ISSN 1607-2510

Asymptotic Behaviors Of Complex Analytic Dynamical Systems *

Jinn-Wen Wu^\dagger

Received 20 March 2002

Abstract

The main purpose of this paper is to prove that every analytic dynamical system on the complex plane has no limit cycle. Also we give analogues of the Denjoy-Wolff fixed point theorem of complex iteration, Schwarz Lemma of complex analysis and contraction principle in our settings.

The well known Poincare-Bendixson Theorem states that in a 2-dimensional smooth dynamical system, every bounded solution converges either to a limit cycle or to an equilibrium or the solution itself is periodic. The main purpose of this paper is to prove that an analytic system: $\dot{z} = f(z)$, where f is analytic on the complex plane C, does not have any limit cycle. Thus a bounded solution converges to an equilibrium or itself is periodic. We also give analogues of the Denjoy-Wolff fixed point theorem, Schwarz Lemma and contraction principle in the context of our analytic dynamical systems.

Consider the following system

$$\dot{z} = f(z) \tag{1}$$

where f is analytic on the complex plane C.

THEOREM 1. The system (1) does not have a limit cycle.

PROOF. Suppose to the contrary that the system (1) has a limit cycle $\gamma : [0, T] \to C$ with $\gamma(0) = \gamma(T)$. Let Ω be the region bounded by γ . Since Ω is bounded, there exists a semiflow: $\{\Phi_t | t \geq 0\}$ where $\Phi_t : \Omega \to \Omega$ is 1-1 and analytic, such that for each initial point $z \in \Omega$, the corresponding solution can be represented as $z(t) = \Phi_t(z)$ for all $t \geq 0$ [2, p.283]. Choose $n \in N$ (N is the set of positive integers) and let h = T/n. Then Φ_h is continuous on $\overline{\Omega}$ and analytic on Ω . Thus $\forall z \in \partial \Omega$, $\Phi_h(z) \in \partial \Omega$, and $\Phi_h^n(z) = \Phi_T(z) = z$. Let $g(z) = \Phi_h^n(z) - z$. Then g is continuous on $\overline{\Omega}$ and analytic on Ω . Since |g(z)| = 0 for all $z \in \partial \Omega$, by the Maximum module principle [3, p.134], g(z) = 0 for all $z \in \Omega$. Hence $\Phi_h^n(z) = z$ for all $z \in \Omega$. Thus we have shown that $\forall z \in \Omega$, $\Phi_h^n(z) = \Phi_T(z) = z$. So all solutions $z(t) = \Phi_t(z)$ in Ω are periodic. Therefore γ is not a limit cycle, which is a contradiction. The proof is complete.

COROLLARY 1. Let γ be a periodic solution for the system (1) such that $\gamma(0) = \gamma(T)$ and Ω the domain bounded by γ . Then (i) there exists a unique equilibrium $\xi \in \Omega$

^{*}Mathematics Subject Classifications: 37F99

[†]Department of Mathematics, Chung Yuan Christian University, Chung-Li, taiwan 32023, R. O. China

such that $f(\xi) = 0$ and $\operatorname{Re}(f'(\xi)) = 0$, and (ii) for each initial point $z \in \Omega \setminus \{\xi\}$, the corresponding solution z(t) is periodic, z(T) = z and encircles ξ .

PROOF. Since for every $z \in \gamma$, $f(z) \neq 0$ and lies in the tangent line of γ at z, the number of zeros of f in Ω counted with their multiplicities is equal to the winding number W(f, r) of f with respect to γ , which satisfies [3,P.115]

$$1 = W(f, r) = \frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz.$$
 (2)

By the same argument in the proof of Theorem 1, we may prove that for each initial point $z \in \Omega \setminus \{\xi\}$, the corresponding solution z(t) satisfies z(T) = z where T is the period of γ . Suppose the unique equilibrium ξ satisfies $\operatorname{Re}(f'(\xi)) < 0$. Then by Lyapunov's stability Theorem [4], there exists $N_s(\xi)$, a neighborhood of ξ , such that $\forall z \in N_s(\xi), z(t) \to \xi$ as $t \to \infty$. So ξ is a local attractor. Hence every solution near ξ is certainly not periodic which contradicts the fact shown above. Similarly, if $\operatorname{Re}(f'(\xi)) > 0$, then there exists $N_w(\xi)$, a neighborhood of ξ , such that $\forall z \in N_w(\xi)$, $\exists t_1 > 0$ such that $\Phi_{t_1} \notin N_w(\xi)$. Thus from the above cases we have shown that every solution near ξ is certainly not periodic which contradicts the fact shown above. So we have $\operatorname{Re}(f'(\xi)) = 0$.

Next, let γ_1 be an arbitrary periodic solution in Ω . By the same argument as above, there exists $\xi_1 \in \Omega_1$ (the domain bounded by γ_1) such that $f(\xi_1) = 0$. By (2), $\xi_1 = \xi$. In view of the facts just shown, we have proved that every solution z(t) in Ω with initial point $z \notin \xi$ is periodic and encircles ξ . The proof is complete.

The following is an analogue of Denjoy-Wolff fixed point Theorem for (1).

THEOREM 2. Suppose the bounded and simply connected domain Ω in C is invariant under the system (1) (i.e., for all $z \in \Omega$, the corresponding solution $z(t) \in \Omega$ for all $t \ge 0$). If $\forall z \in \Omega$, $f(z) \ne 0$, then $\exists \xi \in \partial \Omega$ such that every solution $z(t) \rightarrow \xi$ as $t \rightarrow \infty$ once $z(0) \in \Omega$.

PROOF. Since Ω is a bounded and simply connected domain, by Riemann's mapping theorem [3, p.230], there exists a conformal mapping $M : \Omega \to \Delta$ such that $M(\partial \Omega) \subset \partial \Delta$ (where $\partial \Omega$ is the boundary of Ω , while Δ and $\partial \Delta$ denote the open unit disc and its boundary respectively). Since Ω is bounded and invariant there exists a semiflow $\{\Phi_t | \forall t \geq 0\}$ where $\Phi_t : \Omega \to \Omega$ is 1-1 and analytic. Choose h > 0 which is sufficiently small. Then Φ_h is analytic on Ω . Let $F = M \circ \Phi_h \circ M^{-1}$. Then $F : \Delta \to \Delta$ is analytic. By the Theorem of normal family [3, p.224], the set $\{F^k | k = 1, 2, 3, ...\}$ of iterates of F contains a convergent subsequence $F^{k_i} \to G$ as $i \to \infty$, where G is analytic on Δ and the convergence is uniform for each compact set contained in Δ . Since $f(z) \neq 0$ for all $z \in \Omega$, by Theorem 1, it follows that every solution $z(t) = \Phi_t(z)$ converges to a point $\alpha \in \partial\Omega$ as $t \to \infty$. This implies that $F^k(w)$ tends to a point in $\partial\Delta$ as $k \to \infty$. Hence the mapping G maps Δ to $\partial\Delta$. So we have |G(w)| = 1 for all $w \in \Delta$. In turn, we have the following chain of implications:

$$\frac{\partial}{\partial w}(\overline{G(w)}G(w)) = 0 \Rightarrow \frac{\partial \bar{G}}{\partial w}G + \bar{G}\frac{\partial G}{\partial w} = 0 \Rightarrow \frac{\partial G}{\partial w} = 0$$

since $\frac{\partial \bar{G}}{\partial w} = 0$ and since G is analytic. Thus $G(w) \equiv \zeta$ for some $\zeta \in \partial \Delta$. Thus

 $\forall w \in \Delta, F^k(w) \to \zeta \text{ as } k \to \infty,$

$$\Rightarrow \quad \forall z \in \Omega, \ \Phi_h^k(z) \to \zeta, \ \xi = M^{-1}(\zeta) \ \text{as} \ k \to \infty,$$
$$\Rightarrow \quad \forall z \in \Omega, \ z(t) = \Phi_t(z) \to \zeta \ \text{as} \ t \to \infty.$$

The proof is complete.

The following result can be regarded as an analogue of Schwarz Lemma [3, p.135] for (1).

THEOREM 3. Assume f(0) = 0 and $\forall b \in \partial \Delta$, $\operatorname{Re}(f(b)\overline{b}) < 0$. Then $\exists K > 0$ and $\delta > 0$ such that (i) every solution z(t) of (1) with initial point $z \in \Delta$ satisfies $|z(t)| \leq K e^{-\delta t} |z|$, and (ii) $\operatorname{Re}(f'(0)) < 0$.

PROOF. Clearly, the condition $\operatorname{Re}(f(b)\overline{b}) < 0$ implies that $\forall b \in \partial \Delta$, $f(b) \neq 0$ and f(b) points toward the interior of Δ . So Δ is invariant under the system (1). Then there exists a semiflow $\{\Phi_t | t \geq 0\}$ where $\Phi_t : \Delta \to \Delta$ is 1-1 and analytic such that every solution z(t) satisfying z(0) = z can be expressed as $z(t) = \Phi_t(z)$, and $z = \Phi_0(z)$. Since $\partial \Delta$ is compact, $\exists h > 0$ sufficiently small such that. $\Phi_h(b) \in \Delta$ for all $b \in \partial \Delta$. Let $F = \Phi_h$. Then F is analytic on Δ and continuous on $\overline{\Delta}$. Since f(0) = 0, $F(0) = \Phi_h(0) = 0$. Let G(z) = F(z)/z. Then G is analytic on Δ , and

$$\max_{|b|=1} |G(b)| = \max_{|b|=1} |F(b)/b| = \alpha < 1.$$

By the Maximum Module Principle,

$$|F(z)| \le \alpha |z| \Rightarrow |F^k(z)| \le \alpha^k |z| = e^{kln\alpha} |z|, \, \forall k = 1, 2, 3, \dots$$

For each $t \ge 0$, t = kh + r, where $k \in N$ and $0 \le r < h$. It follows that

$$\Phi_t(z) = \Phi_{kh+r}(z) = \Phi_h^k(\Phi_r(z)), \tag{3}$$

and

$$|\Phi_t(z)| \le e^{-kh\delta}|z| = e^{-(kh+r)\delta}e^{r\delta}|z| \le Ke^{-\delta t}|z|,$$
(4)

where $\delta = -\ln(\alpha)/h$ and $K = 1/\alpha$. Hence (i) is proved.

Since the convergence $F^k(z) \to 0$ as $k \to \infty$ is uniform for each compact set in Δ , by Cauchy integral formula [3, p.114], we have

$$\lim_{k \to \infty} (F^k)'(0) = \lim_{k \to \infty} \frac{1}{2\pi i} \int_{C_r} \frac{F^k(z)}{z^2} dz \quad (C_r = \{z \mid |z| = r, z \in C\}),$$
$$= \frac{1}{2\pi i} \int_{C_r} \lim_{k \to \infty} \frac{F^k(z)}{z^2} dz$$
$$= \frac{1}{2\pi i} \int_{C_r} 0 dz$$
$$= 0.$$

Thus

$$\lim_{k \to \infty} (\Phi_h^k)(0)' = \lim_{k \to \infty} (\Phi_h'(0))^k = 0 \Rightarrow |\Phi_h'(0)| < 1 \Rightarrow \operatorname{Re}(f'(0)) < 0$$
(5)

since h is sufficiently small. This completes the proof.

The following result can be regarded as an analogue of the contraction principle.

THEOREM 4. Let Ω be a bounded, simply connected and invariant domain for the system (1). Suppose $\forall b \in \partial \Omega$, f(b) is not 0 and points toward the interior of Ω . Then (i) $\exists \xi \in \Omega$ such that $\forall z \in \Omega$, the corresponding solution $z(t) \to \xi$ as $t \to \infty$, and (ii) $\operatorname{Re}(f'(\xi)) < 0$.

PROOF. From the assumption that $\forall b \in \partial\Omega$, f(b) points toward the interior of Ω , it follows that each solution z(t) with $b \in \partial\Omega$ as the initial point is forced to flow into Ω , i.e., $z(t) \in \Omega$ for every t > 0. Since Ω is invariant, the semiflow $\{\Phi_t | t \geq 0\}$, where $\Phi_t : \Omega \to \Omega$ is 1-1 and analytic, exists such that the solution z(t) can be represented as $z(t) = \Phi_t(z)$, if $z(0) = z \in \Omega$. Choose h > 0 sufficiently small. Then $\Phi_h : \overline{\Omega} \to \Omega$ is continuous and analytic on Ω . By Riemann mapping theorem, there exists conformal mapping $M : \Omega \to \Delta$, since Ω is bounded and simply connected. Then $G = M \circ \Phi_h \circ M^{-1} : \Delta \to \Delta$ is analytic, and G is continuous on $\overline{\Delta}$. By Brouwer fixed point theorem [5] and the assumption of the Theorem, $\exists \zeta \in \Delta$ such that $G(\zeta) = \zeta$. Let $Q(z) = (z - \xi)/(1 - \overline{\xi}z)$ where $\xi = M^{-1}(\zeta)$. Then $Q(\xi) = 0$. Set $H = QGQ^{-1}$. Then H(0) = 0 and H is analytic on Δ . By the argument in the proof of Theorem 3(i), it follows that $\exists K > 0$ and $\delta > 0$ such that .

$$|Q \circ M \circ \Phi_h \circ M^{-1} \circ Q^{-1}(z)| \le K e^{-\delta z} |z|.$$

Hence $\Phi_t(z) \to \xi$ as $t \to \infty$, where $\xi = M^{-1}(\zeta)$. The proof of $\operatorname{Re}(f'(\xi)) < 0$ is similar to that of Theorem 3(ii).

EXAMPLE. Consider the equation

$$\dot{z} = i(z^2 - 1).$$

Let $f(z) = i(z^2 - 1)$. Then 1 and -1 are equilibria and f'(1) = 2i, f'(-1) = -2i. By a direct derivation, we obtain that for each solution z(t) if $z(0) \notin i \Re \cup \{\pm 1\}$, then z(t)has to satisfy

$$z(t) = \frac{1 + \frac{z(0)-1}{z(0)+1} + e^{i2t}}{1 - \frac{z(0)-1}{z(0)+1} + e^{i2t}}$$

Hence z(t) is periodic with period π . Note that the imaginary axis $i\Re = \{iy | y \in \Re\}$ is invariant, and the system can be reduced to $\dot{y} = -(y^2 + 1)$. Hence the solution $y(t) = \tan(\tan^{-1}(y(0)) - t)$ tends to $-\infty$ as $t \to \tan^{-1}(y(0)) + \pi/2$.

References

- [1] E. Vesentini, Iteration of holomorphic maps, Russ. Math. Survey, 20(1985),7–11.
- [2] V. I. Arnold, Ordinary Differential Equations, 3-rd edition, Springer-Verlag, 1994.
- [3] L. Ahlfors, Complex Analysis, 2-nd edition, McGraw-Hill, 1966.
- [4] E. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, 1955.
- [5] J. Dugundji, Topology, Allyn and Bacon, 1966.