Linear Differential Polynomials Sharing Three Values With Weights *

Indrajit Lahiri ${ }^{\dagger}$

Received 2 February 2002

Abstract

We prove some uniqueness theorems for meromorphic functions that share weighted values.

1 Introduction and Definitions

Let f and g be two nonconstant meromorphic functions defined in the open complex plane \mathbf{C}. If for some $a \in \mathbf{C} \cup\{\infty\}$ the roots of $f-a$ and $g-a$ (if $a=\infty$, roots of $f-a$ and $g-a$ are the poles of f and g respectively) coincide in locations and multiplicities we say that f and g share the value a CM (counting multiplicities) and if coincide in locations only we say that f and g share a IM (ignoring multiplicities). We do not explain the standard notations of the value distribution theory because those are available in [3]. However, we explain some definitions which will be needed in the sequel. Also we denote by f, g two nonconstant meromorphic functions defined on \mathbf{C} unless otherwise stated.

DEFINITION 1 ([6]). If s is a positive integer, we denote by $N(r, a ; f \mid=s)$ the counting function of those a-points of f whose multiplicity is s, where we count an a-point according to its multiplicity.

DEFINITION 2 ([6]). If s is a positive integer, we denote by $\bar{N}(r, a ; f \mid \geq s)$ the counting function of those a-points of f whose multiplicities are greater than or equal to s, where each a-point is counted only once.

DEFINITION 3 (cf. [1, 6]). If s is a positive integer, we denote by $N_{s}(r, a ; f)$ the counting function of a-points of f where an a-point of multiplicity m is counted m times if $m \leq s$ and s times if $m>s$. We put $N_{\infty}(r, a ; f)=N(r, a ; f)$.

DEFINITION 4 ([6]). Let f, g share a value a IM. We denote by $\bar{N}_{*}(r, a ; f, g)$ the counting function of those a-points of f whose multiplicities are not equal to multiplicities of the corresponding a-points of g, where each such a-point is counted only once.

Clearly $\bar{N}_{*}(r, a ; f, g) \equiv \bar{N}_{*}(r, a ; g, f)$.

[^0]DEFINITION 5 (cf. [2]). We put

$$
\begin{aligned}
& T_{0}(r, f)=\int_{1}^{r} \frac{T(t, f)}{t} d t, N_{0}(r, a ; f)=\int_{1}^{r} \frac{N(t, a ; f)}{t} d t \\
& N_{s}^{0}(r, a ; f)=\int_{1}^{r} \frac{N_{s}(t, a ; f)}{t} d t, m_{0}(r, f)=\int_{1}^{r} \frac{m(t, f)}{t} d t \\
& m_{0}(r, a ; f)=\int_{1}^{r} \frac{m(t, a ; f)}{t} d t, S_{0}(r, f)=\int_{1}^{r} \frac{S(t, f)}{t} d t
\end{aligned}
$$

DEFINITION 6 (cf. [11]). We define $\delta_{s}(a ; f)$ as $\delta_{s}(a ; f)=1-\limsup _{r \rightarrow \infty} \frac{N_{s}(r, a ; f)}{T(r, f)}$ where $a \in C \cup\{\infty\}$.

Clearly

$$
0 \leq \delta(a ; f) \leq \delta_{s}(a ; f) \leq \delta_{s-1}(a ; f) \leq \cdots \leq \delta_{2}(a ; f) \leq \delta_{1}(a ; f)=\Theta(a ; f) \leq 1
$$

where $\Theta(a ; f)=1-\limsup _{r \rightarrow \infty} \frac{\bar{N}(r, a ; f)}{T(r, f)}$.
DEFINITION 7 (cf. [2, 5]). We put $\delta_{0}(a ; f)=1-\limsup _{r \rightarrow \infty} \frac{N_{0}(r, a ; f)}{T_{0}(r, f)}, \Theta_{0}(a ; f)=$ $1-\limsup _{r \rightarrow \infty} \frac{\bar{N}_{0}(r, a ; f)}{T_{0}(r, f)}, \delta_{s}^{0}(a ; f)=1-\limsup _{r \rightarrow \infty} \frac{N_{s}^{0}(r, a ; f)}{T_{0}(r, f)}$ where $a \in C \cup\{\infty\}$.

Yang in [9] asked: what can be said about the relationship between two entire functions f and g if f, g share 0 CM and f^{\prime}, g^{\prime} share 1 CM ?

To answer this question, Yi [10] proved the following theorem.
THEOREM A. Let f and g be two nonconstant entire functions. Assume that f, g share 0 CM and $f^{(n)}, g^{(n)}$ share 1 CM and $2 \delta(0 ; f)>1$, where n is a nonnegative integer. Then either $f^{(n)} \cdot g^{(n)} \equiv 1$ or $f \equiv g$.

Inspired by this result, in [4], the following question was asked: what can be said about the relationship between two meromorphic functions f, g when two differential polynomials, generated by them, share certain values?

Let $\psi(D)=\sum_{i=1}^{p} \alpha_{i} D^{i}$ be a linear differential operator with constant coefficients where $D \equiv d / d z$ (cf. [4]). The following theorem was proved in [4].

THEOREM B ([4]). Let f, g be of finite order such that f, g share $\infty \mathrm{CM}$, $\psi(D) f, \psi(D) g$ are nonconstant and share $0,1 \mathrm{CM}$, and $\frac{\sum_{a \neq \infty} \delta(a ; f)}{1+p(1-\Theta(\infty ; f))}-\frac{3(1-\Theta(\infty ; f))}{2 \sum_{a \neq \infty} \delta(a ; f)}>$ $\frac{1}{2}$, where $\sum_{a \neq \infty} \delta(a ; f)>0$. Then either (a) $[\psi(D) f][\psi(D) g] \equiv 1$ or (b) $f-g \equiv q$, where $q=q(z)$ is a solution of the differential equation $\psi(D) w=0$. Further, if f has at least one pole or $\psi(D) f$ has at least one zero, then the possibility (a) does not arise.

The purpose of the paper is to make a twofold improvement of Theorem B: firstly by weakening the condition on deficiencies and secondly by relaxing the nature of sharing of values. In order to relax the nature of sharing values we consider a gradation of sharing of values which measures how close a shared value is to being shared IM or to being shared CM and is called weight of the sharing.

DEFINITION $8([6,7])$. Let k be a nonnegative integer or infinity. For $a \in \mathbf{C} \cup\{\infty\}$ we denote by $E_{k}(a ; f)$ the set of all a-points of f where an a-point of multiplicity m
is counted m times if $m \leq k$ and $k+1$ times if $m>k$. If $E_{k}(a ; f)=E_{k}(a ; g)$, we say that f, g share the value a with weight k.

The definition implies that if f, g share a value a with weight k then z_{0} is a zero of $f-a$ with multiplicity $m(\leq k)$ if and only if it is a zero of $g-a$ with multiplicity m $(\leq k)$ and z_{0} is a zero of $f-a$ with multiplicity $m(>k)$ if and only if it is a zero of $g-a$ with multiplicity $n(>k)$ where m is not necessarily equal to n.

We say that f, g share (a, k) if f, g share the value a with weight k. Clearly if f, g share (a, k), then f, g share (a, p) for any integer $p, 0 \leq p<k$. Also we note that f, g share a value a IM or CM if and only if f, g share $(a, 0)$ or (a, ∞) respectively.

2 Lemmas

In this section we present some lemmas which are necessary in the sequel.
LEMMA 1. If f, g share $(0,0),(1,0)$ and $(\infty, 0)$, then (i) $T(r, f) \leq 3 T(r, g)+S(r, f)$, and (ii) $T(r, g) \leq 3 T(r, f)+S(r, g)$.

PROOF. The lemma follows from the second fundamental theorem (see p. 43 in [3]).
LEMMA 2. Let $c_{1} f+c_{2} g \equiv c_{3}$, where c_{1}, c_{2} and c_{3} are nonzero constants. Then (i) $T(r, f) \leq \bar{N}(r, 0 ; f)+\bar{N}(r, 0 ; g)+\bar{N}(r, \infty ; f)+S(r, f)$, and (ii) $T(r, g) \leq \bar{N}(r, 0 ; f)+$ $\bar{N}(r, 0 ; g)+\bar{N}(r, \infty ; g)+S(r, g)$.

PROOF. By the second fundamental theorem [3], we get

$$
\begin{aligned}
T(r, f) & \leq \bar{N}(r, 0 ; f)+\bar{N}\left(r, c_{3} / c_{1} ; f\right)+\bar{N}(r, \infty ; f)+S(r, f) \\
& =\bar{N}(r, 0 ; f)+\bar{N}(r, 0 ; g)+\bar{N}(r, \infty ; f)+S(r, f)
\end{aligned}
$$

which is (i). In a similar way we can prove (ii). This proves the lemma.
LEMMA 3. Let f, g share $(1,0)$ and $h=f^{\prime} / f-g^{\prime} / g$. If $\bar{N}(r, 1 ; f) \neq S(r, f)$ and $h \equiv 0$, then $f \equiv g$.

PROOF. Since $h \equiv 0$, it follows that $f \equiv c g$, where c is a constant. Since f, g share $(1,0)$ and $\bar{N}(r, 1 ; f) \neq S(r, f)$, there exists $z_{0} \in \mathbf{C}$ such that $f\left(z_{0}\right)=g\left(z_{0}\right)=1$ so that $c=1$. Therefore $f \equiv g$. This completes the proof.

LEMMA 4. If f, g share $(0,0),(1,1)$ and $(\infty, 0)$ and f ह g, then (i) $\bar{N}(r, 1 ; f \mid \geq$ $\underline{2)} \leq \bar{N}_{*}(r, 0 ; f, g)+\bar{N}_{*}(r, \infty ; f, g)+S(r, f)$, and (ii) $\bar{N}(r, 1 ; g \mid \geq 2) \leq \bar{N}_{*}(r, 0 ; f, g)+$ $\bar{N}_{*}(r, \infty ; f, g)+S(r, f)$.

PROOF. Since $\bar{N}(r, 1 ; f) \equiv \bar{N}(r, 1 ; g)$, the lemma is obvious if $\bar{N}(r, 1 ; f)=S(r, f)$. So we suppose that $\bar{N}(r, 1 ; f) \neq S(r, f)$. Let $h=f^{\prime} / f-g^{\prime} / g$. Since $f \not \equiv g$, by Lemma 3 we get $h \neq 0$. Also since f, g share (1,1), a multiple 1-point of f is a multiple 1-point of g and vise-versa and so it is a zero of f^{\prime} and g^{\prime}. Hence

$$
\bar{N}(r, 1 ; f \mid \geq 2) \leq N(r, 0 ; h) \leq T(r, f)+O(1)=N(r, h)+m(r, h)+O(1)
$$

i.e.,

$$
\begin{equation*}
\bar{N}(r, 1 ; f \mid \geq 2) \leq N(r, h)+S(r, f) \tag{1}
\end{equation*}
$$

by Milloux theorem (see p. 55 in [3]) and Lemma 1.

The possible poles of h occur at the zeros and poles of f, g. Clearly if z_{0} is a zero or a pole of f and g with the same multiplicity then z_{0} is not a pole of h. Since all the poles of h are simple, it follows that

$$
\begin{equation*}
N(r, h)=\bar{N}(r, h) \leq \bar{N}_{*}(r, 0 ; f, g)+\bar{N}_{*}(r, \infty ; f, g) \tag{2}
\end{equation*}
$$

Now (i) follows from (1) and (2). Also (ii) follows from (i) because f, g share $(1,1)$ so that $\bar{N}(r, 1 ; g \mid \geq 2) \equiv \bar{N}(r, 1 ; f \mid \geq 2)$. This completes our proof.

LEMMA 5. If f, g share $(1,1)$ and H 寿 0 , where $H=\frac{f^{\prime \prime}}{f^{\prime}}-\frac{2 f^{\prime}}{f-1}-\frac{g^{\prime \prime}}{g^{\prime}}+\frac{2 g^{\prime}}{g-1}$, then (i) $N(r, 1 ; f \mid=1) \leq N(r, H)+S(r, f)+S(r, g)$, and (ii) $N(r, 1 ; g \mid=1) \leq N(r, H)+$ $S(r, f)+S(r, g)$.

PROOF. Since f, g share $(1,1)$, it follows that a simple 1-point of f is a simple 1-point of g and conversely. Let z_{0} be a simple 1 -point of f and g. Then in some neighbourhood of z_{0} we get

$$
f-1=\left(z-z_{0}\right) \alpha \text { and } g-1=\left(z-z_{0}\right) \beta
$$

where α, β are analytic at z_{0} and $\alpha\left(z_{0}\right) \neq 0, \beta\left(z_{0}\right) \neq 0$. This implies by a simple calculation that in some neighbourhood of z_{0}

$$
H=\left(z-z_{0}\right)\left[\frac{\alpha \alpha^{\prime \prime}-2\left(\alpha^{\prime}\right)^{2}}{\alpha\left\{\alpha+\left(z-z_{0}\right) \alpha^{\prime}\right\}}-\frac{\beta \beta^{\prime \prime}-2\left(\beta^{\prime}\right)^{2}}{\beta\left\{\beta+\left(z-z_{0}\right) \beta^{\prime}\right\}}\right]
$$

This shows that z_{0} is a zero of H. Hence

$$
\begin{aligned}
N(r, 0 ; f \mid=1) & \leq N(r, 0 ; H) \leq T(r, H)+O(1)=N(r, H)+m(r, H)+O(1) \\
& =N(r, H)+S(r, f)+S(r, g)
\end{aligned}
$$

by Milloux theorem (see p. 55 in [3]).
Now (ii) follows from (i) because $N(r, 1 ; g \mid=1)=N(r, 1 ; f \mid=1)$. The proof is complete.

LEMMA 6. Let f, g share $(0,0),(1,0)$ and $(\infty, 0)$ and $H \xlongequal{\models}$, where H is defined as in Lemma 5. Then

$$
\begin{aligned}
N(r, H) \leq & \bar{N}_{*}(r, 0 ; f, g)+\bar{N}_{*}(r, \infty ; f, g)+\bar{N}_{*}(r, 1 ; f, g) \\
& +N_{\otimes}\left(r, 0 ; f^{\prime}\right)+N_{\otimes}\left(r, 0 ; g^{\prime}\right)
\end{aligned}
$$

where $N_{\otimes}\left(r, 0 ; f^{\prime}\right)$ is the counting function of those zeros of f^{\prime} which are not the zeros of f and $f-1$ and $N_{\otimes}\left(r, 0 ; g^{\prime}\right)$ is the analogous quantity.

PROOF. The possible poles of H occur at (i) multiple zeros of f, g; (ii) zeros of $f-1, g-1$; (iii) poles of f, g; and (iv) zeros of f^{\prime}, g^{\prime} which are not the zeros of f, $f-1$ and $g, g-1$ respectively. Let z_{0} be a zero of $f-1$ and $g-1$ with multiplicities m and n respectively. Then in some neighbourhood of z_{0}, we get $f-1=\left(z-z_{0}\right)^{m} \alpha$ and $g-1=\left(z-z_{0}\right)^{n} \beta$, where α, β are analytic at z_{0} and $\alpha\left(z_{0}\right) \neq 0, \beta\left(z_{0}\right) \neq 0$. Then in some neighbourhood of z_{0} we get

$$
H(z)=\frac{m-n}{z-z_{0}} \phi(z)+\psi(z)
$$

where ϕ, ψ are analytic at z_{0} and $\phi\left(z_{0}\right) \neq 0$. This shows that if $m=n$, then z_{0} is not a pole of H and if $m \neq n$ then z_{0} is a simple pole of H.

Similarly we can show that if z_{1} is a zero or a pole of f, g with multiplicities m and n respectively, then z_{1} is not a pole of H if $m=n$ and z_{1} is a simple pole of H if $m \neq n$.

Since all poles of H are simple, the lemma follows from the above discussion. The proof is complete.

LEMMA 7 ([2]) $\lim _{r \rightarrow \infty} \frac{S_{0}(r, f)}{T_{0}(r, f)}=0$ for all values of r.
LEMMA 8 (cf. [5, 8]). For $a \in C \cup\{\infty\}, \delta(a ; f) \leq \delta_{0}(a ; f), \Theta(a ; f) \leq \Theta_{0}(a ; f)$ and $\delta_{s}(a ; f) \leq \delta_{s}^{0}(a ; f)$.

LEMMA 9 ([5]) (i) $\lim \sup _{r \rightarrow \infty} \frac{T_{0}(r, \psi(D) f)}{T_{0}(r, f)} \geq \sum_{a \neq \infty} \delta_{p}^{0}(a ; f)$, and (ii) $\delta_{0}(0 ; \psi(D) f) \geq$ $\frac{\sum_{a \neq \infty} \delta_{0}(a ; f)}{1+p(1-\Theta(\infty ; f))}$.

LEMMA $10([5])$. If $\sum_{a \neq \infty} \delta_{p}^{0}(a ; f)>0$ then $\Theta_{0}(\infty ; \psi(D) f) \geq 1-\frac{1-\Theta(\infty ; f)}{\sum_{a \neq \infty} \delta_{p}^{0}(a ; f)}$.

3 Theorems

In this section we present the main results of the paper.
THEOREM 1. Let $\psi(D) f, \psi(D) g$ be nonconstant such that (i) f, g share $(\infty, 0)$; (ii) $\psi(D) f, \psi(D) g$ share $(0,1),(1,1)$; and (iii) $\frac{\sum_{a \neq \infty} \delta(a ; f)}{1+p(1-\Theta(\infty ; f))}>\frac{1}{2}+\frac{2(1-\Theta(\infty ; f))}{\sum_{a \neq \infty} \delta_{p}(a ; f)}$, where $\sum_{a \neq \infty} \delta_{p}(a ; f)>0$. Then either $[\psi(D) f][\psi(D) g] \equiv 1$ or $f-g \equiv q$, where $q=q(z)$ is a solution of the differential equation $\psi(D) w=0$.

THEOREM 2. Let $\psi(D) f, \psi(D) g$ be nonconstant such that (i) f, g share (∞, ∞); (ii) $\psi(D) f, \psi(D) g$ share $(0,1),(1,1)$; and (iii) $\frac{\sum_{a \neq \infty} \delta(a ; f)}{1+p(1-\Theta(\infty ; f))}>\frac{1}{2}+\frac{1-\Theta(\infty ; f)}{\sum_{a \neq \infty} \delta_{p}(a ; f)}$, where $\sum_{a \neq \infty} \delta_{p}(a ; f)>0$. Then either $[\psi(D) f][\psi(D) g] \equiv 1$ or $f-g \equiv q$, where $q=q(z)$ is a solution of the differential equation $\psi(D) w=0$.

REMARK 1. If f has at least one pole or $\psi(D) f$ has at least one zero then the possibility $[\psi(D) f][\psi(D) g] \equiv 1$ does not arise in Theorems 1 and 2.

The following example shows that the theorems are sharp.
EXAMPLE 1. Let $f=\frac{-1}{4} \exp (z)+\frac{1}{6} \exp (2 z), g=\frac{1}{6} \exp (-z)-\frac{1}{14} \exp (-2 z)$ and $\psi(D)=D^{2}-5 D$. Then $\psi(D) f, \psi(D) g$ share $(0, \infty),(1, \infty)$ and f, g share (∞, ∞). Also $\sum_{a \neq \infty} \delta(a ; f)=1 / 2$ and $\Theta(\infty ; f)=1$ but neither $[\psi(D) f][\psi(D) g] \equiv 1$ nor $f-g \equiv c_{1}+c_{2} \exp (5 z)$ for any constants c_{1}, c_{2}.

We shall prove Theorem 1 only because Theorem 2 can be proved similarly noting that $\bar{N}_{*}(r, \infty ; f, g) \equiv 0$ when f, g share (∞, ∞).

Proof of Theorem 1. Let $F=\psi(D) f$ and $G=\psi(D) g$. Then clearly F, G share $(0,1),(1,1),(\infty, 0)$ and in view of Lemma 8 , Lemma 9 and Lemma 10, the given condition implies $2 \delta_{2}^{o}(0 ; F)+4 \Theta_{o}(\infty ; F)>5$.

Let $F \xlongequal[=]{=}$. We shall show that $F . G \equiv 1$. If possible, suppose that $H \equiv 0$, where $H=\frac{F^{\prime \prime}}{F^{\prime}}-\frac{2 F^{\prime}}{F-1}-\frac{G^{\prime \prime}}{G^{\prime}}+\frac{2 G^{\prime}}{G-1}$. Now by the second fundamental theorem (see p. 43 in [3]) and Lemma 1 we get

$$
\begin{aligned}
T(r, f)+T(r, g) \leq & \bar{N}(r, 0 ; F)+\bar{N}(r, 1 ; F)+\bar{N}(r, \infty ; F) \\
& +\bar{N}(r, 0 ; G)+\bar{N}(r, 1 ; G)+\bar{N}(r, \infty ; G) \\
& -N_{\otimes}\left(r, 0 ; F^{\prime}\right)-N_{\otimes}\left(r, 0 ; G^{\prime}\right)+S(r, F)
\end{aligned}
$$

Since F, G share $(0,1),(1,1),(\infty, 0)$, we obtain

$$
\begin{align*}
T(r, f)+T(r, g) \leq & 2 \bar{N}(r, 0 ; F)+2 \bar{N}(r, 1 ; G)+2 \bar{N}(r, \infty ; F) \\
& -N_{\otimes}\left(r, 0 ; F^{\prime}\right)-N_{\otimes}\left(r, 0 ; G^{\prime}\right)+S(r, f) \tag{3}
\end{align*}
$$

Again since F, G share $(1,1)$, we get

$$
\begin{aligned}
2 \bar{N}(r, 1 ; G) & \leq N(r, 1 ; G \mid=1)+N(r, 1 ; G) \\
& \leq N(r, 1 ; F \mid=1)+T(r, G)+O(1)
\end{aligned}
$$

So from (3) we get

$$
\begin{align*}
T(r, F) \leq & 2 \bar{N}(r, 0 ; F)+N(r, 1 ; F \mid=1)+2 \bar{N}(r, \infty ; F) \\
& -N_{\otimes}\left(r, 0 ; F^{\prime}\right)-N_{\otimes}\left(r, 0 ; G^{\prime}\right)+S(r, F) \tag{4}
\end{align*}
$$

Since F, G share $(0,1),(1,1)$, it follows that $\bar{N}_{*}(r, 0 ; F, G) \leq \bar{N}(r, 0 ; F \mid \geq 2)$ and $\bar{N}_{*}(r, 1 ; F, G) \leq \bar{N}(r, 1 ; F \mid \geq 2)$ and so by Lemma 1, Lemma 4, Lemma 5 and Lemma 6 , we get

$$
\begin{aligned}
N(r, 1 ; F \mid=1) \leq & N(r, H)+S(r, F) \\
\leq & \bar{N}_{*}(r, 0 ; F, G)+\bar{N}_{*}(r, 1 ; F, G)+\bar{N}_{*}(r, \infty ; F, G) \\
& +N_{\otimes}\left(r, 0 ; F^{\prime}\right)+N_{\otimes}\left(r, 0 ; G^{\prime}\right)+S(r, F) \\
\leq & \bar{N}(r, 0 ; F \mid \geq 2)+\bar{N}(r, 1 ; F \mid \geq 2)+\bar{N}(r, \infty ; F) \\
& +N_{\otimes}\left(r, 0 ; F^{\prime}\right)+N_{\otimes}\left(r, 0 ; G^{\prime}\right)+S(r, F) \\
\leq & 2 \bar{N}(r, 0 ; F \mid \geq 2)+2 \bar{N}(r, \infty ; F) \\
& +N_{\otimes}\left(r, 0 ; F^{\prime}\right)+N_{\otimes}\left(r, 0 ; G^{\prime}\right)+S(r, F)
\end{aligned}
$$

So from (4) we obtain

$$
\begin{gathered}
T(r, F) \leq 2 \bar{N}(r, 0 ; F)+2 \bar{N}(r, 0 ; F \mid \geq 2)+4 \bar{N}(r, \infty ; F)+S(r, F) \\
+2 N_{2}(r, 0 ; F)+4 \bar{N}(r, \infty: F)+S(r, F)
\end{gathered}
$$

which gives on integration

$$
\begin{equation*}
T_{0}(r, F) \leq 2 N_{2}^{0}(r, 0 ; F)+4 \bar{N}_{0}(r, \infty ; F)+S_{0}(r, F) \tag{5}
\end{equation*}
$$

Henceforth ϵ stands for a quantity satisfying

$$
0<2 \epsilon<2 \delta_{2}^{0}(0 ; F)+4 \Theta_{0}(\infty ; F)-5
$$

Now from (5) we get by Lemma 7

$$
\begin{aligned}
T_{0}(r, F) & <\left\{6-2 \delta_{2}^{0}(0 ; F)-4 \Theta_{0}(\infty ; F)+\epsilon+o(1)\right\} T_{0}(r, F) \\
& <\{1-\epsilon+o(1)\} T_{0}(r, F)
\end{aligned}
$$

which is a contradiction. Therefore $H \equiv 0$ and so

$$
\begin{equation*}
\frac{1}{F-1} \equiv \frac{A}{G-1}+B \tag{6}
\end{equation*}
$$

where A and B are constants. Since F is nonconstant, $A \neq 0$. Let $B=0$. Since $F \equiv G$, it follows that $A \neq 1$. Then we get from (6) $F+\frac{G}{A} \equiv 1-\frac{1}{A}$. So by Lemma 2 and Lemma 7 we obtain on integration

$$
\begin{aligned}
T_{0}(r, F) & \leq \bar{N}_{0}(r, 0 ; F)+\bar{N}_{0}(r, 0 ; G)+\bar{N}_{0}(r, \infty ; F)+S_{0}(r, F) \\
& \leq 2 N_{2}^{0}(r, 0 ; F)+4 \bar{N}_{0}(r, \infty ; F)+S_{0}(r, F) \\
& <\left\{6-2 \delta_{2}^{0}(0 ; F)-4 \Theta_{0}(\infty ; F)+\epsilon+o(1)\right\} T_{0}(r, F) \\
& <\{1-\epsilon+o(1)\} T_{0}(r, F)
\end{aligned}
$$

which is a contradiction. So $B \neq 0$. Let $A \neq B$. If $B=-1$, from (6) we get $\frac{A-B-1}{F}-B G \equiv A-B$. Since G is nonconstant , $A-B-1 \neq 0$ and so by Lemma 2, Lemma 7 and the first fundamental theorem we get on integration

$$
T_{0}\left(r, \frac{1}{F}\right) \leq \bar{N}_{0}\left(r, 0 ; \frac{1}{F}\right)+\bar{N}_{0}(r, 0 ; G)+\bar{N}_{0}\left(r, \infty ; \frac{1}{F}\right)+S_{0}(r, F)
$$

i.e.

$$
\begin{aligned}
T_{0}(r, F) & \leq 2 N_{2}^{0}(r, 0 ; F)+4 \bar{N}_{0}(r, \infty ; F)+S_{0}(r, F) \\
& <\left\{6-2 \delta_{2}^{0}(0 ; F)-4 \Theta_{0}(\infty ; F)+\epsilon+o(1)\right\} T_{0}(r, F) \\
& <\{1-\epsilon+o(1)\} T_{0}(r, F)
\end{aligned}
$$

which is a contradiction. So $B \neq-1$ and hence from (6) we get

$$
\frac{B F}{1+B}-\frac{\frac{A-B}{B}-\frac{A-B-1}{1+B}}{G+\frac{A-B}{B}} \equiv 1
$$

Clearly $\frac{A-B}{B}-\frac{A-B-1}{B+1} \neq 0$ and so by Lemma 2 and Lemma 7 we get on integration

$$
\begin{aligned}
T_{0}(r, F) & \leq \bar{N}_{0}(r, 0 ; F)+\bar{N}_{0}\left(r, 0 ; \frac{1}{G+\frac{A-B}{B}}\right)+\bar{N}_{0}(f, \infty ; F)+S_{0}(r, F) \\
& \leq 2 N_{2}^{0}(r, 0: F)+4 \bar{N}_{0}(R, \infty ; F)+S_{0}(r, F) \\
& <\left\{6-2 \delta_{2}^{0}(0 ; F)-4 \Theta_{0}(\infty ; F)+\epsilon+o(1)\right\} T_{0}(r, F) \\
& <\{1-\epsilon+o(1)\} T_{0}(r, F)
\end{aligned}
$$

which is a contradiction. So $A=B$ and hence from (6) we get

$$
F+\frac{1}{B G}=\frac{1+B}{B}
$$

If $B \neq-1$, we get by Lemma 2 and Lemma 7 on integration

$$
\begin{aligned}
T_{0}(r, F) & \leq \bar{N}_{0}(r, 0 ; F)+\bar{N}_{0}\left(r, 0 ; \frac{1}{G}\right)+\bar{N}_{0}(r, \infty ; F)+S_{0}(r, F) \\
& \leq 2 N_{2}^{0}(r, 0 ; F)+4 \bar{N}_{0}(r, \infty ; F)+S_{0}(r, F) \\
& <\left\{6-2 \delta_{2}^{0}(0 ; F)-4 \Theta(\infty ; F)+\epsilon+o(1)\right\} T_{0}(r, F) \\
& <\{1-\epsilon+o(1)\} T_{0}(r, F),
\end{aligned}
$$

which is a contradiction. Hence $A=B=-1$ and so from (6) we get $F . G \equiv 1$. Therefore either $F . G \equiv 1$ or $F \equiv G$ and so either $[\psi(D) f][\psi(D) g] \equiv 1$ or $f-g \equiv q$, where $q=q(z)$ is a solution of the differential equation $\psi(D) w=0$. This proves our theorem.

As an application of Theorem 1 we get the following corollary.
COROLLARY 1. Suppose (i) $f^{(p)}, g^{(p)}$ are nonconstant and share (0,1), (1,1), ($\infty, 0$); (ii) $\frac{\sum_{a \neq \infty} \delta(a ; f)}{1+p(1-\Theta(\infty ; f))}>\frac{1}{2}+\frac{2(1-\Theta(\infty ; f))}{\sum_{a \neq \infty} \delta_{p}(a ; f)}$, where $\sum_{a \neq \infty} \delta_{p}(a ; f)>0$; and (iii) $\Theta(0 ; f)+$ $\Theta(0 ; g)+\Theta(\infty ; f)>2$. Then either $f \equiv g$ or $f^{(p)} . g^{(p)} \equiv 1$. Further, if $f^{(p)}$ has at least one zero or pole, the possibility $f^{(p)} \cdot g^{(p)} \equiv 1$ does not arise.

PROOF. By Theorem 1 we see that either $f^{(p)} . g^{(p)} \equiv 1$ or $f-g \equiv q$ where q is a polynomial. Since $\sum_{a \neq \infty} \delta_{p}(a ; f)>0$, it follows that f is transcendental. If $q \neq 0$, by Nevanlinna's three small functions theorem [3], we get

$$
\begin{aligned}
T(r, f) & \leq \bar{N}(r, 0 ; f)+\bar{N}(r, q ; f)+\bar{N}(r, \infty ; f)+S(r, f) \\
& =\bar{N}(r, 0 ; f)+\bar{N}(r, 0 ; g)+\bar{N}(r, \infty ; f)+S(r, f),
\end{aligned}
$$

which implies $\Theta(0 ; f)+\Theta(0 ; g)+\Theta(\infty ; f) \leq 2$ because $T(r, g)=\{1+o(1)\} T(r, f)$. This contradiction shows that $q \equiv 0$ and so $f \equiv g$. This proves the corollary.

Let us conclude the paper with the following question: Is it possible to relax the sharing $(0,1),(1,1)$ to the sharing $(0,0),(1,0)$ in Theorems 1 and 2?

References

[1] C. T. Chuang, Unégnéralisation d'une inégalité de Nevanlinna (French), Sci. Sinica, 13(1964), 887-895.
[2] M. Furuta and N. Toda, On exceptional values of meromorphic functions of divergence class, J. Math. Soc. Japan, 25(1973), 667-679.
[3] W. K. Hayman, Meromorphic Functions ,The Clarendon Press, Oxford, 1964.
[4] I. Lahiri, Uniqueness of meromorphic functions as governed by their differential polynomials, Yokohama Math. J., 44(1997), 147-156.
[5] I. Lahiri, Uniqueness of meromorphic functions when two linear differential polynomials share the same 1-points, Ann. Polon. Math., LXXI(2)(1999), 113-128.
[6] I. Lahiri, Weighted sharing and uniqueness of meromorphic functions, Nagoya Math. J., 161(2001), 193-206.
[7] I. Lahiri, Weighted value sharing and uniqueness of meromorphic functions, Complex Variables, 46(3)(2001), 241-253.
[8] N. Toda, On a modified deficiency of meromorphic functions, Tôhoku Math. J., 22(1970), 635-658.
[9] C. C. Yang, On two entire functions which together with their first derivatives have the same zeros, J. Math. Anal. Appl., 56(1976), 1-6.
[10] H. X. Yi, A question of C. C. Yang on the uniqueness of entire functions, Kodai Math. J., 13(1990), 39-46.
[11] H. X. Yi, On characteristic function of a meromorphic function and its derivative, Indian J. Math., 33(2)(1991), 119-133.

[^0]: *Mathematics Subject Classifications: 30D35
 ${ }^{\dagger}$ Department of Mathematics, University of Kalyani, West Bengal 741235, India

