^{\prime} such that $x(0)=x_{0}, x(0)=y_{0}$, and

$$
x^{\prime \prime}(t) \in F\left(x(t), x^{\prime}(t)\right)+f\left(t, x(t), x^{\prime}(t)\right), \text { a.e. on }[0, T] .
$$

Our main result is the following:
THEOREM 1. If $F: \Omega \subset \mathbb{R}^{2 m} \rightarrow 2^{\mathbb{R}^{m}}, f: \mathbb{R} \times \mathbb{R}^{m} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ and $V: \mathbb{R}^{m} \rightarrow \mathbb{R}$ satisfy assumptions $\left(H_{1}\right),\left(H_{2}\right)$ and $\left(H_{3}\right)$ then for every $\left(x_{0}, y_{0}\right) \in \Omega$ there exist $T>0$ and a solution $x:[0, T] \rightarrow \mathbb{R}^{m}$ of the problem (1).

3 Proof of Our Result

Let $\left(x_{0}, y_{0}\right) \in \Omega$. Since Ω is open, there exists $r>0$ such that the compact set $K:=$ $\bar{B}_{r}\left(x_{0}, y_{0}\right)$ is contained in Ω. Moreover, by the upper semicontinuity of F in $\left(H_{1}\right)$ and by Proposition 1.1.3 in [2], the set

$$
F(K):=\bigcup_{(x, y) \in K} F(x, y)
$$

is compact, hence there exists $M>0$ such that

$$
\sup \{\|v\|: v \in F(x, y),(x, y) \in K\} \leq M
$$

Set

$$
T^{\prime}:=\min \left\{\frac{r}{M}, \sqrt{\frac{r}{M}}, \frac{r}{2\left(\left\|y_{0}\right\|+1\right)}\right\} .
$$

By $\left(H_{3}\right)$ there exists $T^{\prime \prime}>0$ such that

$$
\int_{0}^{T^{\prime \prime}}(m(t)+M) d t<r
$$

We shall prove the existence of a solution of the problem (1) defined on the interval $[0, T]$, where $0<T \leq \min \left\{T^{\prime}, T^{\prime \prime}\right\}$.

For each integer $n \geq 1$ and for $1 \leq j \leq n$ we set $t_{n}^{j}:=\frac{j T}{n}, I_{n}^{j}=\left[t_{n}^{j-1}, t_{n}^{j}\right]$ and for $t \in I_{n}^{j}$ we define

$$
\begin{equation*}
x_{n}(t)=x_{n}^{j}+\left(t-t_{n}^{j}\right) y_{n}^{j}+\frac{1}{2}\left(t-t_{n}^{j}\right)^{2} v_{n}^{j}+\int_{j \frac{T}{n}}^{t}(s-t) f\left(s, x_{n}^{j}, y_{n}^{j}\right) d s \tag{4}
\end{equation*}
$$

where $x_{n}^{0}=x_{0}, y_{n}^{0}=y_{0}$, and, for $0 \leq j \leq n-1, v_{n}^{j} \in F\left(x_{n}^{j}, y_{n}^{j}\right)$,

$$
\left\{\begin{array}{l}
x_{n}^{j+1}=x_{n}^{j}+\frac{T}{n} y_{n}^{j}+\frac{1}{2}\left(\frac{T}{n}\right)^{2} v_{n}^{j} \tag{5}\\
y_{n}^{j+1}=y_{n}^{j}+\frac{T}{n} v_{n}^{j} .
\end{array}\right.
$$

Set, for $t \in\left(t_{n}^{j-1}, t_{n}^{j}\right), j \in\{1,2, \ldots, n\}, f_{n}(t):=f\left(s, x_{n}^{j}, y_{n}^{j}\right)$.
We claim that $\left(x_{n}^{j}, y_{n}^{j}\right) \in K$ for each $j \in\{1,2, \ldots, n\}$. By the choice of T one has

$$
\left\|x_{n}^{1}-x_{0}\right\| \leq \frac{T}{n}\left\|y_{0}\right\|+\frac{1}{2}\left(\frac{T}{n}\right)^{2}\left\|v_{0}\right\|<T\left\|y_{0}\right\|+\frac{1}{2} M T^{2}<r
$$

and

$$
\left\|y_{n}^{1}-y_{0}\right\| \leq T\left\|v_{0}\right\|<r
$$

hence the claim is true for $j=1$.
We claim that for each $j>1$ one has

$$
\left\{\begin{array}{l}
x_{n}^{j}=x_{n}^{0}+j \frac{T}{n} y_{n}^{0}+\frac{1}{2}\left(\frac{T}{n}\right)^{2}\left[(2 j-1) v_{n}^{0}+(2 j-3) v_{n}^{1}+\ldots+v_{n}^{j-1}\right] \tag{6}\\
y_{n}^{j}=y_{n}^{0}+\frac{T}{n}\left[v_{n}^{0}+v_{n}^{1}+\ldots+v_{n}^{j-1}\right] .
\end{array}\right.
$$

The statement holds true for $j=0$. Assume it holds for j, with $1 \leq j<n$. Then by (5) one obtains that

$$
\begin{aligned}
x_{n}^{j+1}= & x_{n}^{j}+\frac{T}{n} y_{n}^{j}+\frac{1}{2}\left(\frac{T}{n}\right)^{2} v_{n}^{j} \\
= & x_{n}^{0}+\frac{j T}{n} y_{n}^{0}+\frac{1}{2}\left(\frac{T}{n}\right)^{2}\left[(2 j-1) v_{n}^{0}+(2 j-1) v_{n}^{1}+\ldots+v_{n}^{j-1}\right]+ \\
& +\frac{T}{n} y_{n}^{0}+\left(\frac{T}{n}\right)^{2}\left[v_{n}^{0}+v_{n}^{1}+\ldots+v_{n}^{j-1}\right] v_{n}^{j}+\frac{1}{2}\left(\frac{T}{n}\right)^{2} v_{n}^{j} \\
= & x_{n}^{0}+(j+1) \frac{T}{n} y_{n}^{0}+\frac{1}{2}\left(\frac{T}{n}\right)^{2}\left[(2 j+1) v_{n}^{0}+(2 j-1) v_{n}^{1}+\ldots+v_{n}^{j}\right]
\end{aligned}
$$

and

$$
y_{n}^{j+1}=y_{n}^{j}+\frac{T}{n} v_{n}^{j}=y_{n}^{0}+\frac{T}{n}\left[v_{n}^{0}+v_{n}^{1}+\ldots+v_{n}^{j}\right]
$$

Therefore the relations in (6) are satisfied for each j, with $1 \leq j \leq n$ and our claim was proved.

Now, by (6) it follows easily that

$$
\begin{aligned}
\left\|x_{n}^{j}-x_{0}\right\| & \leq \frac{j T}{n}\left\|y_{0}\right\|+\frac{1}{2}\left(\frac{T}{n}\right)^{2}[(2 j-1)+(2 j-3)+\ldots+3+1] M \\
& =\frac{j T}{n}\left\|y_{0}\right\|+\frac{1}{2} M\left(\frac{j T}{n}\right)^{2}<T\left\|y_{0}\right\|+\frac{1}{2} M T^{2}<r
\end{aligned}
$$

and

$$
\left\|y_{n}^{j}-y_{0}\right\| \leq \frac{j T}{n} M<r
$$

proving that $\left(x_{n}^{j}, y_{n}^{j}\right) \in K:=B_{r}\left(x_{0}, y_{0}\right)$, for each j, with $1 \leq j \leq n$.
By (4) we have that

$$
\begin{aligned}
x_{n}^{\prime}(t) & =y_{n}^{j}+\left(t-t_{n}^{j}\right) v_{n}^{j}+\int_{j \frac{T}{n}}^{t} f_{n}(s) d s \\
x_{n}^{\prime \prime}(t) & =v_{n}^{j}+f_{n}(t), \forall t \in I_{n}^{j}
\end{aligned}
$$

hence

$$
\left\{\begin{array}{l}
\left\|x_{n}^{\prime \prime}(t)\right\| \leq M+m(t), \forall t \in[0, T] \tag{7}\\
\left\|x_{n}^{\prime}(t)\right\| \leq\left\|y_{0}\right\|+2 r, \forall t \in[0, T] \\
\left\|x_{n}(t)\right\| \leq\left\|x_{0}\right\|+2 r(T+1), \forall t \in[0, T]
\end{array}\right.
$$

Moreover, for all $t \in[0, T]$ we have

$$
\begin{equation*}
d\left(\left(x_{n}(t), x_{n}^{\prime}(t), x_{n}^{\prime \prime}(t)-f_{n}(t), \operatorname{graph}(F)\right) \leq \frac{2 r(T+1)}{n}\right. \tag{8}
\end{equation*}
$$

Then, by (7), we have

$$
\int_{0}^{T}\left\|x_{n}^{\prime \prime}(t)\right\|^{2} d t \leq \int_{0}^{T}(M+m(t))^{2} d t
$$

and therefore the sequence $\left(x_{n}^{\prime \prime}\right)_{n}$ is bounded in $L^{2}\left([0, T], \mathbb{R}^{m}\right)$.
For all $\tau, t \in[0, T]$, we have that

$$
\left\|x^{\prime}(t)-x_{n}^{\prime}(\tau)\right\| \leq\left|\int_{\tau}^{t}\left\|x_{n}^{\prime \prime}(s)\right\| d s\right| \leq\left|\int_{\tau}^{t}(M+m(s))^{2} d s\right|
$$

so that the sequence $\left(x_{n}^{\prime}\right)_{n}$ is equiuniformly continuous. Moreover, by (7) we see that $\left(x_{n}\right)_{n}$ is equi-Lipschitzian, hence equiuniformly continuous.

Therefore, $\left(x_{n}^{\prime \prime}\right)_{n}$ is bounded in $L^{2}\left([0, T], \mathbb{R}^{m}\right),\left(x_{n}^{\prime}\right)_{n}$ and $\left(x_{n}\right)_{n}$ are bounded in $C\left([0, T], \mathbb{R}^{m}\right)$ and equiuniformly continuous, hence, by Theorem 0.3.4 in [2] there exist a subsequence, still denoted by $\left(x_{n}\right)_{n}$, and an absolutely continuous function $x:[0, T] \rightarrow \mathbb{R}^{m}$ such that
(i) $\left(x_{n}\right)_{n}$ converges uniformly to x;
(ii) $\left(x_{n}^{\prime}\right)_{n}$ converges uniformly to x^{\prime};
(iii) $\left(x_{n}^{\prime \prime}\right)_{n}$ converges weakly in $L^{2}\left([0, T], \mathbb{R}^{m}\right)$ to $x^{\prime \prime}$.

Since $\left(f_{n}(.)\right)_{n}$ converges to $f(.,()$.$) in L^{2}\left([0, T], \mathbb{R}^{m}\right)$, then, by $\left(H_{2}\right),(8)$ and Theorem 1.4.1 in [2] we obtain

$$
\begin{equation*}
x^{\prime \prime}(t)-f\left(t, x(t), x^{\prime}(t)\right) \in \operatorname{coF}\left(x(t), x^{\prime}(t)\right) \subset \partial V\left(x^{\prime}(t)\right), \text { a.e. }, t \in[0, T] \tag{9}
\end{equation*}
$$

where co stands for the closed convex hull.
By (9) and Lemma 3.3 in [5] we obtain that

$$
\frac{d}{d t} V\left(x^{\prime}(t)\right)=\left\langle x^{\prime \prime}(t), x^{\prime \prime}(t)-f\left(t, x(t), x^{\prime}(t)\right)\right\rangle, \text { a.e., } t \in[0, T]
$$

hence,

$$
\begin{equation*}
V\left(x^{\prime}(T)\right)-V\left(x^{\prime}(0)\right)=\int_{0}^{T}\left\|x^{\prime \prime}(t)\right\|^{2} d t-\int_{0}^{T}\left\langle x^{\prime \prime}(t), f\left(t, x(t), x^{\prime}(t)\right)\right\rangle d t \tag{10}
\end{equation*}
$$

On the other hand, since

$$
x_{n}^{\prime \prime}(t)-f_{n}(t)=v_{n}^{j} \in F\left(x_{n}^{j}, y_{n}^{j}\right) \subset \partial V\left(x_{n}^{\prime}\left(t_{n}^{j}\right)\right), \forall t \in I_{n}^{j}
$$

and so from the properties of the subdifferential of a convex function, it follows that

$$
\begin{aligned}
V\left(x_{n}^{\prime}\left(t_{n}^{j+1}\right)\right)-V\left(x_{n}^{\prime}\left(t_{n}^{j}\right)\right) & \geq\left\langle x_{n}^{\prime \prime}(t)-f_{n}(t), x_{n}^{\prime}\left(t_{n}^{j+1}\right)-x_{n}^{\prime}\left(t_{n}^{j}\right)\right\rangle \\
& =\left\langle x_{n}^{\prime \prime}(t)-f_{n}(t), \int_{t_{n}^{j}}^{t_{n}^{j+1}} x_{n}^{\prime \prime}(s) d s\right\rangle \\
& =\int_{t_{n}^{j}}^{t_{n}^{j+1}}\left\|x^{\prime \prime}(t)\right\|^{2} d t-\int_{t_{n}^{j}}^{t_{n}^{j+1}}\left\langle f_{n}(t), x_{n}^{\prime \prime}(t)\right\rangle d t .
\end{aligned}
$$

By adding the n inequalities from above, we get

$$
\begin{equation*}
V\left(x_{m}^{\prime}(T)\right)-V\left(y_{0}\right) \geq \int_{0}^{T}\left\|x_{n}^{\prime \prime}(t)\right\|^{2} d t-\int_{0}^{T}\left\langle f_{n}(t), x_{n}^{\prime \prime}(t)\right\rangle d t \tag{11}
\end{equation*}
$$

The convergence of $\left(f_{n}(.)\right)_{n}$ in L^{2}-norm and of $\left(x_{n}^{\prime \prime}(.)\right)_{n}$ in the weak topology of L^{2} implies that

$$
\lim _{n \rightarrow \infty} \int_{0}^{T}\left\langle f_{n}(t), x_{n}^{\prime \prime}(t)\right\rangle d t=\int_{0}^{T}\left\langle f\left(t, x(t), x^{\prime}(t)\right), x^{\prime \prime}(t)\right\rangle d t
$$

By passing to the limit as $n \rightarrow \infty$ in (11) and using the continuity of V we see that

$$
\begin{equation*}
V\left(x^{\prime}(T)\right)-V\left(y_{0}\right) \geq \limsup _{n \rightarrow \infty} \int_{0}^{T}\left\|x_{n}^{\prime \prime}(t)\right\|^{2} d t-\int_{0}^{T}\left\langle f\left(t, x(t), x^{\prime}(t)\right), x^{\prime \prime}(t)\right\rangle d t \tag{12}
\end{equation*}
$$

hence, by (10) and (12), we obtain

$$
\left\|x^{\prime \prime}(t)\right\|_{L^{2}}^{2} \geq \limsup _{n \rightarrow \infty}\left\|x_{n}^{\prime \prime}(t)\right\|_{L^{2}}^{2}
$$

Since, by the weak lower semicontinuity of the norm,

$$
\left\|x^{\prime \prime}(t)\right\|_{L^{2}}^{2} \leq \liminf _{n \rightarrow \infty}\left\|x_{n}^{\prime \prime}(t)\right\|_{L^{2}}^{2}
$$

we have that $\left\|x^{\prime \prime}(t)\right\|_{L^{2}}^{2}=\lim _{n \rightarrow \infty}\left\|x_{n}^{\prime \prime}(t)\right\|_{L^{2}}^{2}$ i.e. $\left(x_{n}^{\prime \prime}\right)_{n}$ converge to $x^{\prime \prime}$ strongly in $L^{2}\left([0, T], \mathbb{R}^{m}\right)$ (Proposition III. 30 in $\left.[6]\right)$. Hence a subsequence again denoted by $\left(x_{n}^{\prime \prime}\right)_{n}$ converge pointwise to $x^{\prime \prime}$.

Since by $\left(H_{1}\right)$ the graph of F is closed and, by (8),

$$
\lim _{n \rightarrow \infty} d\left(\left(x_{n}(t), x_{n}^{\prime}(t), x_{n}^{\prime \prime}(t)-f_{n}(t)\right), \operatorname{graph}(F)\right)=0
$$

we obtain that

$$
x^{\prime \prime}(t) \in F\left(x(t), x^{\prime}(t)\right)+f\left(t, x(t), x^{\prime}(t)\right), \text { a.e. }, t \in[0, T] .
$$

Since x obviously satisfies the initial conditions, it is a solution of the problem (1).

4 An Example

For $D \subset R^{n}$ and $x \in D$, denote by $T_{D}(x)$ the Bouligand's contingent cone of D at x, defined by

$$
T_{D}(x)=\left\{v \in R^{m} ; \liminf _{h \rightarrow 0^{+}} \frac{d(x+h v, D)}{h}=0\right\}
$$

Also, $N_{D}(x)$ is the normal cone of D at x, defined by

$$
N_{D}(x)=\left\{v \in R^{m} ;\langle y, v\rangle \leq 0,(\forall) v \in T_{D}(x)\right\}
$$

In what follows we consider D as a closed subset such that $\theta \in D$ and $\theta \notin \operatorname{Int}(D)$, where θ is the zero element of R^{m}.

We set $K=T_{D}(\theta), Q=\operatorname{Int}\left(N_{D}(\theta)\right), \Omega=B_{1}(\theta) \times Q$ and denote by $\pi_{K}(y)$ the projection

$$
\pi_{K}(y)=\{u \in K: d(y, u)=d(y, K)\}
$$

THEOREM 2. Suppose $\operatorname{Int}\left(N_{D}(x)\right) \neq \emptyset$ and $f: R \times R^{m} \times R^{m} \rightarrow R^{m}$ satisfies the assumption $\left(H_{3}\right)$. Then there exist $T>0$ and a solution $x:[0, T] \rightarrow R^{m}$ for the following Cauchy problem

$$
x^{\prime \prime} \in(1-\|x\|) \pi_{K}\left(x^{\prime}\right)+f\left(t, x, x^{\prime}\right), \quad\left(x(0), x^{\prime}(0)\right)=\left(x_{0}, y_{0}\right) .
$$

PROOF. By Proposition 2 in [4] there exists a convex function V such that

$$
\pi_{K}(y) \subset \partial V(y),(\forall) y \in Q
$$

We recall (see [4]) that the function V is defined by

$$
V(y)=\sup \left\{\varphi_{u}(y) ; u \in K\right\}
$$

where

$$
\varphi_{u}(y)=\langle u, y\rangle-\frac{1}{2}\|u\|^{2}, y \in Q
$$

Also, we observe that the following assertions are equivalent:

$$
\left\{\begin{array}{l}
(i) u \in \pi_{K}(y) \tag{13}\\
(\text { ii }\|y-u\| \leq\|y-v\|,(\forall) v \in K \\
\left(\text { iii) } \varphi_{u}(y) \geq \varphi_{v}(y),(\forall) v \in K\right.
\end{array}\right.
$$

Let $(x, y) \in \Omega$ be and let $z \in F(x, y)$. Then there exists $u \in \pi_{K}(y)$ such that $z=$ $(1-\|x\|) u$. We have that

$$
\begin{aligned}
\varphi_{(1-\|x\|) u}(y) & =\langle(1-\|x\|) u, y\rangle-\frac{1}{2}(1-\|x\|)^{2}\|u\|^{2} \\
& \geq\langle(1-\|x\|) u, y\rangle-\frac{1}{2}(1-\|x\|)\|u\|^{2} \\
& =\langle u, y\rangle-\frac{1}{2}\|u\|^{2}-\|x\|\left(\langle u, y\rangle-\frac{1}{2}\|u\|^{2}\right) \\
& =(1-\|x\|) \varphi_{u}(y)
\end{aligned}
$$

hence

$$
\begin{equation*}
\varphi_{(1-\|x\|) u}(y) \geq(1-\|x\|) \varphi_{u}(y) \tag{14}
\end{equation*}
$$

Since $u \in \pi_{K}(y)$, then $\varphi_{u}(y) \geq \varphi_{v}(y)$, for every $v \in K$, and by (14) it follows that

$$
\begin{aligned}
\varphi_{(1-\|x\|) u}(y)-\varphi_{v}(y) & \geq(1-\|x\|) \varphi_{u}(y)-\varphi_{v}(y) \\
& \geq(1-\|x\|) \varphi_{v}(y)-\varphi_{v}(y)=-\|x\| \varphi_{v}(y)
\end{aligned}
$$

hence

$$
\begin{equation*}
\varphi_{(1-\|x\|) u}(y)-\varphi_{v}(y) \geq-\|x\| \varphi_{v}(y) \tag{15}
\end{equation*}
$$

for every $v \in K$.
Since $y \in Q=\operatorname{Int}\left(N_{D}(\theta)\right)$ we have that

$$
\langle y, v\rangle \leq 0, \text { for every } v \in K=T_{D}(\theta)
$$

hence

$$
\begin{equation*}
\varphi_{v}(y)=\langle y, v\rangle-\frac{1}{2}\|v\|^{2} \leq 0, \text { for every } v \in K \tag{16}
\end{equation*}
$$

From (15) and (16), it follows that

$$
\begin{equation*}
\varphi_{(1-\|x\|) u}(y) \geq \varphi_{v}(y), v \in K \tag{17}
\end{equation*}
$$

Then (17) and the equivalent assertions in (13) imply that

$$
z=(1-\|x\|) u \in \pi_{K}(y) \subset \partial V(y)
$$

If we define the multifunction $F: \Omega \rightarrow 2^{R^{m}}$ by

$$
F(x, y)=(1-\|x\|) \pi_{K}(y)
$$

then F is with compact valued and upper semicontinuous and there exists a convex function $V: R^{m} \rightarrow R$ such that

$$
F(x, y) \subset \partial V(y),(\forall)(x, y) \in \Omega
$$

Therefore, F and f satisfies assumptions $\left(H_{1}\right),\left(H_{2}\right)\left(H_{3}\right)$ and our proof is complete.

References

[1] F. Ancona and G. Colombo, Existence of solutions for a class of nonconvex differential inclusions, Rend. Se Mat. Univ. Padova, 83(1990), 71-76.
[2] J. P. Aubin and A. Cellina, Differential Inclusions, Springer-Verlag, Berlin, 1984.
[3] A. Auslender and J. Mechler, Second order viability problems for differential inclusions, J. Math. Anal. Appl., 181(1984), 205-218.
[4] A. Bressan, A. Cellina and G. Colombo, Upper semicontinuous differential inclusions without convexity, Proc. Amer. Math. Soc., 106(1989), 771-775.
[5] H. Brezis, Operateurs Maximaux Monotones et Semigroupes de Contractions Dans Les Espaces de Hilbert, North-Holland, Amsterdam, 1973.
[6] H. Brezis, Analyse Fonctionelle, Théorie et Applications. Masson, Paris, 1983.
[7] A. Cellina and V. Staicu, On evolution equations having monotonicities of opposite sign, J. Differential Equations, 90(1991), 71-80.
[8] B. Cornet and B. Haddad, Théoreme de viabilité pour inclusions differentielles du second order, Israel J. Math., 57(1987), 225-238.
[9] T. X. D. Ha and M. Marques, Nonconvex second order differential inclusions with memory, Set-Valued Analysis, 3(1995), 71-86.
[10] V. Lupulescu, Existence of solutions to a class of second order differential inclusions, Technial report, CM 01/I-11, Department of Mathematics of Aveiro University, 2001.
[11] L. Marco and J. A. Murillo, Viability theorems for higher-order differential inclusions, Set-Valued Anal., 6(1998), 21-37.
[12] F. Papalini, Existence of solutions for differential inclusions without convexity, Rend. Inst. Mat. Univ. Trieste, 24(1992), 193-206.
[13] A. Syam, Contributions Aux Inclusions Differentielles, PhD Thesis, Universite Montpellier II, 1993

[^0]: *Mathematics Subject Classifications: 34G20, 47H04.
 †Universitatea "Constantin Brâncuşi", Bulevardul Republicii Nr. 1, 1400 Târgu-Jiu, Romania

