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Abstract

Our aim in this paper is to investigate the global attractivity of the recursive
sequence

xn+1 =
α− βxn
γ − xn−k , n = 0, 1, ...,

where α ≥ 0, γ > β > 0 are real numbers and k ≥ 1 is an integer. We show that
one positive equilibrium of the equation is a global attractor with a basin that
depends on certain conditions imposed on the coefficients.

1 Introduction

The asymptotic stability of the rational recursive sequence

xn+1 =
α+ βxn

γ +
k
i=0 γixn−i

, n = 0, 1, ..., (1)

was investigated when the coefficients α,β, γ and γi are nonnegative, see Kocic et al.
[7], and Kocic and Ladas [6, 8]. Studying the asymptotic behavior of the rational
sequence (1) when some of the coefficients are negative was suggested by Kocic and
Ladas in [8]. Recently, Aboutaleb et al. [1] studied the rational recursive sequence

xn+1 =
α− βxn
γ + xn−1

, n = 0, 1, ...,

where α,β and γ are nonnegative real numbers and obtained sufficient conditions for
the global attractivity of the positive equilibria. Other related results can be found in
[2, 3, 4, 5, 9, 10].
Our aim in this paper is to study the global attractivity of the rational recursive

sequence

xn+1 =
α− βxn
γ − xn−k , n = 0, 1, ..., (2)
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52 Global Attractivity

where α ≥ 0, γ > β > 0 are real numbers and k ≥ 1 is an integer number, and the
initial conditions x−k , x−k+1, · · ·, x−1 and x0 are arbitrary. We prove that the positive
equilibrium x of Eq.(2) is a global attractor with a basin that depends on certain
conditions of the coefficients. The case where k = 1 was investigated in [11].

2 Local Stability and Permanence

We start this section with the following known result which will be used in our proofs.

LEMMA 2.1 [8]. Assume that p, q ∈ R and k ∈ {0, 1, · · ·}. Then

|p|+ |q| < 1
is a sufficient condition for the asymptotic stability of the difference equation

xn+1 + pxn + qxn−k = 0, n = 0, 1, ...

Now, let us consider the rational recursive sequence

xn+1 =
α− βxn
γ − xn−k , n = 0, 1, ..., (3)

where
α > 0, γ > β > 0, k ∈ {1, 2, 3, ...}. (4)

If (4) holds, and α = (β + γ)2/4, then Eq.(3) has a unique positive equilibrium
x0 = (β+γ)/2. If (4) holds and α < (β+γ)2/4, then Eq.(3) has two positive equilibria

x1,2 =
β + γ ± (β + γ)2 − 4α

2
.

The linearized equation of Eq.(3) about the equilibrium xi is

yn+1 +
β

γ − xi yn −
xi

γ − xi yn−k = 0, i = 0, 1, 2, n = 0, 1, ... . (5)

The characteristic equation associated with Eq.(5) about x0 is

λk+1 +
2β

γ − β
λk − γ + β

γ − β
= 0.

Since (γ + β)/(γ − β) > 1, the equilibrium x0 of Eq.(3) is unstable.
The characteristic equation associated with Eq.(5) about x1 is

λk+1 +
2β

γ − β − (β + γ)2 − 4αλ
k − γ + β + (β + γ)2 − 4α

γ − β − (β + γ)2 − 4α = 0.

In view of
γ + β + (β + γ)2 − 4α
γ − β − (β + γ)2 − 4α

> 1,
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the equilibrium x1 of Eq.(3) is also unstable.
For the positive equilibrium x2, in view of condition (4) and α < (β + γ)2/4, we

have

x2 =
β + γ − (β + γ)2 − 4α

2
<

β + γ

2
< γ.

Hence, if
0 < α < β(γ − β), (6)

then

(β + γ)2 − 4α ≥ (β + γ)2 − 4β(γ − β)

> (β + γ)2 − (γ + 3β)(γ − β)

= (β + γ)2 − (β + γ)2 + 4β2 = 2β,

and so

β + x2
γ − x2 =

β + x2
γ − x2 =

3β + γ − (β + γ)2 − 4α
γ − β + (β + γ)2 − 4α

<
3β + γ − 2β
γ − β + 2β

=
β + γ

γ + β
= 1,

which, by Lemma 2.1, implies that x2 ( in the sequel, we will denote x2 as x ) is locally
asymptotically stable.
Before stating our result related to permanence, we list a lemma which is useful in

proving our main result.

LEMMA 2.2. Let f(u, v) = (α − βu)/(γ − v) and assume that (4) and (6) hold.
Then the following statements are true:
(a) 0 < x < α/β, and α/β < x1 <∞,
(b) f(x, x) is a strictly decreasing function in (−∞,α/β], and
(c) let u, v ∈ (−∞,α/β], then f(u, v) is a strictly decreasing function in u, and a

strictly increasing function in v.

PROOF. We only prove (a). The proofs of (b) and (c) are simple and will be
omitted. In view of (4) and (6), we have

x =
β + γ − (β + γ)2 − 4α

2
<

β + γ

2
< γ.

By Eq.(3), we have

x =
α− βx

γ − x > 0,

and so x < α/β. Also, in view of (4) and (6) we have

0 <
α− βx1
γ − x1 = x1 =

β + γ + (β + γ)2 − 4α
2

≥ β + γ + (β + γ)2 − 4β(γ − β)

2
=

β + γ + (γ − β)2 + 4β2

2

>
β + γ + (γ − β)2

2
= γ,
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and so α− βx1 < 0, which implies that x1 > α/β. The proof is complete.

THEOREM 2.1. Assume that (4) and (6) hold and let {xn} be any solution of
Eq.(3). If xi ∈ (−∞,α/β] for i = −k,−(k−1), ...,−1 and x0 ∈ [0,α/β], then 0 ≤ xn <
α/β for n = 1, 2, ... .

PROOF. By part (c) of Lemma 2.2, we have

0 =
α− β · αβ
γ − x−k ≤ x1 =

α− βx0
γ − x−k ≤

α− β · 0
γ − α

β

<
α

β
,

and

0 =
α− β · αβ
γ − x−k+1 ≤ x2 =

α− βx1
γ − x−k+1 ≤

α− β · 0
γ − α

β

<
α

β
.

The result now follows by induction. The proof is complete.

3 Global Attractivity

In this section, we will study the global attractivity of positive solutions of Eq.(3). We
show that the positive equilibrium x of Eq.(3) is a global attractor with a basin that
depends on certain conditions imposed on the coefficients.

LEMMA 3.1 [3]. Consider the difference equation

xn+1 = f(xn, xn−k), n = 0, 1, ..., (7)

where k ≥ 1. Let I = [a, b] be some interval of real numbers, and assume that f :
[a, b]× [a, b]→ [a, b] is a continuous function satisfying the following properties:
(a) f(u, v) is a nonincreasing function in u, and a nondecreasing function in v, and
(b) if (m,M) ∈ [a, b]× [a, b] is a solution of the system

m = f(M,m), and M = f(m,M), (8)

then m =M.
Then Eq.(7) has a unique positive equilibrium point x and every solution of Eq.(7)
converges to x.

THEOREM 3.1. Assume that the conditions (4) and (6) hold. Then the positive

equilibrium x of Eq.(3) is a global attractor with a basin S = [0,α/β]k+1 .

PROOF. For u, v ∈ [0,α/β], set

f(u, v) =
α− βu

γ − v .

We claim that f : [0,α/β]× [0,α/β]→ [0,α/β]. In fact, set a = 0 and b = α/β, then

f(b, a) =
α− βb

γ − a =
α− α

γ
= 0 = a,
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and in view of 0 < α < β(γ − β), we have

f(a, b) =
α− βa

γ − b =
α

γ − α
β

<
α

β
= b.

Since f(u, v) is decreasing in u and increasing in v, it follows that

a ≤ f(u, v) ≤ b, for u, v ∈ [a, b],

which implies that our assertion is true. On the other hand, the conditions (a) and (b)
of Lemma 3.1 are clearly true. Let {xn} be a solution of Eq.(3) with initial conditions
(x−k, · · ·, x−1, x0) ∈ S. By Lemma 3.1, we have limn→∞ xn = x. the proof is complete.
By Theorems 2.1 and 3.1, we have the following more general result.

THEOREM 3.2. Assume that the conditions (4) and (6) hold, then the positive

equilibrium x of Eq.(3) is a global attractor with a basin S = (−∞,α/β]k × [0,α/β] .
PROOF. Let {xn} be a solution of Eq.(3) with initial conditions (x−k, ···, x−1, x0) ∈

S. Then by Theorem 2.1, we have

xn ∈ [0,α/β], n = 1, 2, ..., k, k + 1, ... .

By Theorem 3.1, we have limn→∞ xn+k = x, and so limn→∞ xn = x. The proof is
complete.

In the above discussion, we always assume that 0 < α < β(γ − β). In fact, the
following example shows that the upper bound β(γ − β) may be the best.

EXAMPLE 3.1. Consider the difference equation

xn+1 =
1− xn
2− xn−k , n = 0, 1, ...,

where k ≥ 1. Obviously, α = β(γ − β). When k is odd, however, it is easy to see that
the solution of this equation with initial conditions x−k = 0, x−k+1 = 1, ..., x−1 = 0
and x0 = 1 is periodic with period 2.

Motivated by the above example, we shall prove that the following general result is
also true if

β(γ − β) ≤ α < (γ − β)(γ + 3β)/4. (9)

THEOREM 3.3. Assume that (4) holds. Then Eq.(3) has prime period two non-
negative solutions if and only if k is odd and (9) holds.

PROOF. By direct computation, it is easy to see that there exist no period two
solutions when k is even and if k is odd the period two solution must be of the form

...,
γ − β + (γ + 3β) (γ − β)− 4α

2
,
γ − β − (γ + 3β) (γ − β)− 4α

2
, ...

from which our result follows. The proof is complete.
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4 The Case α = 0

In this section we study the asymptotic stability of the difference equation

xn+1 =
−βxn

γ − xn−k , n = 0, 1, ..., (10)

where β, γ > 0, and k ≥ 1.
By putting xn = βyn, Eq.(10) yields

yn+1 =
−yn

A− yn−k , n = 0, 1, ..., (11)

where A = γ/β. Eq.(11) has two equilibrium points

y1 = 0, y2 = 1 +A.

The linearized equation associated with Eq.(11) about yi is

zn+1 +
1

A− yi
zn + yizn−k = 0, n = 0, 1, ... . (12)

The characteristic equation of (12) about y2 is

λk+1 − λk + 1 +A = 0.

Since 1 +A > 1, then the equilibrium y2 of Eq.(11) is unstable.
The characteristic equation of (12) about y1 is

λk+1 +
1

A
λk = 0.

This equation has two roots

λ1 = 0 and λ = − 1
A
.

Hence, (1) if γ > β then y1 is asymptotically stable, (2) if γ < β then y1 is a saddle
point, and (3) if γ = β then linearized stability analysis fails.
In the following results we assume that A ≥ 2.
LEMMA 4.1. Assume that the initial conditions y−i ∈ [−1, 1] for i = 1, 2, ..., k and

y0 ∈ [−1, 0]. Then { y2n−1} is nonnegative and monotonically decreasing to zero, while
{y2n} is non-positive and monotonically increasing to zero.
PROOF. Suppose that y−i ∈ [−1, 1] for i = 1, 2, · · ·, k and y0 ∈ [−1, 0]. Clearly,

0 ≤ y1 ≤ 1 and −1 ≤ y2 ≤ 0. By induction we can see that 0 ≤ y2n−1 ≤ 1 and −1 ≤
y2n ≤ 0 for n ≥ 1. Since

y2n−1
y2n+1

= (A− y2n−k)(A− y2n−k−1) > 1,



Yan et al. 57

then
y2n−1 > y2n+1, n = 1, 2, ... .

Similarly, we can show that y2n < y2n+2, n = 1, 2, ... . The proof is complete.

LEMMA 4.2. Assume that the initial conditions y−i ∈ [−1, 1] for i = 1, 2, ..., k, and
y0 ∈ [0, 1]. Then { y2n−1} is non-positive and monotonically increasing to zero, while
{y2n} is nonnegative and monotonically decreasing to zero.
The proof is similar to that of Lemma 4.1 and will be omitted.

COROLLARY 4.1. The equilibrium y1 = 0 of Eq.(11) is a global attractor with a
basin S = [−1, 1]k+1.
THEOREM 4.1. The equilibrium y1 = 0 of Eq.(11) is a global attractor with a

basin S = (−∞, 1]k × [−A+ 1, A− 1] .
PROOF. Assume that (y−k, · · ·, y−1, y0) ∈ S. We have

−1 ≤ A− 1
−(A− y−k) ≤ y1 =

−y0
A− y−k ≤

A− 1
A− 1 = 1,

and

−1 ≤ 1

−(A− y−k+1) ≤ y2 =
−y1

A− y−k+1 ≤ 1.

By induction, it is easy to see that yi ∈ [−1, 1] for i ≥ 1. Our result now follows from
Corollary 4.1. The proof is complete.
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