Behavior of Critical Solutions of a Nonlocal Hyperbolic Problem in Ohmic Heating of Foods *

Nikos I. Kavallaris and Dimitrios E. Tzanetis ${ }^{\dagger}$

Received 21 November 2001

Abstract

We study the global existence and divergence of some "critical" solutions $u^{*}(x, t)$ of a nonlocal hyperbolic problem modeling Ohmic heating of foods. Using comparison methods, we prove that "critical" solutions of our problem diverge globally and uniformly with respect to the space-variable as $t \rightarrow \infty$. Also, some estimates of the rate of the divergence are given.

1 Introduction

In the present work we discuss the behavior of solutions of the nonlocal hyperbolic problem

$$
\begin{gather*}
u_{t}+u_{x}=\frac{\lambda f(u)}{\left(\int_{0}^{1} f(u) d x\right)^{2}}, \quad 0<x<1, \quad t>0 \tag{1}\\
u(0, t)=0, \quad t>0 \tag{2}\\
u(x, 0)=\psi(x), \quad 0<x<1 \tag{3}
\end{gather*}
$$

at a critical value of parameter λ, say λ^{*} (see below), where $u=u(x, t)=u(x, t ; \lambda)$ and $u^{*}(x, t)=u\left(x, t ; \lambda^{*}\right)$ is referred to as a critical solution of (1-3). The function u stands for the dimensionless temperature of a moving material in a pipe (e.g. food) with negligible thermal conductivity, when an electric current flows through it; this problem occurs in the food industry (sterilization of foods), see [5] and the references therein. The parameter λ is positive and equals the square of the potential difference of the electric circuit. The nonlinear function $f(u)$ represents the dimensionless electrical resistivity of the conductor; depending upon the substance undergoing the heating, the resistivity might be an increasing, decreasing, or non-monotonic function of temperature. For most foods resistivity decreases with temperature, so we assume that $f(s)$ satisfies the condition

$$
\begin{equation*}
f(s)>0, \quad f^{\prime}(s)<0, \quad s \geq 0 \tag{4}
\end{equation*}
$$

[^0]Also for simplicity, we assume that ψ is continuous (and normally, but not always, differentiable) with $\psi(0)=0$. Although (1-3) is a hyperbolic problem, condition (4) permits us to use comparison methods, [5]. The corresponding steady-state problem to (1-3) is

$$
\begin{equation*}
w^{\prime}=\mu f(w)>0, \quad 0<x<1, \quad w(0)=0 \tag{5}
\end{equation*}
$$

with

$$
\begin{equation*}
\mu=\frac{\lambda}{\left(\int_{0}^{1} f(w) d x\right)^{2}} . \tag{6}
\end{equation*}
$$

Problem (5-6) implies

$$
\begin{equation*}
\mu=\mu(M)=\int_{0}^{M} \frac{d s}{f(s)} \quad \text { and } \quad \lambda=\lambda(M)=M^{2} / \int_{0}^{M} \frac{d s}{f(s)} \tag{7}
\end{equation*}
$$

where $M=w(1)=\|w\|_{\infty}$. Also, note that $\mu(M) \geq M / f(0) \rightarrow \infty$ as $M \rightarrow \infty$, see Figure 1a. Moreover, $\lambda^{*}:=\lim _{M \rightarrow \infty} \lambda(M)=\lim _{M \rightarrow \infty} 2 M f(M)$, by means of l'Hospital's rule.

Now if $f(s)$ is such that

$$
\begin{equation*}
\lambda^{*}=\lim _{M \rightarrow \infty} 2 M f(M)=2 c, \quad c \in(0, \infty) \quad \text { and } \quad \mu(M)>M / 2 f(M) \tag{8}
\end{equation*}
$$

then problem (5-6) has a unique solution $w(x ; \lambda)$ for each $\lambda \in\left(0, \lambda^{*}\right)$ (e.g. $f(s)=$ $1 /(1+s)$), see [5]. This situation is described in Figure 1b. Relation (8) also implies that $\int_{0}^{\infty} f(s) d s=\infty$ (otherwise we would have $M f(M) \rightarrow 0$ as $M \rightarrow \infty$, contradicting (8)).

Figure 1.
It is known [5] that for $0<\lambda<\lambda^{*}$, the unique steady-state solution $w(x ; \lambda)$ is globally asymptotically stable and $u(x, t ; \lambda)$ is global in time. Whereas, for $\lambda>\lambda^{*}$ the solution $u(x, t ; \lambda)$ blows up in finite time. In the case where $\lambda=\lambda^{*}$, the only known result is that $\left\|u^{*}(\cdot, t)\right\|_{\infty} \rightarrow \infty$ as $t \rightarrow T^{*} \leq \infty$ (this follows by constructing a lower solution $z(x, t)=w(x ; \mu(t))$ which tends to infinity as $t \rightarrow \infty)$ [5]. In Section 2 we prove that $T^{*}=\infty$, i.e. u^{*} is a global in time (classical) solution which diverges $\left(\left\|u^{*}(\cdot, t)\right\|_{\infty} \rightarrow \infty\right.$ as $\left.t \rightarrow \infty\right)$. Moreover we show that $u\left(x, t ; \lambda^{*}\right) \rightarrow \infty$ as $t \rightarrow \infty$ for all $x \in(0,1]$ and $u_{x}^{*}(0, t) \rightarrow \infty$ as $t \rightarrow \infty$ (global divergence). In Section 3 we give some estimates of the rate of divergence of u^{*} and study the asymptotic form of divergence. A similar investigation, but for some nonlocal parabolic problems, is tackled in [2]; see also [3].

2 Divergence

We begin with the following result.
LEMMA 2.1. For the solutions of (5-6) there hold: (a) $w_{\mu}>0$ in (0,1$]$ and (b) $w(x ; \mu) \rightarrow \infty$ as $\mu \rightarrow \infty$ (or equivalently $w(x ; \lambda) \rightarrow \infty$ as $\lambda \rightarrow \lambda^{*}-$) in $(0,1]$.

PROOF. (a) Integrating (5) over ($0, x$) we obtain $\mu x=\int_{0}^{w(x)} d s / f(s)$. Differentiation of the previous relation with respect to μ gives $w_{\mu}=x f(w)>0$ for $x \in(0,1]$; moreover $w_{\mu}(0 ; \mu)=0$. (b) Integrating equation (5) again over (0,1),

$$
\begin{equation*}
\int_{0}^{1} f(w(x ; \mu)) d x=\frac{M}{\mu}=\frac{M}{\int_{0}^{M} \frac{d s}{f(s)}} \tag{9}
\end{equation*}
$$

and due to (4), (8) we obtain

$$
\begin{equation*}
\lim _{\mu \rightarrow \infty} \int_{0}^{1} f(w(x ; \mu)) d x=\lim _{M \rightarrow \infty} \int_{0}^{1} f(w(x ; \mu(M))) d x=\lim _{M \rightarrow \infty} f(M)=0 \tag{10}
\end{equation*}
$$

which implies that $w(x ; \mu) \rightarrow \infty$ as $\mu \rightarrow \infty$ (or equivalently $w(x ; M) \rightarrow \infty$ as $M \rightarrow$ $\infty)$ for every $x \in(0,1]$. This proves the lemma.

PROPOSITION 2.2. Let $f(s)$ satisfy (4) and (8), then $u^{*}(x, t)$ is a global in time solution of (1-3) which diverges as $t \rightarrow \infty$, i.e. $\left\|u^{*}(\cdot, t)\right\|_{\infty} \rightarrow \infty$ as $t \rightarrow \infty$.

PROOF. As noted in [5], assuming $\theta(x, t)=\theta(t), d \theta / d t=\lambda^{*} / f(\theta)$ with $\theta(0)$ large enough then $\theta(x, t)$ is an upper solution to (1-3), at $\lambda=\lambda^{*}$, which exists for all time, provided that $\int_{0}^{\infty} f(s) d s=\infty$. This follows immediately from $\int_{\theta(0)}^{\theta(t)} f(s) d s=\lambda^{*} t$, since as denoted above, (8) implies that $\int_{0}^{\infty} f(s) d s=\infty$. Recalling now that $\left\|u^{*}(\cdot, t)\right\|_{\infty} \rightarrow \infty$ as $t \rightarrow T^{*} \leq \infty$, we finally obtain $\left\|u^{*}(\cdot, t)\right\|_{\infty} \rightarrow \infty$ as $t \rightarrow \infty$.

We now prove that $u^{*}(x, t)$ diverges globally.
PROPOSITION 2.3. Let $f(s)$ satisfy the hypotheses of Proposition 2.2 , then the unbounded solution $u^{*}(x, t)$ of (1-3) diverges globally, meaning that $u^{*}(x, t) \rightarrow \infty$ as $t \rightarrow \infty$ for every $x \in(0,1]$ and $u_{x}^{*}(0, t) \rightarrow \infty$ as $t \rightarrow \infty$.

PROOF. Note that there holds $\left(\int_{0}^{1} f(w(x ; \mu)) d x\right)^{2} \mu=\lambda(\mu)<\lambda^{*}$ for every $\mu>0$, since $\lambda^{*}=\sup \{\lambda(\mu): \mu>0\}$ and in addition there is no steady-state at $\lambda=\lambda^{*}$. Therefore we can construct a lower solution $z(x, t)$ to (1-3) at $\lambda=\lambda^{*}$ of the form $w(x ; \mu(t))$, where $\mu(t)$ satisfies

$$
\begin{equation*}
\dot{\mu}(t)=\inf _{(0,1)}\left\{\frac{f(w)}{w_{\mu}}\right\} \frac{\left(\lambda^{*}-\lambda(\mu)\right)}{\left(\int_{0}^{1} f(w) d x\right)^{2}}>0, \quad t>0 \tag{11}
\end{equation*}
$$

see [5]. Equation (11) has a unique solution $\mu(t)$ which exists for all $t>0,[1]$. Moreover, since problem (5-6) has no solution at λ^{*}, the unique solution $\mu(t)$ to (11) is unbounded, hence $\mu(t) \rightarrow \infty$ as $t \rightarrow \infty$. So due to Lemma 2.1, $z(x, t)=w(x ; \mu(t)) \rightarrow \infty$ as $t \rightarrow \infty$ for every $x \in(0,1]$. Finally we conclude that $u^{*}(x, t) \rightarrow \infty$ for any $x \in(0,1]$ and $u_{x}^{*}(0, t) \geq z_{x}(0, t)=\mu(t) f(0) \rightarrow \infty$ as $t \rightarrow \infty$.

3 Asymptotic form of divergence

In this section, using similar ideas as in the case of blow-up for a parabolic problem, $[3,4]$, we obtain the asymptotic form of divergence. First, we construct a special upper solution of (1-3) giving a useful upper estimate of the rate of divergence of $u^{*}(x, t)$ (this upper solution is global in time and can serve as an alternative way to prove Proposition 2.2). Therefore we seek a prospective upper solution $V(x, t)$ of the form:

$$
\begin{gather*}
V(x, t)=w(y(x) ; \mu(t)), \quad 0 \leq x \leq \varepsilon, \quad t>0 \tag{12}\\
V(x, t)=M(t)=\max _{0 \leq x \leq \varepsilon} w(y(x) ; \mu(t)), \quad \varepsilon<x \leq 1, \quad t>0 \tag{13}
\end{gather*}
$$

where $0<y(x)=x / \varepsilon<1(\varepsilon$ is a constant in $(0,1))$ and $w(y(x) ; \mu(t))$ satisfies the problem

$$
\begin{equation*}
w_{x}=\frac{\mu(t)}{\varepsilon} f(w), \quad 0<x<\varepsilon, \quad w(0)=0 \tag{14}
\end{equation*}
$$

It is obvious from the definition of $V(x, t)$ that V is continuous at $x=\varepsilon$ and $V(0, t)=0$. Due to Lemma 2.1 we have that $w_{\mu}(x ; \mu)=w_{\nu}(x ; \nu) / \varepsilon \geq 0$ for $0 \leq x \leq 1$, where $\nu=\mu / \varepsilon$. Hence, by choosing a sufficiently large $\mu(0), V(x, 0)=w(\psi(x) ; \mu(0)) \geq \psi(x)$ for $0 \leq x \leq 1$. Moreover

$$
\begin{equation*}
\int_{0}^{1} f(V) d x=(1-\epsilon) f(M)+\frac{\varepsilon}{\mu} \int_{0}^{\varepsilon} w_{x} d x=(1-\varepsilon) f(M)+\frac{\varepsilon M}{\mu} . \tag{15}
\end{equation*}
$$

Also (7) implies that

$$
\begin{equation*}
\mu(M) f(M) \leq M \tag{16}
\end{equation*}
$$

and since $\lim _{M \rightarrow \infty} M f(M)=c>0$, we get

$$
\begin{equation*}
f(M) \sim \frac{c}{M} \quad \text { and } \quad \frac{M^{2}}{\mu(M)} \sim 2 c \quad \text { as } \quad M \rightarrow \infty \tag{17}
\end{equation*}
$$

Finally (17) implies

$$
\begin{equation*}
\sqrt{\mu(M)} f(M) \sim \sqrt{\frac{c}{2}} \quad \text { as } \quad M \rightarrow \infty \tag{18}
\end{equation*}
$$

For $0 \leq x \leq \varepsilon$,

$$
\begin{aligned}
G(V) & \equiv V_{t}+V_{x}-\frac{\lambda^{*} f(V)}{\left(\int_{0}^{1} f(V) d x\right)^{2}} \\
& =w_{\mu} \dot{\mu}(t)+\frac{\mu(t) f(w)}{\varepsilon}-\frac{2 c f(w)}{\left[(1-\varepsilon) f(M)+\frac{\varepsilon}{\mu} M\right]^{2}} \\
& \sim w_{\mu} \dot{\mu}(t)+\frac{\mu(t) f(w)}{\varepsilon}\left[1-1 /\left(\frac{1-\varepsilon}{2 \sqrt{\varepsilon}}+\sqrt{\varepsilon}\right)^{2}\right], \quad M \gg 1
\end{aligned}
$$

due to (15), (17) and (18). We note that

$$
\begin{equation*}
\frac{1-\varepsilon}{2 \sqrt{\varepsilon}}+\sqrt{\varepsilon}=\frac{\varepsilon+1}{2 \sqrt{\varepsilon}}>1, \text { for any } 0<\varepsilon<1 \tag{19}
\end{equation*}
$$

thus $G(V) \gtrsim w_{\mu} \dot{\mu}(t)>0$ for $x \in[0, \epsilon]$, since $w_{\mu}>0$ in $(0,1]$ and provided that $\dot{\mu}(t)>0$ (see below). For $\varepsilon<x \leq 1$ we obtain

$$
\begin{aligned}
G(V) & =\dot{M}(t)-\frac{2 c f(M)}{\left[(1-\varepsilon) f(M)+\frac{\varepsilon}{\mu} M\right]^{2}} \\
& \sim \dot{M}(t)-\frac{\mu(M) f(M)}{\varepsilon\left[\frac{1-\varepsilon}{2 \sqrt{\varepsilon}}+\sqrt{\varepsilon}\right]^{2}} \gtrsim \dot{M}(t)-\frac{\mu(M) f(M)}{\varepsilon}, \quad M \gg 1
\end{aligned}
$$

using (17), (18) and (19). Now by choosing $M(t)$ such that

$$
\begin{equation*}
\dot{M}(t)=\frac{\mu(M) f(M)}{\varepsilon}>0, \quad t>0 \tag{20}
\end{equation*}
$$

we finally take $G(V) \gtrsim 0$ for $\varepsilon<x \leq 1$ and $M \gg 1$. Equation (20) implies that $M(t)$ is increasing, so $\dot{\mu}(t)=M(t) / \frac{d M}{d \mu}>0$. Also integrating (20) and using estimate (16), we get

$$
\begin{equation*}
\frac{t}{\varepsilon}=\int_{M(0)}^{M(t)} \frac{d s}{\mu(s) f(s)} \geq \int_{M(0)}^{M(t)} \frac{d s}{s}=\ln M(t)-\ln M(0) \tag{21}
\end{equation*}
$$

This relation implies that if $M(t) \rightarrow \infty$ then $t \rightarrow \infty$. Whence taking $M(0) \gg 1$ we get that $V(x, t)$ is an upper solution to (1-3) at $\lambda=\lambda^{*}$, which exists for all time.

Now, from (21), we get that $\left\|u^{*}(\cdot, t)\right\|_{\infty}$ does not tend to infinity faster than $M(0) e^{t / \varepsilon}$ does as $t \rightarrow \infty$ for any $0<\varepsilon<1$, that is, $N(t) \lesssim M(0) e^{t / \varepsilon}$ as $t \rightarrow \infty$, where $N(t)=\left\|u^{*}(\cdot, t)\right\|_{\infty}$. Before giving a lower estimate of the rate of divergence of $u^{*}(x, t)$, we prove the following:

PROPOSITION 3.1. The divergence of $u^{*}(x, t)$ is uniform on compact subsets of $(0,1]$, meaning that $\lim _{t \rightarrow \infty}\left|u^{*}\left(x_{1}, t\right)-u^{*}\left(x_{2}, t\right)\right|=0, \quad 0<\delta \leq x_{1}<x_{2} \leq 1$, for any positive δ.

PROOF. Using the variable $y=x-t$ in place of x, equation (1), at $\lambda=\lambda^{*}$, can be written as

$$
\begin{equation*}
d U^{*} / d t=g(t) f\left(U^{*}\right) \tag{22}
\end{equation*}
$$

where $U^{*}(y, t)=u^{*}(x, t)$ and $g(t)=\lambda^{*} /\left(\int_{-t}^{1-t} f\left(U^{*}\right) d y\right)^{2}$. Since (4) holds, (22) implies $d U^{*} / d t \geq g(t) f(N)=d N / d t$, where $N(t)=\max _{y} U^{*}(y, t)$. Integrating the last inequality we obtain $U^{*}(y, t)-U^{*}(y, 0) \geq N(t)-N(0)$, which implies that $N(t) \geq$ $U^{*}(y, t)=u^{*}(x, t) \gtrsim N(t)$ as $t \rightarrow \infty$ or $u^{*}(x, t) \sim N(t)$ as $t \rightarrow \infty$ for every $x \in(0,1]$, since $u^{*}(x, t)$ diverges globally. Thus $\left|u^{*}\left(x_{1}, t\right)-u^{*}\left(x_{2}, t\right)\right| \leq\left(N(t)-u^{*}\left(x_{2}, t\right)\right) \rightarrow 0$ as $t \rightarrow \infty$, for $0<\delta \leq x_{1}<x_{2} \leq 1$. The proof is complete.

From relation (4) we have that $N(t)$ satisfies $d N / d t=\lambda^{*} f(N) /\left(\int_{0}^{1} f\left(u^{*}\right) d x\right)^{2} \geq$ $\lambda^{*} f(N) / f^{2}(0)$. Using (17) we take $d N / d t \gtrsim \lambda^{*} c / N f^{2}(0)$ as $t \rightarrow \infty$ or equivalently
$N^{2}(t) / 2-N^{2}\left(t_{1}\right) / 2 \gtrsim \lambda^{*} c / f^{2}(0)\left(t-t_{1}\right)$ for $t>t_{1} \gg 1$. Finally we obtain $N(t) \gtrsim \frac{\lambda^{*}}{f(0)} \sqrt{t}$ as $t \rightarrow \infty$, since $\lambda^{*}=2 c$.

Thus we have proved:
PROPOSITION 3.2. Let f satisfy the hypotheses of Proposition 2.2 , then $u^{*}(x, t)$ grows at least as the square root of time $t\left(\left\|u^{*}(\cdot, t)\right\|_{\infty} \gtrsim C \sqrt{t}, C=\lambda^{*} / f(0)\right)$ as $t \rightarrow \infty$ but no faster than exponentially $\left(\left\|u^{*}(\cdot, t)\right\|_{\infty} \lesssim M(0) e^{t / \varepsilon}\right.$, for any $\left.0<\varepsilon<1\right)$ as $t \rightarrow \infty$.

It can be expected, due to Proposition 3.1, that for $t \gg 1$, $u^{*} \sim N$ i.e. $u^{*}(x, t)$ exhibits a flat divergence profile, except for a boundary layer whose thickness vanishes as $t \rightarrow \infty$ (by the boundary layer, we mean the region near to $x=0$ where the solution $u^{*}(x, t)$ follows a fast transition between the divergence regime and the assigned zero boundary condition). Therefore in the main core region we neglect u_{x}^{*} so

$$
d N / d t \sim g(t) f(N) \text { as } t \rightarrow \infty, \text { where } g(t)=\frac{\lambda^{*}}{\left(\int_{0}^{1} f\left(u^{*}\right) d x\right)^{2}}
$$

Significant contributions to the integral $\int_{0}^{1} f\left(u^{*}\right) d x$ can come from the largest core (region) which has width ~ 1 and its contribution is $\sim f(N))$ and from the boundary layer where $f\left(u^{*}\right)$ is larger, since f is decreasing and $u^{*}<N ; f\left(u^{*}\right)$ is $O(1)$ and $f\left(u^{*}\right) \geq k>0$ wherever u^{*} is $O(1)$. If the boundary layer has width $\delta=\delta(t)$ then

$$
\sqrt{\frac{\lambda^{*}}{g(t)}}=O(\delta(t))+O(f(N(t))), \quad t \gg 1
$$

and either $g(t)=O\left(\delta^{-2}(t)\right)$ or $g(t)=O\left(f^{-2}(N(t))\right)$, whichever is the larger for $t \gg 1$.
Supposing that $\delta(t) \ll f(N(t))$ as $t \rightarrow \infty$ then the core dominates and $g(t) \sim$ $\lambda^{*} / f^{2}(N(t))$ for $t \rightarrow \infty$. Hence

$$
d N / d t \sim \frac{\lambda^{*}}{f(N)} \quad \text { for } t \rightarrow \infty
$$

and using (17) we finally obtain $N(t) \sim N(0) e^{2 t}$ as $t \rightarrow \infty$, which contradicts the fact that $N(t) \lesssim M(0) e^{t / \varepsilon}$ as $t \rightarrow \infty$, for any $0<\varepsilon<1$ (see Proposition 3.2). Also assuming that $\delta(t)=O(f(N(t)))$ as $t \rightarrow \infty$ we arrive at a contradiction as before. There remains only one possibility: $\delta(t) \gg f(N(t))$ as $t \rightarrow \infty$.

Thus the boundary layer has width $\delta(t)=O\left(g(t)^{-1 / 2}\right) \gg f(N(t))$, as $t \rightarrow \infty$; using now (17) and taking into account Proposition 3.2, we obtain

$$
\delta(t) \gtrsim \frac{c}{M(0)} e^{-t / \varepsilon} \text { as } t \rightarrow \infty, \text { for every } 0<\varepsilon<1
$$

i.e. the width of the boundary layer decreases no faster than exponentially. In the boundary layer, u^{*} is $O(1)$ and u_{t}^{*} is negligible compared to u_{x}^{*} (due to the continuity of u_{t}^{*}, u_{x}^{*} we get $\left|u_{t}^{*}(x, t)\right|<\epsilon, 0<x<\delta(t), t>0$, for every $\epsilon>0$, and $u_{x}^{*}(0, t)-\epsilon<$ $u_{x}^{*}(x, t) \rightarrow \infty, 0<x<\delta(t)$, as $t \rightarrow \infty$, since $u_{x}^{*}(0, t) \rightarrow \infty$ as $\left.t \rightarrow \infty\right)$. There has to be a balance between u_{x}^{*} and $g(t) f\left(u^{*}\right)$, i.e.

$$
\begin{equation*}
u_{x}^{*} \sim g(t) f\left(u^{*}\right), \text { for } 0<x<\delta(t), \text { as } t \rightarrow \infty \tag{23}
\end{equation*}
$$

So in the boundary layer $u^{*}(x, t)$ behaves like $w(x ; \mu(t))$ as $t \rightarrow \infty$ (this fact justifies the form of upper solution $V(x, t)$ constructed above).

From the above analysis and (23), we obtain

$$
\begin{equation*}
u_{x}^{*}(x, t) \sim \frac{f\left(u^{*}\right)}{f^{2}(0) \delta^{2}(t)}, \text { for } 0<x<\delta(t), \text { as } t \rightarrow \infty \tag{24}
\end{equation*}
$$

Integrating the last relation over $(0, x)$ and using (17) we obtain that

$$
\begin{equation*}
u^{*}(x, t) \sim \frac{\sqrt{\lambda^{*} x}}{f(0) \delta(t)} \quad \text { for } t \rightarrow \infty \tag{25}
\end{equation*}
$$

as we leave the boundary $x=0$. Leaving the boundary layer, relation (25) becomes $N(t) \sim \sqrt{\lambda^{*}} / \sqrt{f^{2}(0) \delta(t)}$ as $t \rightarrow \infty$, and using Proposition 3.2, we get

$$
\begin{equation*}
\delta(t) \lesssim \frac{1}{\lambda^{*}} t^{-1} \text { as } t \rightarrow \infty \tag{26}
\end{equation*}
$$

Estimate (26) implies that the size (width) of the boundary layer decreases faster than t^{-1} as $t \rightarrow \infty$, which is the analogous result to the one holding in the case of blow-up for nonlocal diffusion equations, see $[4,6]$.

References

[1] N. I. Kavallaris and D. E. Tzanetis, Blow-up and stability of a nonlocal diffusionconvection problem arising in Ohmic heating of foods, Diff. Integ. Eqns. 15(3)(2002), 271-288.
[2] N. I. Kavallaris and D.E. Tzanetis, Global existence and divergence of critical solutions of some nonlocal parabolic problems in Ohmic heating process, preprint.
[3] A. A. Lacey, Thermal runaway in a non-local problem modelling Ohmic heating. Part I: Model derivation and some special cases", Euro. J. Appl. Math. 6(1995), 127-144.
[4] A. A. Lacey, Thermal runaway in a non-local problem modelling Ohmic heating. Part II: General proof of blow-up and asymptotics of runaway, Euro. J. Appl. Math. $6(1995), 201-224$.
[5] A. A. Lacey, D.E. Tzanetis \& P.M. Vlamos, Behaviour of a nonlocal reactive convective problem modelling Ohmic heating of foods, Quart. J. Mech. Appl. Math. $5(4)(1999), 623-644$.
[6] P. Souplet, Uniform blow-up profiles and boundary behavior for diffusion equations with nonlocal source, J. Diff. Eqns 153(1999), 374-406.

[^0]: *Mathematics Subject Classifications: 35B40, 35L60, 80A20.
 ${ }^{\dagger}$ Department of Mathematics, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece.

