Exponential Stability of Modified Stochastic Approximation Procedure ${ }^{* \dagger}$

Alexandra Rodkina and O’Neil Lynch ${ }^{\ddagger}$

Received 2 February 2002

Abstract

The modified stochastic approximation procedure $$
\begin{equation*} x_{i+1}=x_{i}+\alpha_{i} g\left(x_{i}+\xi_{i+1}\right), x_{0}=\zeta \tag{1} \end{equation*}
$$ is considered. Here $\left\{\alpha_{j}\right\}$ is the sequence of positive numbers, $\left\{\xi_{n}\right\}$ is a sequence of martingale-differences, function g is twice differentiable, $u g(u) \leq 0$ for $u \neq 0$, ζ is the initial value. Results on the almost-sure boundedness and the exponential stability of procedure (1) are obtained. The theorem of the convergence of nonnegative semimartingale has been applied.

1 Introduction

Stochastic approximation, originally proposed by Robbins and Monro in 1951 [7], is concerned with the problem of finding the root of the function $y=R(x)$ which is neither known nor directly observed. Let the result of the measurement at the point x_{k} at moment k be equal to $Y_{k}=R\left(x_{k}\right)+\xi_{k+1}$, where $\xi_{1}, \ldots, \xi_{k}, \ldots$ are independent random values with zero mean. For an arbitrary initial point $X(0)=x$ and an arbitrary sequence $\left\{\gamma_{k}\right\}$ of positive numbers, Robbins and Monro suggested the following procedure

$$
\begin{equation*}
X_{k+1}=X_{k}-\gamma_{k} Y_{k}, \quad Y_{k}=R\left(x_{k}\right)+\xi_{k+1} . \tag{2}
\end{equation*}
$$

The generalizations of Robbins and Monro method were investigated in numerous publications. We mention here just two outstanding books: by Nevelson and Khasminskii (cf. [5]) and Kushner (cf. [2]). Over the years, stochastic approximation has been proven to be a powerful and useful tool. Here we discuss the application of the stochastic approximation to credibility.

Let x denote the claim size, with distribution P_{θ} that depends on some random parameter θ (with the prior distribution $\pi(\theta)$). It can be proven (cf. [1] and [3]) that

[^0]for some distributions P and π (the Normal/Normal, the Poisson/Gamma, etc.) the tradition credibility formula
\[

$$
\begin{equation*}
\hat{\mu}_{n}=\left(1-\alpha_{n}\right) m+\alpha_{n} \bar{x}_{n} \tag{3}
\end{equation*}
$$

\]

takes place. Here $\hat{\mu}_{n}$ is an estimation of the fair premium, m is the collective fair premium, \bar{x}_{n} is the mean of n years of individual experience $x_{1}, x_{2}, \ldots, x_{n}$. It is not difficult to show that (3) can be rewritten as a stochastic recursion of the type (2). The latter is particularly suited for the sequential evaluation of the fair premium. However in some situations (see [3])) tradition credibility formula fails and the stochastic approximation gives rise to some kind of quasi-credibility. In this case, instead of the stochastic approximation procedure (2), we need to consider the following modified procedure

$$
\begin{equation*}
x_{i+1}=x_{i}+\alpha_{i} g\left(x_{i}+\xi_{i+1}\right), x_{0}=\zeta \tag{4}
\end{equation*}
$$

In this paper we investigate the exponential stability of procedure (4), where the errors of the observation ξ_{i} are martingale-differences, the function g is twice differentiable and $u g(u) \leq 0$ for $u \neq 0$. The theorem of the convergence of nonnegative semimartingale will be needed (cf. [6]).

2 Definitions and Auxiliary Lemmas

Let the probability space (Ω, F, P) with filtration $F=\left\{\mathcal{F}_{n}\right\}_{n=1,2, \ldots}$ be given. Let the stochastic sequence $\left\{m_{n}\right\}$ be an \mathcal{F}_{n}-martingale with $m_{0}=0$. We put $\xi_{n}=m_{n}-m_{n-1}$ for $n \geq 1$ where $\xi_{0}=0$. Then the stochastic sequence $\left\{\xi_{n}\right\}$ is an \mathcal{F}_{n}-martingaledifference. For detailed definitions and facts of random processes, the reader can see e.g. [4]. We present below two necessary lemmas which will be used in this paper.

LEMMA 1. Let $\left\{\xi_{n}\right\}$ be an \mathcal{F}_{n}-martingale-difference. Then there exists an $\mathcal{F}_{n^{-}}$ martingale-difference $\left\{\mu_{n}\right\}$ and a positive \mathcal{F}_{n-1}-measurable stochastic sequence $\left\{\eta_{n}\right\}$ such that for every $n=1,2, \ldots$,

$$
\begin{equation*}
\xi_{n}^{2}=\mu_{n}+\eta_{n} \quad \text { a.s. } \tag{5}
\end{equation*}
$$

LEMMA 2. Let $Z_{n}=Z_{0}+A_{n}^{1}-A_{n}^{2}+M_{n}$ be a non-negative semimartingale, where M_{n} is a martingale, A_{n}^{1}, A_{n}^{2} are a.s. non-decreasing processes. Then $\left\{\omega:: A_{\infty}^{1}<\infty\right\} \subseteq$ $\{Z \rightarrow\} \cap\left\{A_{\infty}^{2}<\infty\right\}$ a.s.

Here $\{Z \rightarrow\}$ denotes the set of all $\omega \in \Omega$ for which $Z_{\infty}=\lim _{t \rightarrow \infty} Z_{t}$ exists and is finite. The notation a.s. means almost-surely.

3 Boundedness of Solution

Let the function g be twice differentiable and for any $u \in \Re$,

$$
\begin{gather*}
u g(u) \leq 0, \quad u \neq 0 \tag{6}\\
g^{2}(u) \leq K_{1} u^{2} \tag{7}
\end{gather*}
$$

$$
\begin{equation*}
\left|g^{\prime \prime}(u)\right| \leq K \tag{8}
\end{equation*}
$$

where $K_{1}, K>0$ are nonrandom numbers. Let $\left\{\xi_{n}\right\}$ be a sequence of \mathcal{F}_{n}-martingaledifferences with $\xi_{0}=0$ and decomposition (5) takes place. Let $\left\{\alpha_{j}\right\}$ be a sequence of positive numbers such that a.s.

$$
\begin{gather*}
\sum_{j=0}^{\infty} \alpha_{j}=\infty, \tag{9}\\
\sum_{j=0}^{\infty} \alpha_{j}^{2}<\infty \tag{10}\\
\sum_{j=0}^{\infty} \alpha_{j} \eta_{j+1}<\infty \tag{11}
\end{gather*}
$$

THEOREM 1. Let conditions (6)-(11) be fulfilled, then the solution x_{i} to equation (4) has the following properties:

$$
\sup _{0<i<\infty} x_{i}^{2}<\infty \quad \text { and } \quad \liminf _{i \rightarrow \infty} x_{i}=0 \quad \text { a.s. }
$$

PROOF. Applying Taylor's expansion to $g\left(x_{i}+\xi_{i+1}\right)$ we have

$$
\begin{aligned}
x_{i+1}^{2}-x_{i}^{2} & =\left(x_{i}+\alpha_{i} g\left(x_{i}+\xi_{i+1}\right)\right)^{2}-x_{i}^{2} \\
& \leq 2 \alpha_{i} x_{i}\left[g\left(x_{i}\right)+g^{\prime}\left(x_{i}\right) \xi_{i+1}+g^{\prime \prime}(u) \frac{\xi_{i+1}^{2}}{2}\right]+\alpha_{i}^{2} K_{1}\left(x_{i}+\xi_{i+1}\right)^{2}
\end{aligned}
$$

where u lies between x_{i} and ξ_{i+1}. From above and using the decomposition of ξ_{i}^{2} (see Lemma 1 and (5)) we have

$$
\begin{aligned}
x_{i+1}^{2}-x_{i}^{2} \leq & 2 \alpha_{i} x_{i} g\left(x_{i}\right)+\left(K \alpha_{i}\left|x_{i}\right|+2 K_{1} \alpha_{i}^{2}\right) \eta_{i+1}+2 K_{1} \alpha_{i}^{2} x_{i}^{2}+2 \alpha_{i} x_{i} g^{\prime}\left(x_{i}\right) \xi_{i+1} \\
& +\left(K \alpha_{i}\left|x_{i}\right|+2 K_{1} \alpha_{i}^{2}\right) \mu_{i+1}
\end{aligned}
$$

Let $\Delta m_{i}=2 \alpha_{i} x_{i} g^{\prime}\left(x_{i}\right) \xi_{i+1}+\left(K \alpha_{i}\left|x_{i}\right|+2 K_{1} \alpha_{i}^{2}\right) \mu_{i+1}$, which is a martingale-difference. Applying the estimation $\left|x_{i}\right| \leq 1+x_{i}^{2}$, we get

$$
\begin{equation*}
x_{i+1}^{2}-x_{i}^{2} \leq 2 \alpha_{i} x_{i} g\left(x_{i}\right)+\left(K \alpha_{i}+2 K_{1} \alpha_{i}^{2}\right) \eta_{i+1}+\left(K \alpha_{i} \eta_{i+1}+2 K_{1} \alpha_{i}^{2}\right) x_{i}^{2}+\Delta m_{i} \tag{12}
\end{equation*}
$$

and then

$$
\begin{equation*}
x_{i+1}^{2} \leq 2 \alpha_{i} x_{i} g\left(x_{i}\right)+\left(1+\beta_{i}\right) x_{i}^{2}+\left(K \alpha_{i}+2 K_{1} \alpha_{i}^{2}\right) \eta_{i+1}+\Delta m_{i} \tag{13}
\end{equation*}
$$

where $\beta_{i}=K \alpha_{i} \eta_{i+1}+2 K_{1} \alpha_{i}^{2}$. Note that (10)-(11) imply

$$
\begin{equation*}
\prod_{j=1}^{i}\left(1+\beta_{j}\right)<M \tag{14}
\end{equation*}
$$

for some nonrandom $M>0$ and every $i=1,2, \ldots$ Letting

$$
x_{i+1}=\prod_{j=1}^{i}\left(1+\beta_{j}\right)^{1 / 2} y_{i+1}
$$

and substituting it in (13) we get

$$
\begin{gathered}
\prod_{j=1}^{i}\left(1+\beta_{j}\right)\left(y_{i+1}^{2}-y_{i}^{2}\right) \leq 2 \alpha_{i} \prod_{j=1}^{i-1}\left(1+\beta_{j}\right)^{1 / 2} y_{i} g\left(\prod_{j=1}^{i-1}\left(1+\beta_{j}\right)^{1 / 2} y_{i}\right) \\
+\left(K \alpha_{i}+2 K_{1} \alpha_{i}^{2}\right) \eta_{i+1}+\Delta m_{i}
\end{gathered}
$$

Let

$$
\prod_{j=1}^{i}\left(1+\beta_{j}\right)^{-1} \Delta m_{i}=\Delta m_{i}^{1}
$$

which is a martingale-difference, therefore

$$
\begin{align*}
y_{i+1}^{2}-y_{i}^{2} \leq & 2 \prod_{j=1}^{i}\left(1+\beta_{j}\right)^{-1} \alpha_{i} \prod_{j=1}^{i-1}\left(1+\beta_{j}\right)^{1 / 2} y_{i} g\left(\prod_{j=1}^{i-1}\left(1+\beta_{j}\right)^{1 / 2} y_{i}\right) \\
& +\prod_{j=1}^{i}\left(1+\beta_{j}\right)^{-1}\left(K \alpha_{i}+2 K_{1} \alpha_{i}^{2}\right) \eta_{i+1}+\Delta m_{i}^{1} \tag{15}
\end{align*}
$$

Taking the sum of (15) from $i=0$ to $i=n-1$, we have

$$
\begin{aligned}
\sum_{i=0}^{n-1} y_{i+1}^{2}-\sum_{i=0}^{n-1} y_{i}^{2} \leq & 2 \sum_{i=0}^{n-1} \prod_{j=1}^{i}\left(1+\beta_{j}\right)^{-1} \alpha_{i} \prod_{j=1}^{i-1}\left(1+\beta_{j}\right)^{1 / 2} y_{i} g\left(\prod_{j=1}^{i-1}\left(1+\beta_{j}\right)^{1 / 2} y_{i}\right) \\
& +\sum_{i=0}^{n-1} \prod_{j=1}^{i}\left(1+\beta_{j}\right)^{-1}\left(K \alpha_{i}+2 K_{1} \alpha_{i}^{2}\right) \eta_{i+1}+\sum_{i=0}^{n-1} \Delta m_{i}^{1}
\end{aligned}
$$

Therefore

$$
\begin{equation*}
y_{n}^{2} \leq U_{n}=y_{0}^{2}+A_{n}^{1}-A_{n}^{2}+m_{n}^{1} \tag{16}
\end{equation*}
$$

where

$$
A_{n}^{1}=\sum_{i=0}^{n-1} \prod_{j=1}^{i}\left(1+\beta_{j}\right)^{-1}\left(K \alpha_{i}+2 K_{1} \alpha_{i}^{2}\right) \eta_{i+1}
$$

and

$$
A_{n}^{2}=-2 \sum_{i=0}^{n-1} \prod_{j=1}^{i}\left(1+\beta_{j}\right)^{-1} \alpha_{i} \prod_{j=1}^{i-1}\left(1+\beta_{j}\right)^{1 / 2} y_{i} g\left(\prod_{j=1}^{i-1}\left(1+\beta_{j}\right)^{1 / 2} y_{i}\right)
$$

It should be noted that A_{n}^{1} and A_{n}^{2} are increasing processes a.s., m_{n}^{1} is a martingale, U_{n} is nonnegative semimartingale and $P\left\{A_{\infty}^{1}<\infty\right\}=1$ due to the convergence of series in (10) and (11). Applying Lemma 2, that is

$$
\left\{A_{\infty}^{1}<\infty\right\} \subset\left\{U_{i} \rightarrow\right\} \cap\left\{A_{\infty}^{2}<\infty\right\}
$$

we have

$$
P\left\{U_{i} \rightarrow\right\}=1
$$

This implies that there exists some a.s. finite random value $H=H(\omega)$ such that $P\left\{\sup _{0<i<\infty} U_{i} \leq H\right\}=1$. Then $P\left\{\sup _{0<i<\infty} y_{i}^{2} \leq H\right\}=1$ and the first part of the theorem is proved.

Suppose now that $P\left\{\liminf _{i \rightarrow \infty} y_{i}^{2}>0\right\}=p_{0}>0$. Then there exist random variables $\zeta_{0}=\zeta_{0}(\omega)>0$ and $N_{0}=N_{0}(\omega)>0$ such that $P\left(\Omega_{0}\right)=p_{0}$, where $\Omega_{0}=\left\{\omega: y_{i}^{2}>\right.$ $\zeta_{0}(\omega) / 2$ for $\left.i>N_{0}\right\}$. Since $\prod_{j=1}^{i}\left(1+\beta_{j}\right)^{1 / 2}>1$, we have $y_{i}^{2} \prod_{j=1}^{i}\left(1+\beta_{j}\right)^{1 / 2}>\zeta_{0}(\omega) / 2$ for $i>N_{0}$ and $\omega \in \Omega_{0}$. Due to the continuity and negativity (for $u \neq 0$) of the function $\phi(u)=u g(u)$ we can find $k_{0}=k_{0}(\omega)$ and $N_{1}=N_{1}(\omega) \geq N_{0}(\omega)$ such that

$$
-\phi\left(\prod_{j=1}^{i}\left(1+\beta_{j}\right)^{1 / 2} y_{i}\right)>k_{0}(\omega)
$$

for $\omega \in \Omega_{0}$ and $i>N_{1}$. Then

$$
\begin{aligned}
& -2 \sum_{i=0}^{n-1} \alpha_{i} \prod_{j=1}^{i}\left(1+\beta_{j}\right)^{1 / 2} y_{i}(\omega) g\left(\prod_{j=1}^{i}\left(1+\beta_{j}\right)^{1 / 2} y_{i}(\omega)\right) \\
= & -2 \sum_{i=0}^{N_{1}-1}-2 \sum_{i=N_{1}}^{n-1} \\
\geq & -2 \sum_{i=N_{1}}^{n-1} \alpha_{i} \phi\left(\prod_{j=1}^{i}\left(1+\beta_{j}\right)^{1 / 2} y_{i}(\omega)\right) \\
\geq & 2 k_{0}(\omega) \sum_{i=N_{1}}^{n-1} \alpha_{i} \rightarrow \infty
\end{aligned}
$$

as $n \rightarrow \infty$. Hence $P\left\{A_{\infty}^{2}=\infty\right\} \geq p_{0}>0$ which contradicts (16) and conditions (10)(11). Then $P\left\{\liminf _{i \rightarrow \infty} y_{i}^{2}>0\right\}=0$ and from (14) we have: $P\left\{\liminf _{i \rightarrow \infty} x_{i}^{2} \leq M \liminf _{i \rightarrow \infty} y_{i}^{2}=\right.$ $0\}=1$. The theorem is completely proved.

4 Exponential Stability

In addition to the conditions from the previous section let two more conditions be fulfilled

$$
\begin{gather*}
H_{1}|x| \leq|g(x)| \tag{17}\\
\sum_{i=0}^{\infty} \alpha_{i} \eta_{i+1} \prod_{j=1}^{i}\left(1-2 \alpha_{j} H_{1}\right)^{-1}<\infty \text { a.s. } \tag{18}
\end{gather*}
$$

where $H_{1}>0$ is some constant and $\eta_{i+1} \rightarrow 0$ when $i \rightarrow \infty$.
REMARK 1. Let $H_{1}|x| \leq|g(x)|$ and $x g(x)<0$ for all $x \in \Re$ and $x \neq 0$. The following is correct: if $x>0$, then

$$
-x g(x)=x|g(x)| \geq|x| H_{1}|x|=H_{1} x^{2}
$$

and if $x<0$, then

$$
-x g(x)=|x||g(x)| \geq|x| H_{1}|x|=H_{1} x^{2}
$$

Therefore

$$
\begin{equation*}
x g(x) \leq-H_{1} x^{2} \tag{19}
\end{equation*}
$$

THEOREM 2. Let conditions (6)-(11) and (17)-(18) be fulfilled. Then for any $\kappa>0$,

$$
\exp \left[(1-\kappa) 2 H_{1} \sum_{i=0}^{n} \alpha_{i}\right] x_{n}^{2} \rightarrow 0
$$

a.s. where x_{n} is a solution of equation (4).

PROOF. Substituting (19) in (12) we get

$$
\begin{equation*}
x_{i+1}^{2}-x_{i}^{2} \leq-\left(2 \alpha_{i} H_{1}-K \alpha_{i} \eta_{i+1}-2 K_{1} \alpha_{i}^{2}\right) x_{i}^{2}+\left(K \alpha_{i}+2 K_{1} \alpha_{i}^{2}\right) \eta_{i+1}+\Delta m_{i} \tag{20}
\end{equation*}
$$

Let

$$
\tau_{i}=2 \alpha_{i} H_{1}-K \alpha_{i} \eta_{i+1}-2 K_{1} \alpha_{i}^{2}
$$

Due to the positivity of K_{1}, K and η_{i+1} from condition (18) we have

$$
\begin{align*}
& \sum_{i=0}^{\infty}\left(K \alpha_{i}-2 K_{1} \alpha_{i}^{2}\right) \eta_{i+1} \prod_{j=0}^{i}\left(1-2 \alpha_{j} H_{1}+2 K_{1} \alpha_{j}^{2}+K \alpha_{j} \eta_{j+1}\right)^{-1} \\
\leq & K \sum_{i=0}^{\infty} \alpha_{i} \eta_{i+1} \prod_{j=0}^{i}\left(1-2 \alpha_{j} H_{1}\right)^{-1}<\infty \tag{21}
\end{align*}
$$

From (20) we get

$$
\begin{equation*}
x_{i+1}^{2} \leq\left(1-\tau_{i}\right) x_{i}^{2}+\left(K \alpha_{i}+2 K_{1} \alpha_{i}^{2}\right) \eta_{i+1}+\Delta m_{i} . \tag{22}
\end{equation*}
$$

Let

$$
z_{i}^{2}=\prod_{j=1}^{i-1}\left(1-\tau_{j}\right)^{-1} x_{i}^{2}
$$

which implies that

$$
x_{i}^{2}=\prod_{j=1}^{i-1}\left(1-\tau_{j}\right) z_{i}^{2}
$$

Substituting it in (22) we get,

$$
\prod_{j=1}^{i}\left(1-\tau_{j}\right) z_{i+1}^{2} \leq\left(1-\tau_{i}\right) \prod_{j=1}^{i-1}\left(1-\tau_{j}\right) z_{i}^{2}+\left(K \alpha_{j}+2 K_{1} \alpha_{j}^{2}\right) \eta_{j+1}+\Delta m_{i}
$$

and

$$
\begin{equation*}
z_{i+1}^{2}-z_{i}^{2} \leq \prod_{j=1}^{i}\left(1-\tau_{j}\right)^{-1}\left(K \alpha_{j}+2 K_{1} \alpha_{i} j^{2}\right) \eta_{j+1}+\Delta m_{i}^{1} \tag{23}
\end{equation*}
$$

where $\Delta m_{i}^{1}=\prod_{j=1}^{i}\left(1-\tau_{j}\right)^{-1} \Delta m_{i}$. Taking the sum of (23) from $i=0$ to $i=n-1$, we obtain

$$
z_{n}^{2} \leq z_{0}^{2}+\sum_{i=0}^{n-1} \prod_{j=1}^{i}\left(1-\tau_{j}\right)^{-1}\left(K \alpha_{j}+2 K_{1} \alpha_{j}^{2}\right) \eta_{j+1}+m_{n}^{1}
$$

Applying (21) and using the same arguments as in Theorem 1 we obtain that there exists some a.s. finite random value $H=H(\omega)$ such that $P\left\{\sup _{0<i<\infty} z_{i}^{2} \leq H\right\}=1$. As $\alpha_{i}, \eta_{i+1} \rightarrow 0$ when $i \rightarrow \infty$ for any $\varepsilon>0$ there exists the random integer $N=N(\omega)>0$ such that for any $j \geq N$

$$
2 K_{1} \alpha_{j}+K \eta_{j+1}<2 H_{1} \varepsilon
$$

Then for some $H_{2}>0$

$$
\begin{align*}
x_{i}^{2} & \leq H H_{2} \prod_{j=N}^{i}\left(1-2 H_{1}(1-\varepsilon) \alpha_{j}\right)=H H_{2} \exp \left\{\sum_{j=N}^{i} \ln \left[1-2 H_{1}(1-\varepsilon) \alpha_{j}\right]\right\} \\
& \leq H H_{2} \exp \left\{-2 H_{1} \sum_{j=N}^{i}(1-\varepsilon) \alpha_{j}\right\} . \tag{24}
\end{align*}
$$

If we take some $\kappa>0$ and $\varepsilon<\kappa / 2$, then from (24) we obtain that $P\left\{\lim _{i \rightarrow \infty} \exp \{(1-\right.$ $\left.\left.\kappa) 2 H_{1} \sum_{j=N}^{i} \alpha_{j}\right\} x_{i}^{2}=0\right\}=1$. The proof is complete.

In the following example we investigate the fulfillment of the condition (18). We consider two different cases for α_{i}, and η_{i}.

EXAMPLE. a) Let $\alpha_{i}=\frac{1}{i}$ and $\eta_{i} \leq C(\omega) / i^{\varepsilon+2 H_{1}}$ for some $\varepsilon>0$ and a.s. finite random variable $C(\omega)>0$. Then

$$
\prod_{j=N}^{i}\left(1-2 H_{1} \alpha_{j}\right)^{-1}=\prod_{j=N}^{i} e^{-\ln \left(1-2 H_{1} \alpha_{j}\right)}=e^{-\sum_{j=N}^{i} \ln \left(1-2 H_{1} \alpha_{j}\right)} \leq K_{1}^{\prime} i^{2 H_{1}}
$$

and a.s.

$$
\sum_{i=1}^{\infty} \alpha_{i} \eta_{i+1} \prod_{j=1}^{i}\left(1-2 \alpha_{j} H_{1}\right)^{-1} \leq K_{2}^{\prime} \sum_{i=1}^{\infty} \frac{1}{i} i^{2 H_{1}} \frac{C(\omega)}{i^{\varepsilon+2 H_{1}}}<\infty
$$

where K_{1}^{\prime} and K_{2}^{\prime} are some constants.
b) Let $\alpha_{i}=(i \ln i)^{-1}$ and $\eta_{i} \leq C(\omega) / i^{\varepsilon+2 H_{1}}$ for some $\varepsilon>0$ and a.s. finite random variable $C(\omega)>0$. Then

$$
\prod_{j=N}^{i}\left(1-2 H_{1} \alpha_{j}\right)^{-1} \leq K_{1}^{\prime} \ln ^{2 H_{1}} i
$$

and a.s.

$$
\sum_{i=0}^{\infty} \alpha_{i} \eta_{i+1} \prod_{i=1}^{i}\left(1-2 \alpha_{i} H_{1}\right)^{-1} \leq K_{2}^{\prime} \sum_{i=1}^{\infty} \frac{1}{i \ln i} \ln ^{2 H_{1}} i \frac{C(\omega)}{i^{\varepsilon+2 H_{1}}}<\infty
$$

References

[1] T. Herzog, Introduction to Credibility Theory, ACTEX Publications, Inc., 1996.
[2] H. J. Kushner, Stochastic Stability and Control, Academic Press, 1967.
[3] Z. M. Landesman and U. E. Makov, Exponential Dispersion Models and Credibility, Scand. Actuarial J., 1(1998), 89-96.
[4] R. Sh. Liptser and A. N. Shiryayev, Theory of Martingales, Kluwer Academic, Dortrecht, 1989.
[5] M. Nevelson and R. Khasminskii, Stochastic approximation and recurrent estimates. Providence. AMS., 1972.
[6] A. Rodkina, On Asymptotic Behaviour of solutions of stochastic difference equations, Nonlinear Analysis, 47(2001), 4719-4730.
[7] H. Robbins and S. Monro, A stochastic approximation method. Ann. Math. Stat. 29(1951), 400-407.

[^0]: *Mathematics Subject Classifications: 60H10, 93E15.
 ${ }^{\dagger}$ Partially supported by Cariscience
 \ddagger Department of Mathematics and Computer Science, University of the West Indies, Mona, Kingston-7, Jamaica

