Existence of Positive Solutions for Singular Second Order Boundary Value Problems *'

Yan-ping Guo ${ }^{\ddagger}$, Ying Gao ${ }^{\S}$, Guang Zhang ${ }^{〔}$

Received 19 January 2002

Abstract

In this paper, using fixed point theorem in cones and a transformation $y(t)=$ $\int_{0}^{t} \frac{1}{p(s)} z(s) d s$, we establish some existence results for singular second order boundary value problems of the form $$
\left(p y^{\prime}\right)^{\prime}+p(t) q(t) f\left(t, y, p y^{\prime}\right)=0,0<t<1
$$

where $f(t, y, z)$ is allowed to be singular at $y=0$ and $z=0$.

1 Introduction

This paper is devoted to the study of the existence of positive solutions for singular second order boundary value problems of the form

$$
\left\{\begin{array}{l}
\left(p y^{\prime}\right)^{\prime}+p(t) q(t) f\left(t, y, p y^{\prime}\right)=0, \quad 0<t<1 \tag{1}\\
y(0)=\lim _{t \rightarrow 1^{-}} p(t) y^{\prime}(t)=0
\end{array}\right.
$$

where $\lim _{y \rightarrow 0^{+}} f(t, y, z)=+\infty$ and $\lim _{z \rightarrow 0^{+}} f(t, y, z)=+\infty$ uniformly on compact subset of $[0,1] \times(0,+\infty)$. That is, we will allow our nonlinear term f to be singular at $y=0$ and $z=0$.

In [1], Erbe and Wang study the existence of positive solutions of the equation $u^{\prime \prime}+a(t) f(u)=0$ by using the Krasnosel'skii fixed point theorem [2], where $a(t)$ is continuous on $[0,1]$ and $f(u)$ is continuous on $[0, \infty)$. Krasnosel'skii fixed point theorem has been widely used to discuss the existence of positive solutions for boundary value problems. In [3-5], O'Regan et al. showed the existence of positive solutions for singular second order differential equations of the form

$$
\left(p y^{\prime}\right)^{\prime}+p(t) q(t) f\left(t, y, p y^{\prime}\right)=0,0<t<1
$$

[^0]where $f(t, y, z)$ is continuous on $[0,1] \times R^{2}$. In [6], its authors used the nonlinear alternative of Leray and Schauder to prove the existence results for singular second order boundary value problems of the form
$$
\left(p y^{\prime}\right)^{\prime}+p(t) q(t) f(t, y)=0
$$
here $\lim _{y \rightarrow 0^{+}} f(t, y)=+\infty$. In [7], by using an upper and lower solution approach, O'Regan and Agarwal presented the existence results for singular problems of the from
\[

\left\{$$
\begin{array}{l}
\left(p y^{\prime}\right)^{\prime}+p(t) q(t) f\left(t, y, p y^{\prime}\right)=0, \quad 0<t<1 \tag{2}\\
y(1)=\lim _{t \rightarrow 0^{+}} p(t) y^{\prime}(t)=0
\end{array}
$$\right.
\]

where f is allowed to be singular at $y=0$. When f is singular at $y=0$ and $z=0$, few people (e.g. [9]) studied the problem (2). In this paper, with the use of certain fixed point theorem in cones and a transformation

$$
y(t)=\int_{0}^{t} \frac{1}{p(s)} z(s) d s
$$

we will show the existence of positive solutions for the problem (1). Our results are different from that in [9] and simpler than that in [7].

2 Main Results

Let $p y^{\prime}=z(t)$. We can transform (1) into

$$
\left\{\begin{array}{l}
p y^{\prime}=z(t) \tag{3}\\
z^{\prime}(t)+p(t) q(t) f(t, y, z)=0, \quad 0<t<1 \\
y(0)=\lim _{t \rightarrow 1^{-}} z(t)=0
\end{array}\right.
$$

Consequently (3) is equivalent to the fixed point problem

$$
\begin{equation*}
(T z)(t)=\int_{t}^{1} p(s) q(s) f(s,(A z)(s), z(s)) d s \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
y(t)=\int_{0}^{t} \frac{1}{p(s)} z(s) d s=(A z)(t) \tag{5}
\end{equation*}
$$

We will suppose that the following conditions are satisfied:
$\left(H_{1}\right) f:[0,1] \times(0,+\infty) \times(0,+\infty) \rightarrow(0,+\infty)$ is continuous, $\lim _{y \rightarrow 0^{+}} f(t, y, z)=$ $+\infty$ and $\lim _{z \rightarrow 0^{+}} f(t, y, z)=+\infty$ uniformly on bounded subsets of $[0,1] \times(0,+\infty)$;
$\left(H_{2}\right) p(t) \in C[0,1] \cap C^{1}(0,1)$ with $p>0$ on $(0,1)$;
$\left(H_{3}\right) q(t) \in C(0,1)$ with $q>0$ on $(0,1)$;
$\left(H_{4}\right) \int_{0}^{1} \frac{1}{p(s)} d s<+\infty, \int_{0}^{1} p(s) q(s) d s<+\infty$, and $\lim _{t \rightarrow 1^{-}} p(t) q(t) f(t, y, z)=+\infty$ uniformly on bounded subsets of $(0,+\infty) \times(0,+\infty)$;
$\left(H_{5}\right) f(t, y, z) \leq h(y) g(z)$ for $(t, y, z) \in[0,1] \times(0,+\infty) \times(0,+\infty)$, where $g, h \in$ $C((0,+\infty),(0,+\infty)) ;$
$\left(H_{6}\right) p^{2} q$ is bounded on $[0,1]$ and there exists $R>0$ such that

$$
\int_{0}^{(R+1)} \int_{0}^{1} \frac{1}{p(s)} d s+1 \quad h(u) d u<+\infty
$$

and

$$
\int_{0}^{R} \frac{u}{g(u)} d u>\sup _{t \in[0,1]} p^{2}(t) q(t) \int_{0}^{(R+1) \int_{0}^{1} \frac{1}{p(s)} d s+1} h(u) d u
$$

$\left(H_{7}\right) \int_{0}^{1} p(t) q(t) \max g[1-t, R] d t<+\infty$ and

$$
\int_{0}^{1} p(t) q(t) \max h\left[\int_{0}^{t} \frac{1-t_{0}}{P(s)} d s, R \int_{0}^{1} \frac{1}{p(s)} d s+1\right] d t<+\infty
$$

for each $t_{0} \in[0,1)$, where $\max g[a, b]=\max _{a \leq x \leq b} g(x), a \leq b$.
We will need the following lemma, its proof can be seen in [8].
LEMMA 1. Let K be a cone of the Banach space $E, B_{R}(0)=\{x \in K:\|x\| \leq R\}$, and $F: B_{R}(0) \rightarrow K$ is a completely continuous operator. In addition suppose
(i) $F(x) \neq \lambda x$ for $\|x\|=R, \lambda>1$,
(ii) there exists $r \in(0, R)$ such that $F(x) \neq \lambda x$ for $\|x\|=r, 0<\lambda<1$,
(iii) $\inf \{\|F x\|:\|x\|=r\}>0$.

Then F has at least one fixed point on $r \leq\|x\| \leq R$.
Consider the problem

$$
\left\{\begin{array}{l}
\left(p y^{\prime}\right)^{\prime}+p(t) q(t) f\left(t, y, p y^{\prime}\right)=0, \quad 0<t<1 \tag{6}\\
y(0)=\lim _{t \rightarrow 1^{-}} p(t) y^{\prime}(t)=1 / m
\end{array}\right.
$$

where $m \in N$, which is equivalent to the fixed point problem

$$
\begin{equation*}
T_{m} z(t)=\int_{t}^{1} f\left(s,(A z)(s)+\frac{1}{m}, z(s)\right) p(s) q(s) d s+\frac{1}{m} \tag{7}
\end{equation*}
$$

Let

$$
D[0,1]=\{z \in C([0,1],[0,+\infty)): z \text { is nonincreasing on }[0,1]\}
$$

then $D[0,1]$ is a cone of Banach space $C[0,1]$. For $z(t) \in D[0,1]$, we define

$$
I z(t)= \begin{cases}z(t), & z(1) \geq 1 / m \tag{8}\\ z(t)+\left(\frac{1}{m}-z(1)\right), & z(1)<1 / m\end{cases}
$$

LEMMA 2. Suppose $\left(H_{1}\right)-\left(H_{4}\right)$ hold, then $T_{m} I$ is a completely continuous operator on $D[0,1]$.

PROOF. First we show $T_{m} I$ is a continuous operator on $D[0,1]$. Let $z, z_{n} \in D[0,1]$ such that $z_{n} \rightarrow z$. Since f is uniformly continuous on compact subsets of $[0,1] \times$ $[1 / m,+\infty) \times[1 / m,+\infty)$, then for each $\varepsilon>0$, there is N such that

$$
\left|f\left(s,(A I z)(s)+\frac{1}{m}, I z(s)\right)-f\left(s,\left(A I z_{n}\right)(s)+\frac{1}{m}, I z_{n}(s)\right)\right|<\varepsilon
$$

when $n>N, s \in[0,1]$. This together with $\left(H_{4}\right)$ gives

$$
\begin{aligned}
& \left|T_{m} I z(t)-T_{m} I z_{n}(t)\right| \\
\leq & \int_{t}^{1}\left|f\left(s,(A I z)(s)+\frac{1}{m}, I z(s)\right)-f\left(s,\left(A I z_{n}\right)(s)+\frac{1}{m}, I z_{n}(s)\right)\right| p(s) q(s) d s \\
\leq & \int_{0}^{1}\left|f\left(s,(A I z)(s)+\frac{1}{m}, I z(s)\right)-f\left(s,\left(A I z_{n}\right)(s)+\frac{1}{m}, I z_{n}(s)\right)\right| p(s) q(s) d s \\
\leq & \varepsilon \int_{0}^{1} p(s) q(s) d s
\end{aligned}
$$

for $n>N, t \in[0,1]$. We obtain that $T_{m} I$ is a continuous operator on $D[0,1]$.
Next we show $T_{m} I$ is a compact map. Let $\Omega \subseteq D[0,1]$ be bounded, that is that there exists a constant M with $\|z\| \leq M$ for each $z \in \Omega$. By using $\left(H_{1}\right)$ and $\left(H_{4}\right)$, there is $M^{\prime}>0$ such that $|f(s,(A I z)(t)+1 / m, I z(t))| \leq M^{\prime}$ for each $z \in \Omega, t \in[0,1]$. Therefore, $\left|T_{m} I z\right| \leq M^{\prime} \int_{0}^{1} p(s) q(s) d s$ for each $z \in \Omega$, that is $T_{m} I \Omega$ is completely bounded.

For each $z \in \Omega, t_{1}, t_{2} \in[0,1]$ with $t_{1}<t_{2}$, we have

$$
\begin{aligned}
\left|T_{m} I z\left(t_{1}\right)-T_{m} I z\left(t_{2}\right)\right| & =\int_{t_{1}}^{t_{2}} f\left(s,(A I z)(s)+\frac{1}{m}, I z(s)\right) p(s) q(s) d s \\
& \leq M^{\prime} \int_{t_{1}}^{t_{2}} p(s) q(s) d s
\end{aligned}
$$

$\left(H_{4}\right)$ and the above inequality imply that $T_{m} I \Omega$ is equicontinuous. Consequently the Arzela-Ascoli theorem implies $T_{m} I \Omega$ is relatively compact. So $T_{m} I$ is a completely continuous. The proof is complete.

THEOREM 1. Suppose $\left(H_{1}\right)-\left(H_{7}\right)$ hold, then (1) has a positive solution $y \in$ $C^{1}[0,1] \cap C^{2}(0,1)$ with $p y^{\prime} \in C[0,1]$.

PROOF. Take R as in $\left(H_{6}\right)$. First we show that $T_{m} I z \neq \mu z$ for each $\|z\|=R, \mu>1$. If this is not true, then there exist $\lambda \in(0,1)$ and $z \in D[0,1]$ with $\|z\|=R$ such that $\lambda T_{m} I z=z$, that is

$$
\lambda \int_{t}^{1} f\left(s,(A I z)(s)+\frac{1}{m}, I z(s)\right) p(s) q(s) d s+\frac{\lambda}{m}=z
$$

So $z(0)=\|z\|=R, z(1)=\lambda / m$,

$$
\begin{aligned}
-z^{\prime}(t) & =\lambda f\left(t,(A I z)(t)+\frac{1}{m}, I z(t)\right) p(t) q(t) \\
& \leq \lambda h\left((A I z)(t)+\frac{1}{m}\right) g(I z(t)) p(t) q(t)
\end{aligned}
$$

Let $y(t)=(A I z)(s)+1 / m$, we have

$$
-\left(p y^{\prime}\right)^{\prime} p y^{\prime} \leq \lambda h(y(t)) g\left(p y^{\prime}\right) p(t) q(t) p y^{\prime}, t \in(0,1)
$$

and integration from 0 to 1 yields

$$
\begin{aligned}
\int_{\frac{\lambda}{m}}^{R} \frac{u}{g(u)} d u & \leq \lambda \sup _{t \in[0,1]} p^{2}(t) q(t) \int_{0}^{1} h(y(t)) y^{\prime}(t) d t \\
& \leq \lambda \sup _{t \in[0,1]} p^{2}(t) q(t) \int_{\frac{1}{m}}^{(R+1) \int_{0}^{1} \frac{d s}{p(s)}+\frac{1}{m}} h(u) d u \\
& \leq \lambda \sup _{t \in[0,1]} p^{2}(t) q(t) \int_{0}^{(R+1) \int_{0}^{1} \frac{d s}{p(s)}+\frac{1}{m}} h(u) d u
\end{aligned}
$$

If m is sufficiently large, $\left(H_{6}\right)$ implies

$$
\int_{\frac{\lambda}{m}}^{R} \frac{u}{g(u)} d u>\sup _{t \in[0,1]} p^{2}(t) q(t) \int_{0}^{(R+1) \int_{0}^{1} \frac{d s}{p(s)}+\frac{1}{m}} h(u) d u
$$

This is a contradiction. Thus $T_{m} I z \neq \mu z$ for each $\|z\|=R, \mu>1$.
Next we show that there is $r \in(0, R)$ such that $T_{m} I z \neq \lambda z$ for each $\|z\|=r, \lambda \in$ $(0,1)$. Since $\lim _{z \rightarrow 0^{+}} f(t, y, z)=+\infty$ uniformly on bounded subsets of $[0,1] \times(0,+\infty)$, then there is a sufficiently small $r>0$ such that

$$
\left\|T_{m} I z\right\|=\int_{0}^{1} f(s,(A I z)(s), I z(s)) p(s) q(s) d s+\frac{1}{m}>r
$$

If $\|z\|=r$ and $m \rightarrow+\infty$, Then $T_{m} I z \neq \lambda z$ for $\|z\|=r$ and $\lambda \in(0,1)$. By Lemma 1 and 2 , there is $M>0$ such that $T_{m} I$ has a fixed point z_{m} on $D[0,1]$ with $r \leq\left\|z_{m}\right\| \leq R$ when $m>M$, and $z_{m}(t) \geq 1 / m$ for $t \in[0,1]$. Therefore, z_{m} is a fixed point of T_{m}.

It is clear that $\left\{z_{m}\right\}$ is completely bounded. Next we show $\left\{z_{m}\right\}$ is equicontinuous. $\left(H_{4}\right)$ implies that there is $t_{0} \in[0,1)$ such that $p(t) q(t) f(t, y, z) \geq 1$ on $\left[t_{0}, 1\right] \times\left(0, R \int_{0}^{1} \frac{1}{p(s)} d s+1\right] \times(0, R]$. Thus

$$
\begin{align*}
z_{m}(t)= & \int_{t}^{1} f\left(s,\left(A z_{m}\right)(s)+\frac{1}{m}, z_{m}(s)\right) p(s) q(s) d s+\frac{1}{m}>1-t, t \in\left[t_{0}, 1\right] \tag{9}\\
z_{m}(t)= & \int_{t}^{1} f\left(s,\left(A z_{m}\right)(s)+\frac{1}{m}, z_{m}(s)\right) p(s) q(s) d s+\frac{1}{m}>1-t_{0} t \in\left[0, t_{0}\right] \tag{10}\\
& \left(A z_{m}\right)(t)+\frac{1}{m}=\int_{0}^{t} \frac{1}{p(s)} z_{m}(s) d s+\frac{1}{m}>\int_{0}^{t} \frac{1-t_{0}}{p(s)} d s, t \in\left[0, t_{0}\right] \tag{11}
\end{align*}
$$

and

$$
\begin{equation*}
\left(A z_{m}\right)(t)+\frac{1}{m}=\int_{0}^{t} \frac{1}{p(s)} z_{m}(s) d s+\frac{1}{m}>\int_{0}^{t_{0}} \frac{1-t_{0}}{p(s)} d s, t \in\left[t_{0}, 1\right] \tag{12}
\end{equation*}
$$

Since

$$
\begin{aligned}
0 & \leq-z_{m}^{\prime}(t)=p(t) q(t) f\left(t,\left(A z_{m}\right)(t)+\frac{1}{m}, z_{m}(t)\right) \\
& \leq p(t) q(t) h\left(\left(A z_{m}\right)(t)+\frac{1}{m}\right) g\left(z_{m}(t)\right)
\end{aligned}
$$

so we have

$$
0 \leq-z_{m}^{\prime}(t)=p(t) q(t) \max h\left[\int_{0}^{t} \frac{1-t_{0}}{p(s)} d s, R \int_{0}^{1} \frac{1}{p(s)} d s+1\right] \max g\left[1-t_{0}, R\right]
$$

for $t \in\left[0, t_{0}\right]$,

$$
0 \leq-z_{m}^{\prime}(t)=p(t) q(t) \max h\left[\int_{0}^{t_{0}} \frac{1-t_{0}}{p(s)} d s, R \int_{0}^{1} \frac{1}{p(s)} d s+1\right] \max g[1-t, R]
$$

for $t \in\left[t_{0}, 1\right]$. Thus the equicontinuity of $\left\{z_{m}\right\}$ follows from $\left(H_{7}\right)$ and the above inequalities. Consequently the Arzela-Ascoli theorem guarantees the existence of a subset N_{0} of $\{M+1, M+2, \ldots\}$ and a function $z \in D[0,1]$ with z_{m} converging uniformly on $[0,1]$ to z as $m \rightarrow+\infty$ through N_{0}. Also $z(0)=0,(9)$ and (10) imply $z(t)>0$ for $t \in[0,1)$. Thus $\left(A z_{m}\right)(t) \rightarrow \int_{0}^{t}(z(s) / p(s)) d s$ uniformly on $[0,1]$ as $m \rightarrow+\infty$ through N_{0}. Now $z_{m}, m \in N_{0}$, satisfies the integral equation

$$
z_{m}(t)=\int_{t}^{1} f\left(s,\left(A z_{m}\right)(s)+\frac{1}{m}, z_{m}(s)\right) p(s) q(s) d s
$$

Fix $t \in(0,1)$, we have $f\left(s,\left(A z_{m}\right)(s)+\frac{1}{m}, z_{m}(s)\right) \rightarrow f(s,(A z)(s), z(s))$ uniformly on compact subsets of $[t, 1)$, so letting $m \rightarrow \infty$ through N_{0} gives

$$
z(t)=\int_{t}^{1} f(s,(A z)(s), z(s)) p(s) q(s) d s
$$

Let $y(t)=\int_{0}^{t} \frac{z(s)}{p(s)} d s$, then $y(t)$ is a solution of (1) with $y \in C^{1}[0,1] \cap C^{2}(0,1)$, and $p y^{\prime} \in C[0,1]$. The proof is complete.

REMARK: Notice $\left(H_{6}\right)$ can be replaced by

$$
\exists r, 1<r<+\infty, \int_{0}^{(R+1)} \int_{0}^{1} \frac{1}{p(s)} d s+1 h^{r}(u) d u<+\infty, \int_{0}^{1}\left[p^{\frac{r+1}{r}}(u) q(u)\right]^{\frac{r}{r-1}} d u<+\infty
$$

and

$$
\int_{0}^{R} \frac{u^{\frac{1}{r}}}{g(u)} d u>\left(\int_{0}^{(R+1)} \int_{0}^{1} \frac{1}{p(s)} d s+1 h^{r}(u) d u\right)^{\frac{1}{r}}\left(\int_{0}^{1}\left[p^{\frac{r+1}{r}}(u) q(u)\right]^{\frac{r}{r-1}} d u\right)^{\frac{r-1}{r}}
$$

then the result in Theorem 1 is again true. To see this, notice in this case we choose $\delta>0$ so that

$$
\int_{\delta}^{R} \frac{u^{\frac{1}{r}}}{g(u)} d u>\left(\int_{0}^{(R+1) \int_{0}^{1} \frac{1}{p(s)} d s+1} h^{r}(u) d u\right)^{\frac{1}{r}}\left(\int_{0}^{1}\left[p^{\frac{r+1}{r}}(u) q(u)\right]^{\frac{r}{r-1}} d u\right)^{\frac{r-1}{r}}
$$

hold . Essentially the same reasoning as in the proof of Theorem 1 establishes the proof.

EXAMPLE. Consider the boundary value problem

$$
\left\{\begin{array}{l}
\left(t^{\frac{1}{2}}(1-t)^{\frac{1}{2}} y^{\prime}\right)^{\prime}+t^{-\frac{1}{4}}(1-t)^{-\frac{1}{4}} y^{-\frac{1}{4}}\left(y^{\prime}\right)^{-\frac{1}{2}}=0 \tag{13}\\
y(0)=\lim _{t \rightarrow 1^{-}} t^{\frac{1}{2}}(1-t)^{\frac{1}{2}} y^{\prime}(t)=0
\end{array}\right.
$$

Let $p(t)=t^{\frac{1}{2}}(1-t)^{\frac{1}{2}}, q(t)=t^{-\frac{3}{4}}(1-t)^{-\frac{3}{4}}, f(t, y, z)=y^{-\frac{1}{4}} z^{-\frac{1}{2}}, h(y)=y^{-\frac{1}{4}}, g(z)=$ $z^{-\frac{1}{2}}$. Clearly, all assumptions of Theorem 1 are fulfilled. Hence the problem (13) has at least one positive solution $y \in C^{1}[0,1] \cap C^{2}(0,1)$ with $p y^{\prime} \in C[0,1]$.

References

[1] L. K. Erbe and H. Wang, On the existence of positive solutions of ordinary differential equations, Proc. Amer. Math. Soc., 120(1994), 743-748.
[2] M. A. Krasnosel'skii, Positive solutions of operator equations, Noordhoff, Groningen, 1964.
[3] D. O'Regan, Theory of Singular Boundary Value Problems, World Scientific Publishing Co., 1994.
[4] D. R. Dunninger and J. C. Kurtz, Existence of solutions for some nonlinear singular boundary problems, J. Math. Anal. Appl., 115(1986),396-405.
[5] M. Frigon and D. O'Regan, Existence results for some initial and boundary value problems without growth restriction, Proc. Amer. Math. Soc., 123(1995), 207-216.
[6] D. O'Regan, Some existence principles and some general results for singular nonlinear two point boundary problems, J. Math. Anal. Appl., 166(1992), 24-40.
[7] D. O'Regan and R. P. Agarwal, Singular problems: an upper and lower solution approach, J. Math. Anal. Appl., 251(2000), 230-250.
[8] K. Deimling, Nonlinear Functional Analysis, Springer, New York, 1985.
[9] R. P. Agarwal and D. O'Regan, Second-order boundary value problems of singular type, J. Math. Anal. Appl., 226(1998),414-430.

[^0]: *The project is supported by the National Natural Science Foundation (19871005), the Doctoral Program Foundation of Education Ministry of China (1999000722) and Natural Science Foundation of Shanxi Province (20001001).
 ${ }^{\dagger}$ Mathematics Subject Classifications: 34B15
 ${ }^{\ddagger}$ Colleage of Science, Hebei University of Science and Technology, Shijiazhang, Hebei 050018, P. R. China
 §Department of Mathematics, Yanbei Normal Institute, Datong, Shanxi 037000, P. R. China
 『Department of Mathematics, Yanbei Normal Institute, Datong, Shanxi 037000, P. R. China

