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Abstract

We study the global existence and divergence of some “critical” solutions
u*(z,t) of a nonlocal hyperbolic problem modeling Ohmic heating of foods. Using
comparison methods, we prove that “critical” solutions of our problem diverge
globally and uniformly with respect to the space-variable as ¢ — oco. Also, some
estimates of the rate of the divergence are given.

1 Introduction

In the present work we discuss the behavior of solutions of the nonlocal hyperbolic
problem

ut—i-urz%, 0<z<l, t>0, (1)
(Jy FQwdz)

w(0,8) =0, t>0, 2)

u(z,0) =¢(z), 0<z<l, (3)

at a critical value of parameter A\, say A* (see below), where u = u(x,t) = u(xz,t; \)
and u*(z,t) = u(x,t; \*) is referred to as a critical solution of (1-3). The function u
stands for the dimensionless temperature of a moving material in a pipe (e.g. food)
with negligible thermal conductivity, when an electric current flows through it; this
problem occurs in the food industry (sterilization of foods), see [5] and the references
therein. The parameter ) is positive and equals the square of the potential difference of
the electric circuit. The nonlinear function f(u) represents the dimensionless electrical
resistivity of the conductor; depending upon the substance undergoing the heating, the
resistivity might be an increasing, decreasing, or non-monotonic function of tempera-
ture. For most foods resistivity decreases with temperature, so we assume that f(s)
satisfies the condition

f(s) >0, f'(s)<0, s>0. (4)

*Mathematics Subject Classifications: 35B40, 35160, 80A20.
tDepartment of Mathematics, National Technical University of Athens, Zografou Campus, 157 80
Athens, Greece.

59



60 Nonlocal Hyperbolic Problem

Also for simplicity, we assume that v is continuous (and normally, but not always,
differentiable) with ¥ (0) = 0. Although (1-3) is a hyperbolic problem, condition (4)
permits us to use comparison methods, [5]. The corresponding steady-state problem
to (1-3) is

w =pf(w)>0, 0<z<l1l, w(0)=0, (5)
with

=y 0

(Jy flw)dz)
Problem (5-6) implies
M ds M ds
o f(s) 1)
where M = w(l) = ||w|le. Also, note that u(M) > M/f(0) — co as M — oo,
see Figure la. Moreover, \* := limy 0o A(M) = limp;_oo 2M f(M), by means of

I’Hospital’s rule.
Now if f(s) is such that

j= p(M) = and A= A(M) = M?/ / (7)

X= lim 2Mf(M)=2¢, c€(0,00) and a(M)> M/2f(M), 8)
then problem (5-6) has a unique solution w(z;A) for each A € (0,A*) (e.g. f(s) =
1/(1+s)), see [5]. This situation is described in Figure 1b. Relation (8) also implies
that [~ f(s)ds = oo (otherwise we would have M f(M) — 0 as M — oo, contradicting

(8))-

W(D)=[Wllo W)=l

@ (b)

0 u 0 oA
Figure 1.

It is known [5] that for 0 < A < A*, the unique steady-state solution w(z;\) is
globally asymptotically stable and u(x,t;\) is global in time. Whereas, for A > \*
the solution u(z,%; A) blows up in finite time. In the case where A = A*, the only
known result is that ||u*(-,t)]|cc — 00 as t — T* < oo (this follows by constructing
a lower solution z(z,t) = w(z; p(t)) which tends to infinity as ¢ — o) [5]. In Section
2 we prove that T* = oo, i.e. u* is a global in time (classical) solution which diverges
(JJu* (-, t)|loc — 00 as t — o0). Moreover we show that u(z, t; \*) — 0o as t — oo for all
x € (0,1] and u%(0,t) — oo as t — oo (global divergence). In Section 3 we give some
estimates of the rate of divergence of u* and study the asymptotic form of divergence.
A similar investigation, but for some nonlocal parabolic problems, is tackled in [2]; see
also [3].
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2 Divergence

We begin with the following result.
LEMMA 2.1. For the solutions of (5-6) there hold: (a) w, > 0 in (0,1] and (b)
w(x; u) — oo as p — oo (or equivalently w(x; A) — oo as A — A*—) in (0, 1].

PROOF. (a) Integrating (5) over (0,x) we obtain ux = fow(x) ds/ f(s). Differenti-
ation of the previous relation with respect to p gives w,, = zf(w) > 0 for z € (0,1];
moreover w,(0; ) = 0. (b) Integrating equation (5) again over (0,1),

! M M
| ot myte = 25 = ©)

and due to (4), (8) we obtain

1
lim f(w(z; p))de = lim / fw(z; w(M)))dz = lim f(M) =0, (10)
p—o0 fq M —oo M—o0

which implies that w(z; ) — 0o as p — oo (or equivalently w(z; M) — 00 as M —
o0) for every x € (0,1]. This proves the lemma.

PROPOSITION 2.2. Let f(s) satisfy (4) and (8), then u*(z,t) is a global in time
solution of (1-3) which diverges as t — oo, i.e. [|[u*(+,)||cc — 00 as t — 0.

PROOF. As noted in [5], assuming 6(z,t) = 6(t), df/dt = \*/f(0) with 0(0) large
enough then 0(x,t) ib an upper solution to (1-3), at A = \* Which exists for all time,
provided that fo s)ds = oo. This follows immediately from fe f(s)ds = \*t, since

as denoted above, (8) implies that [, f(s)ds = co. Recalling now that lu* (-, ) |looc — 0
ast — T* < co, we finally obtain |u* ( )||OO — 00 as t — 0.

We now prove that u*(z,t) diverges globally.

PROPOSITION 2.3. Let f(s) satisfy the hypotheses of Proposition 2.2 , then the
unbounded solution u*(x,t) of (1-3) diverges globally, meaning that u*(x,t) — oo as
t — oo for every z € (0,1] and u%(0,t) — o0 as t — oo.

PROOF. Note that there holds ( fo w(z; p))dz)?u = A(p) < A* for every u > 0,
since A* = sup{A(u) : ¢ > 0} and in addition there is no steady-state at A = A*.
Therefore we can construct a lower solution z(x,t) to (1-3) at A = A* of the form
w(z; pu(t)), where p(t) satisfies

j(t) = int {f 15)1:)} ((fjl*f( :)(CZ;Q >0, t>0, (11)

see [5]. Equation (11) has a unique solution u(t) which exists for all ¢ > 0, [1].
Moreover, since problem (5-6) has no solution at A*, the unique solution p(¢) to (11) is
unbounded, hence u(t) — co ast — oo. So due to Lemma 2.1, z(z,t) = w(z; p(t)) — oo
as t — oo for every = € (0, 1]. Finally we conclude that u*(z,t) — oo for any = € (0, 1]
and uk(0,t) > z,(0,t) = p(t)f(0) — 0o as t — oo.
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3 Asymptotic form of divergence

In this section, using similar ideas as in the case of blow-up for a parabolic problem,
[3, 4], we obtain the asymptotic form of divergence. First, we construct a special upper
solution of (1-3) giving a useful upper estimate of the rate of divergence of u*(z,t) (this
upper solution is global in time and can serve as an alternative way to prove Proposition
2.2). Therefore we seek a prospective upper solution V(z,t) of the form:

V(z,t) = w(y(@);u(t)), 0<z<e >0, (12)
Vz,t)=M(t) = Orélwaggw(y(x); u), e<z<1l, t>0, (13)

where 0 < y(z) = /e < 1 (¢ is a constant in (0,1)) and w(y(x);u(t)) satisfies the
problem

wy =—=f(w), 0<z<e, w(0)=0. (14)

It is obvious from the definition of V'(x, t) that V is continuous at z = ¢ and V(0,¢) = 0.
Due to Lemma 2.1 we have that w,(z;x) = w,(z;v)/e > 0 for 0 < z < 1, where
v = p/e. Hence, by choosing a sufficiently large p(0), V(z,0) = w(y(z); 1(0)) > ¢ (z)
for 0 < z < 1. Moreover

/01 F(V)de = (1—e)f(M) + E /O wy do = (1 — &) f(M) + % (15)
Also (7) implies that
(M) f(M) < M, (16)
and since limps_,oo M f(M) = ¢ > 0, we get
f(M)N% and %‘]\;)N2C as M — oc. (17)
Finally (17) implies
M(M)f(M)N\/g as M — co. (18)
For0 <z <e¢,
GV) = Vi+V,— L‘/)z
(o £(V)de)
s MOS0)  2efw)

© Ja-9son+sm]

~ wuu(t)+W[1—1/(12—_f§+\/E> ] M>1,
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due to (15), (17) and (18). We note that

1—¢
2 e

thus G(V') 2 wyp(t) > 0 for x € [0, €], since w, > 01in (0, 1] and provided that zi(t) > 0
(see below). For ¢ < x <1 we obtain

\/gf

> 1, forany 0 <e <1, (19)

aw) = s - —2
[(1=e)f(M) + =M]
- M(t)——‘f(M)f(M)]Qz iy - LODIAD
€ é;; €

using (17), (18) and (19). Now by choosing M (¢) such that
>0, t>0, (20)

we finally take G(V) 2 0 for e <o <1 and M >> 1. Equation (20) implies that M (t)
is increasing, so fi(t) = M(t)/% > 0. Also integrating (20) and using estimate (16),

we get
t /M“) ds /M“) ds
= _ > — =InM(t) — In M(0). 21

€ M (0) 1(s) f(s) M) S ) © 1)

This relation implies that if M (t) — oo then t — co. Whence taking M (0) > 1 we get
that V(z,t) is an upper solution to (1-3) at A = A\*, which exists for all time.

Now, from (21), we get that ||[u*(-,)||cc does not tend to infinity faster than
M (0)et/¢ does as t — oo for any 0 < ¢ < 1, that is, N(t) < M(0)et/® as t — oo,
where N(t) = ||u*(-,t)|lco. Before giving a lower estimate of the rate of divergence of
u*(x,t), we prove the following:

PROPOSITION 3.1. The divergence of u*(x,t) is uniform on compact subsets of
(0,1], meaning that lim; oo [u*(21,t) — u*(z2,t)] =0, 0< 6 <z <xp <1, for any
positive 6.
PROOF. Using the variable y = x — t in place of z, equation (1), at A = A*, can
be written as
dU” /dt = g(t) f(U”), (22)

where U*(y,t) = u*(z,t) and g(t) = A*/(fi;tf(U*)dy)Q. Since (4) holds, (22) im-
plies dU*/dt > g(t)f(N) = dN/dt, where N(t) = max, U*(y,t). Integrating the last
inequality we obtain U*(y,t) — U*(y,0) > N(t) — N(0), which implies that N(t) >
U*(y,t) = u*(x,t) =2 N(t) as t — oo or u*(x,t) ~ N(¢) as t — oo for every z € (0, 1],
since u*(z,t) diverges globally. Thus |u*(x1,t) — u*(x9,t)| < (N(t) — u*(x2,t)) — 0 as
t — oo, for 0 < 6 <z < x2 < 1. The proof is complete.

From relation (4) we have that N(t) satisfies dN/dt = A\*f(N)/([) f(u*)dz)? >
*f(N)/f2(0). Using (17) we take dN/dt > \*c¢/Nf?(0) as t — oo or equivalently
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N2(t)/2—N2(t1)/2 = N ¢/ f2(0)(t—ty) for t > t; > 1. Finally we obtain N (t) > 2=/t
as t — 0o, since A\* = 2c¢.

Thus we have proved:

PROPOSITION 3.2. Let f satisfy the hypotheses of Proposition 2.2, then u*(x,t)
grows at least as the square root of time ¢ (||[u*(-,t)|lco = CVt, C = X\*/f(0)) as t — oo

~

but no faster than exponentially (||u*(-,t)||o0 < M(0)et/¢, forany 0 < e < 1) ast — oo.

It can be expected, due to Proposition 3.1, that for ¢ > 1, u* ~ N ie. u*(z,t)
exhibits a flat divergence profile, except for a boundary layer whose thickness vanishes
as t — oo (by the boundary layer, we mean the region near to = 0 where the solution
u*(z,t) follows a fast transition between the divergence regime and the assigned zero
boundary condition). Therefore in the main core region we neglect u} so

)\*
1 2
( fo f(u*)dx)
Significant contributions to the integral fol f(u*)dx can come from the largest core
(region) which has width ~ 1 and its contribution is ~ f(IN)) and from the boundary

layer where f(u*) is larger, since f is decreasing and u* < N; f(u*) is O(1) and
f(u*) > k > 0 wherever u* is O(1). If the boundary layer has width § = §(¢) then

dN/dt ~ g(t)f(N) as t — oo, where g(t) =

)\*
9(t)
and either g(t) = O(672(t)) or g(t) = O(f~2(N(t))), whichever is the larger for t > 1.

Supposing that §(¢) < f(N(t)) as t — oo then the core dominates and g(t) ~
A*/f2(N(t)) for t — co. Hence

=0(6(1)) + O(f(N(1)), t>1,

A
f(N)
and using (17) we finally obtain N(¢) ~ N(0)e* as t — oo, which contradicts the
fact that N(t) < M(0)e!/ as t — oo, for any 0 < € < 1 (see Proposition 3.2). Also
assuming that 6(¢t) = O(f(N(¢))) as t — oo we arrive at a contradiction as before.
There remains only one possibility: §(¢) > f(N(¢))as t — oo.

Thus the boundary layer has width §(t) = O(g(t)~/?) > f(N(t)), as t — oc;
using now (17) and taking into account Proposition 3.2, we obtain

dN/dt ~ for t — oo,

6(t) 2 M(EO) e/ as t — oo, for every 0 <e < 1,
i.e. the width of the boundary layer decreases no faster than exponentially. In the
boundary layer, u* is O(1) and u} is negligible compared to u (due to the continuity
of uf,ur we get |uy(z,t)] <e 0<x<b(t), t>0, for every € > 0, and uf(0,t) — e <
uk(z,t) — 0o, 0 < x < é(t), as t — oo, since uk(0,t) — oo as t — oc). There has to
be a balance between v} and g(¢)f(u*), i.e.

uy ~ g(t)f(u®), for 0 <z < é(t), as t — oo. (23)
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So in the boundary layer u*(x,t) behaves like w(x; u(t)) as t — oo (this fact justifies
the form of upper solution V(x,t) constructed above).
From the above analysis and (23), we obtain

f(u”)

uy(z,t) ~ 00k for 0 < x < 6(t), as t — oo. (24)

Integrating the last relation over (0,z) and using (17) we obtain that
VAt z
f(0)é(t)

as we leave the boundary x = 0. Leaving the boundary layer, relation (25) becomes

N(t) ~ V2 /\/f2(0)6(t) as t — oo, and using Proposition 3.2, we get

u*(x,t) ~ for t — oo, (25)

1
JOREw t™ as t — oo. (26)
Estimate (26) implies that the size (width) of the boundary layer decreases faster
than ! as t — oo, which is the analogous result to the one holding in the case of
blow-up for nonlocal diffusion equations, see [4, 6].
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