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Abstract

The modified stochastic approximation procedure

xi+1 = xi + αig(xi + ξi+1), x0 = ζ (1)

is considered. Here {αj} is the sequence of positive numbers, {ξn} is a sequence
of martingale-differences, function g is twice differentiable, ug(u) ≤ 0 for u = 0,
ζ is the initial value. Results on the almost-sure boundedness and the exponen-
tial stability of procedure (1) are obtained. The theorem of the convergence of
nonnegative semimartingale has been applied.

1 Introduction

Stochastic approximation, originally proposed by Robbins and Monro in 1951 [7], is
concerned with the problem of finding the root of the function y = R(x) which is
neither known nor directly observed. Let the result of the measurement at the point
xk at moment k be equal to Yk = R(xk) + ξk+1, where ξ1, . . . , ξk, . . . are independent
random values with zero mean. For an arbitrary initial point X(0) = x and an arbi-
trary sequence {γk} of positive numbers, Robbins and Monro suggested the following
procedure

Xk+1 = Xk − γkYk, Yk = R(xk) + ξk+1. (2)

The generalizations of Robbins and Monro method were investigated in numerous pub-
lications. We mention here just two outstanding books: by Nevelson and Khasmin-
skii (cf. [5]) and Kushner (cf. [2]). Over the years, stochastic approximation has
been proven to be a powerful and useful tool. Here we discuss the application of the
stochastic approximation to credibility.
Let x denote the claim size, with distribution Pθ that depends on some random

parameter θ (with the prior distribution π(θ)). It can be proven (cf. [1] and [3]) that
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for some distributions P and π (the Normal/Normal, the Poisson/Gamma, etc.) the
tradition credibility formula

µ̂n = (1− αn)m+ αnx̄n, (3)

takes place. Here µ̂n is an estimation of the fair premium, m is the collective fair
premium, x̄n is the mean of n years of individual experience x1, x2, . . . , xn. It is not
difficult to show that (3) can be rewritten as a stochastic recursion of the type (2). The
latter is particularly suited for the sequential evaluation of the fair premium. However
in some situations (see [3])) tradition credibility formula fails and the stochastic ap-
proximation gives rise to some kind of quasi-credibility. In this case, instead of the
stochastic approximation procedure (2), we need to consider the following modified
procedure

xi+1 = xi + αig(xi + ξi+1), x0 = ζ. (4)

In this paper we investigate the exponential stability of procedure (4), where the
errors of the observation ξi are martingale-differences, the function g is twice differ-
entiable and ug(u) ≤ 0 for u = 0. The theorem of the convergence of nonnegative
semimartingale will be needed (cf. [6]).

2 Definitions and Auxiliary Lemmas

Let the probability space (Ω, F, P ) with filtration F = {Fn}n=1,2,... be given. Let the
stochastic sequence {mn} be an Fn-martingale with m0 = 0. We put ξn = mn−mn−1
for n ≥ 1 where ξ0 = 0. Then the stochastic sequence {ξn} is an Fn-martingale-
difference. For detailed definitions and facts of random processes, the reader can see
e.g. [4]. We present below two necessary lemmas which will be used in this paper.

LEMMA 1. Let {ξn} be an Fn-martingale-difference. Then there exists an Fn-
martingale-difference {µn} and a positive Fn−1-measurable stochastic sequence {ηn}
such that for every n = 1, 2, . . . ,

ξ2n = µn + ηn a.s. (5)

LEMMA 2. Let Zn = Z0+A
1
n−A2n+Mn be a non-negative semimartingale, where

Mn is a martingale, A
1
n, A

2
n are a.s. non-decreasing processes. Then ω :: A1∞ <∞ ⊆

{Z →} ∩ A2∞ <∞ a.s.

Here {Z →} denotes the set of all ω ∈ Ω for which Z∞ = lim
t→∞Zt exists and is finite.

The notation a.s. means almost-surely.

3 Boundedness of Solution

Let the function g be twice differentiable and for any u ∈ ,

ug(u) ≤ 0, u = 0, (6)

g2(u) ≤ K1u2, (7)
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|g (u)| ≤ K, (8)

where K1,K > 0 are nonrandom numbers. Let {ξn} be a sequence of Fn-martingale-
differences with ξ0 = 0 and decomposition (5) takes place. Let {αj} be a sequence of
positive numbers such that a.s.

∞

j=0

αj =∞, (9)

∞

j=0

α2j <∞, (10)

∞

j=0

αjηj+1 <∞. (11)

THEOREM 1. Let conditions (6)-(11) be fulfilled, then the solution xi to equation
(4) has the following properties:

sup
0<i<∞

x2i <∞ and lim inf
i→∞

xi = 0 a.s.

PROOF. Applying Taylor’s expansion to g(xi + ξi+1) we have

x2i+1 − x2i = (xi + αig(xi + ξi+1))
2 − x2i

≤ 2αixi g(xi) + g (xi)ξi+1 + g (u)
ξ2i+1
2

+ α2iK1(xi + ξi+1)
2,

where u lies between xi and ξi+1. From above and using the decomposition of ξ2i (see
Lemma 1 and (5)) we have

x2i+1 − x2i ≤ 2αixig(xi) + (Kαi|xi|+ 2K1α
2
i )ηi+1 + 2K1α

2
ix
2
i + 2αixig (xi)ξi+1

+(Kαi|xi|+ 2K1α
2
i )µi+1.

Let ∆mi = 2αixig (xi)ξi+1+(Kαi|xi|+2K1α
2
i )µi+1, which is a martingale-difference.

Applying the estimation |xi| ≤ 1 + x2i , we get
x2i+1 − x2i ≤ 2αixig(xi) + (Kαi + 2K1α

2
i )ηi+1 + (Kαiηi+1 + 2K1α

2
i )x

2
i +∆mi, (12)

and then

x2i+1 ≤ 2αixig(xi) + (1 + βi)x
2
i + (Kαi + 2K1α

2
i )ηi+1 +∆mi, (13)

where βi = Kαiηi+1 + 2K1α
2
i . Note that (10)-(11) imply

i

j=1

(1 + βj) < M (14)

for some nonrandom M > 0 and every i = 1, 2, . . . Letting

xi+1 =
i

j=1

(1 + βj)
1/2yi+1
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and substituting it in (13) we get

i

j=1

(1 + βj)(y
2
i+1 − y2i ) ≤ 2αi

i−1

j=1

(1 + βj)
1/2yig

i−1

j=1

(1 + βj)
1/2yi

+(Kαi + 2K1α
2
i )ηi+1 +∆mi.

Let
i

j=1

(1 + βj)
−1∆mi = ∆m

1
i ,

which is a martingale-difference, therefore

y2i+1 − y2i ≤ 2
i

j=1

(1 + βj)
−1αi

i−1

j=1

(1 + βj)
1/2yig

i−1

j=1

(1 + βj)
1/2yi

+
i

j=1

(1 + βj)
−1(Kαi + 2K1α

2
i )ηi+1 +∆m

1
i . (15)

Taking the sum of (15) from i = 0 to i = n− 1, we have
n−1

i=0

y2i+1 −
n−1

i=0

y2i ≤ 2
n−1

i=0

i

j=1

(1 + βj)
−1αi

i−1

j=1

(1 + βj)
1/2yig

i−1

j=1

(1 + βj)
1/2yi

+
n−1

i=0

i

j=1

(1 + βj)
−1(Kαi + 2K1α

2
i )ηi+1 +

n−1

i=0

∆m1
i .

Therefore
y2n ≤ Un = y20 +A1n −A2n +m1

n, (16)

where

A1n =
n−1

i=0

i

j=1

(1 + βj)
−1(Kαi + 2K1α

2
i )ηi+1

and

A2n = −2
n−1

i=0

i

j=1

(1 + βj)
−1αi

i−1

j=1

(1 + βj)
1/2yig

i−1

j=1

(1 + βj)
1/2yi .

It should be noted that A1n and A
2
n are increasing processes a.s., m

1
n is a martingale,

Un is nonnegative semimartingale and P{A1∞ < ∞} = 1 due to the convergence of
series in (10) and (11). Applying Lemma 2, that is

{A1∞ <∞} ⊂ {Ui →} ∩ {A2∞ <∞},

we have
P{Ui →} = 1.
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This implies that there exists some a.s. finite random value H = H(ω) such that
P{ sup

0<i<∞
Ui ≤ H} = 1. Then P{ sup

0<i<∞
y2i ≤ H} = 1 and the first part of the theorem

is proved.
Suppose now that P{lim inf

i→∞
y2i > 0} = p0 > 0. Then there exist random variables

ζ0 = ζ0(ω) > 0 and N0 = N0(ω) > 0 such that P (Ω0) = p0, where Ω0 = {ω : y2i >
ζ0(ω)/2 for i > N0}. Since

i

j=1
(1 + βj)

1/2 > 1, we have y2i
i

j=1
(1 + βj)

1/2 > ζ0(ω)/2 for

i > N0 and ω ∈ Ω0. Due to the continuity and negativity (for u = 0) of the function
φ(u) = ug(u) we can find k0 = k0(ω) and N1 = N1(ω) ≥ N0(ω) such that

−φ
i

j=1

(1 + βj)
1/2yi > k0(ω)

for ω ∈ Ω0 and i > N1. Then

−2
n−1

i=0

αi

i

j=1

(1 + βj)
1/2yi(ω)g

i

j=1

(1 + βj)
1/2yi(ω)

= −2
N1−1

i=0

−2
n−1

i=N1

≥ −2
n−1

i=N1

αiφ
i

j=1

(1 + βj)
1/2yi(ω)

≥ 2k0(ω)
n−1

i=N1

αi →∞

as n → ∞. Hence P{A2∞ = ∞} ≥ p0 > 0 which contradicts (16) and conditions (10)-
(11). Then P{lim inf

i→∞
y2i > 0} = 0 and from (14) we have: P{lim inf

i→∞
x2i ≤M lim inf

i→∞
y2i =

0} = 1. The theorem is completely proved.

4 Exponential Stability

In addition to the conditions from the previous section let two more conditions be
fulfilled

H1 |x| ≤ |g(x)| , (17)

∞

i=0

αiηi+1

i

j=1

(1− 2αjH1)−1 <∞ a.s., (18)

where H1 > 0 is some constant and ηi+1 → 0 when i→∞.
REMARK 1. Let H1|x| ≤ |g(x)| and xg(x) < 0 for all x ∈ and x = 0. The

following is correct: if x > 0, then

−xg(x) = x|g(x)| ≥ |x|H1|x| = H1x2;
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and if x < 0, then
−xg(x) = |x||g(x)| ≥ |x|H1|x| = H1x2.

Therefore
xg(x) ≤ −H1x2. (19)

THEOREM 2. Let conditions (6)-(11) and (17)-(18) be fulfilled. Then for any
κ > 0,

exp (1− κ)2H1

n

i=0

αi x2n → 0

a.s. where xn is a solution of equation (4).

PROOF. Substituting (19) in (12) we get

x2i+1 − x2i ≤ −(2αiH1 −Kαiηi+1 − 2K1α
2
i )x

2
i + (Kαi + 2K1α

2
i )ηi+1 +∆mi. (20)

Let
τi = 2αiH1 −Kαiηi+1 − 2K1α

2
i .

Due to the positivity of K1, K and ηi+1 from condition (18) we have

∞

i=0

(Kαi − 2K1α
2
i )ηi+1

i

j=0

(1− 2αjH1 + 2K1α
2
j +Kαjηj+1)

−1

≤ K
∞

i=0

αiηi+1

i

j=0

(1− 2αjH1)−1 <∞. (21)

From (20) we get

x2i+1 ≤ (1− τi)x
2
i + (Kαi + 2K1α

2
i )ηi+1 +∆mi. (22)

Let

z2i =
i−1

j=1

(1− τj)
−1x2i

which implies that

x2i =
i−1

j=1

(1− τj)z
2
i .

Substituting it in (22) we get,

i

j=1

(1− τj)z
2
i+1 ≤ (1− τi)

i−1

j=1

(1− τj)z
2
i + (Kαj + 2K1α

2
j )ηj+1 +∆mi

and

z2i+1 − z2i ≤
i

j=1

(1− τj)
−1(Kαj + 2K1αij

2)ηj+1 +∆m
1
i , (23)
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where ∆m1
i =

i

j=1
(1− τj)

−1∆mi. Taking the sum of (23) from i = 0 to i = n− 1, we
obtain

z2n ≤ z20 +
n−1

i=0

i

j=1

(1− τj)
−1(Kαj + 2K1α

2
j )ηj+1 +m

1
n.

Applying (21) and using the same arguments as in Theorem 1 we obtain that there
exists some a.s. finite random value H = H(ω) such that P{ sup

0<i<∞
z2i ≤ H} = 1. As

αi, ηi+1 → 0 when i→∞ for any ε > 0 there exists the random integer N = N(ω) > 0
such that for any j ≥ N

2K1αj +Kηj+1 < 2H1ε.

Then for some H2 > 0

x2i ≤ HH2

i

j=N

(1− 2H1(1− ε)αj) = HH2 exp{
i

j=N

ln 1− 2H1(1− ε)αj }

≤ HH2 exp{−2H1
i

j=N

(1− ε)αj}. (24)

If we take some κ > 0 and ε < κ/2, then from (24) we obtain that P{ lim
i→∞

exp{(1 −

κ)2H1
i

j=N

αj}x2i = 0} = 1. The proof is complete.
In the following example we investigate the fulfillment of the condition (18). We

consider two different cases for αi, and ηi.
EXAMPLE. a) Let αi =

1
i and ηi ≤ C(ω)/iε+2H1 for some ε > 0 and a.s. finite

random variable C(ω) > 0. Then

i

j=N

(1− 2H1αj)−1 =
i

j=N

e− ln(1−2H1αj) = e
−

i

j=N

ln(1−2H1αj)

≤ K1i2H1 ,

and a.s.
∞

i=1

αiηi+1

i

j=1

(1− 2αjH1)−1 ≤ K2
∞

i=1

1

i
i2H1

C(ω)

iε+2H1
<∞,

where K1 and K2 are some constants.
b) Let αi = (i ln i)

−1 and ηi ≤ C(ω)/iε+2H1 for some ε > 0 and a.s. finite random
variable C(ω) > 0. Then

i

j=N

(1− 2H1αj)−1 ≤ K1 ln
2H1 i,

and a.s.

∞

i=0

αiηi+1

i

i=1

(1− 2αiH1)−1 ≤ K2
∞

i=1

1

i ln i
ln2H1 i

C(ω)

iε+2H1
<∞.
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