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Existence of Absorbing Set for a Nonlinear Wave
Equation *
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Abstract

We prove the existence of an absorbing set for a Cauchy problem involving a
nonlinear wave equation.

Let ug € Wél)(O,l),uland h are given elements in L3(0,1), o,y and ¢ be positive
numbers and f(.) € C*(R) such that

f@w1[VWMn2a 1)
and
F(s)s — F(s) > —c @)

for all s € R, where I/VQ(I)(O7 1) ={u:u,u € Ls(0,1),u(0) = u(l) = 0}. We consider the
following Cauchy problem:

Ugt — U + QU + YUy + f(u) = h(z), € (0,1), t € RT (3)
u(xz,0) = ugp(x), w (x,0) =uy (x), z € (0,1) (4)
u(0,t) =u(l,t)=0,t € RT. (5)

A continuous semigroup of operators S (t) from X = Wél)(O, 1) x Ly (0,1) into itself can
be defined and satisfies the semigroup condition S (¢ +s) = S (¢) S (s). We will prove
the existence of an absorbing set in X by defining a Lyapunov like functional ¢ (u, uz).
The methods used are inspired from the results of Ladyzhenskaya [3, 4] and used in
Eden and Kalantarov [1, 2]. In the following we shall use the following notations:

!
ol = [ o).
and )
(u,v)z/o u(z)v(z)de.
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We also use the Wirtinger inequality

! !
/ u?(z)dx < )\/ u?(x)dx (6)
0 0
where \ = 12 /7%

THEOREM 1. Let ug,u1,h, o,v,c be given. Suppose f € C'(R) satisfies the
conditions (1) and (2). Suppose further that the problem (3)-(5) has a unique weak
solution. Then the semigroup S(t), ¢ > 0, defined by S(t)(uo,u1) = (u(t),ui(t))
generated by the problem (3)-(5) is bounded and dissipative.

PROOF. Suppose u(z,t) is a weak solution of (3)-(5). Let § be a positive number.
Multiplying the equation (3) by u; 4+ éu and integrating over (0,1) we get

0 = S5 el + 5 tal + (Fu), 1)~ (o) + 6 (ot )
F )+ e — 06 () + 6
=0 Jlue|” + 8(f (), ) = 8(h, w). (7

We consider the functional
o 1 2, 1 2 oy 2
¢ (u,ut) = 3 flue]|” + 3 well” + (F(u),1) = (h,u) + 6 (u,ur) + 5 flull . (8)

From (7) we write

%cﬁ () = = lue|* + a8 (g, ue) = & [lug|* + 8 lJugl|* = 8(f (), u) + 8(hu).  (9)

Let n be a positive number such that n < ¢. Then from (7) we write

6 ot 0) + 10 (1)

= Hutll +3 IIUwH +n(F(w), 1) = nlh,u) + 61 (u, ut)+ L Juf?
*VHUtH +a6(ux,ut)75||ux|\ + 6 | *5(f(U)7U)+5(h7U)- (10)

By using (6) we obtain

o) Snl?
ol u)| < 3 lluel* + 555 llus (1)
(5~ () < 2 g P+ L0 ( 0 g (12)
and
5202
@8 |z )| < 3 urll® + T e (13)
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With the help of the inequalities (11), (12) and (13) we obtain from (10) that

56 () + 1 (a0

v, 6 2 o2 | oml® | 8%’ 2
< _ Lyt 1 _
< (6-F+F ) Il + (n+ G + o + o =0l
12(5 _ 77)2 2
—=6((f(u),u) = (F(u),1)) = (6 = n) (F(u),1) + ot [[2]]” (14)
Thus by choosing
[
6 < min {Z’ E} ,
2y ym
n < mln{ry+4a 271'2042 +72l2 +’Yl2},
and writing
(6 =n) (F(u),1) = —c(6 =n)l,
6((f(u),u) = (F(u),1)) = —cbl,
we get from (14) that
d
50 () 0 ) < (15)
where ) )
(6 —n) 2
N e 2 [h]l” +cl (26 —n).
It follows from (15) that
d
7 (€9 (u,up)) < €™y (16)
and c
G (u(st) e (1) < (u(-0),u (,0)) e + ;1 (17)

By using (8) and (1) and writing inequalities similar to (11) and (12), we may obtain

1 sy 82 s
d(u(,t),u (1) > (5—2—#2—@—5) oz |

SN NN OV 1)
g o)l Ry :

If we choose

then we get from (18) that

6 (u (1) ut (1) = ao (e * + uel)®) = 2
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where o
1
ag = §min{1—%(7+1)—6,1—6}
and
l2
T 2672

If we use this result in (17) we obtain

s [h) + cl.

e 1 (¢
lu||* + [lue]* < ——¢(u(,0),u (0)) + — (—1 +02> :
0 ap \ 1

Then for R = % (% —|—cz) , B = {{u,v} € X : |{u,v}||x < V2R} is the absorbing

set for the semigroup S(¢) in X. Thus the semigroup S(t), ¢ > 0, is bounded and
dissipative.
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