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Abstract

We study the global existence and divergence of some “critical” solutions
u∗(x, t) of a nonlocal hyperbolic problem modeling Ohmic heating of foods. Using
comparison methods, we prove that “critical” solutions of our problem diverge
globally and uniformly with respect to the space-variable as t → ∞. Also, some
estimates of the rate of the divergence are given.

1 Introduction

In the present work we discuss the behavior of solutions of the nonlocal hyperbolic
problem

ut + ux =
λf(u)

1

0
f(u)dx

2 , 0 < x < 1, t > 0, (1)

u(0, t) = 0, t > 0, (2)

u(x, 0) = ψ(x), 0 < x < 1, (3)

at a critical value of parameter λ, say λ∗ (see below), where u = u(x, t) = u(x, t;λ)
and u∗(x, t) = u(x, t;λ∗) is referred to as a critical solution of (1-3). The function u
stands for the dimensionless temperature of a moving material in a pipe (e.g. food)
with negligible thermal conductivity, when an electric current flows through it; this
problem occurs in the food industry (sterilization of foods), see [5] and the references
therein. The parameter λ is positive and equals the square of the potential difference of
the electric circuit. The nonlinear function f(u) represents the dimensionless electrical
resistivity of the conductor; depending upon the substance undergoing the heating, the
resistivity might be an increasing, decreasing, or non-monotonic function of tempera-
ture. For most foods resistivity decreases with temperature, so we assume that f(s)
satisfies the condition

f(s) > 0, f (s) < 0, s ≥ 0. (4)
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Also for simplicity, we assume that ψ is continuous (and normally, but not always,
differentiable) with ψ(0) = 0. Although (1-3) is a hyperbolic problem, condition (4)
permits us to use comparison methods, [5]. The corresponding steady-state problem
to (1-3) is

w = µf(w) > 0, 0 < x < 1, w(0) = 0, (5)

with

µ =
λ

1

0
f(w)dx

2 . (6)

Problem (5-6) implies

µ = µ(M) =
M

0

ds

f(s)
and λ = λ(M) =M2/

M

0

ds

f(s)
, (7)

where M = w(1) = w ∞ . Also, note that µ(M) ≥ M/f(0) → ∞ as M → ∞,
see Figure 1a. Moreover, λ∗ := limM→∞ λ(M) = limM→∞ 2Mf(M), by means of
l’Hospital’s rule.
Now if f(s) is such that

λ∗ = lim
M→∞

2Mf(M) = 2c, c ∈ (0,∞) and µ(M) > M/2f(M), (8)

then problem (5-6) has a unique solution w(x;λ) for each λ ∈ (0,λ∗) (e.g. f(s) =
1/(1 + s)), see [5]. This situation is described in Figure 1b. Relation (8) also implies
that

∞
0
f(s)ds =∞ (otherwise we would haveMf(M)→ 0 asM →∞, contradicting

(8)).

o

µ0 *0 λ λ

w(1)=||w||w(1)=||w||

(a) (b)

o oo

Figure 1.

It is known [5] that for 0 < λ < λ∗, the unique steady-state solution w(x;λ) is
globally asymptotically stable and u(x, t;λ) is global in time. Whereas, for λ > λ∗

the solution u(x, t;λ) blows up in finite time. In the case where λ = λ∗, the only
known result is that u∗(·, t) ∞ → ∞ as t → T ∗ ≤ ∞ (this follows by constructing
a lower solution z(x, t) = w(x;µ(t)) which tends to infinity as t→∞) [5]. In Section
2 we prove that T ∗ =∞, i.e. u∗ is a global in time (classical) solution which diverges
( u∗(·, t) ∞ →∞ as t→∞). Moreover we show that u(x, t;λ∗)→∞ as t→∞ for all
x ∈ (0, 1] and u∗x(0, t) →∞ as t →∞ (global divergence). In Section 3 we give some
estimates of the rate of divergence of u∗ and study the asymptotic form of divergence.
A similar investigation, but for some nonlocal parabolic problems, is tackled in [2]; see
also [3].
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2 Divergence

We begin with the following result.

LEMMA 2.1. For the solutions of (5-6) there hold: (a) wµ > 0 in (0, 1] and (b)
w(x;µ)→∞ as µ→∞ (or equivalently w(x;λ)→∞ as λ→ λ∗−) in (0, 1].
PROOF. (a) Integrating (5) over (0, x) we obtain µx =

w(x)

0
ds/f(s). Differenti-

ation of the previous relation with respect to µ gives wµ = xf(w) > 0 for x ∈ (0, 1];
moreover wµ(0;µ) = 0. (b) Integrating equation (5) again over (0, 1),

1

0

f(w(x;µ))dx =
M

µ
=

M
M

0
ds
f(s)

, (9)

and due to (4), (8) we obtain

lim
µ→∞

1

0

f(w(x;µ))dx = lim
M→∞

1

0

f(w(x;µ(M)))dx = lim
M→∞

f(M) = 0, (10)

which implies that w(x;µ) → ∞ as µ → ∞ (or equivalently w(x;M) → ∞ as M →
∞) for every x ∈ (0, 1]. This proves the lemma.
PROPOSITION 2.2. Let f(s) satisfy (4) and (8), then u∗(x, t) is a global in time

solution of (1-3) which diverges as t→∞ , i.e. u∗(·, t) ∞ →∞ as t→∞.
PROOF. As noted in [5], assuming θ(x, t) = θ(t), dθ/dt = λ∗/f(θ) with θ(0) large

enough then θ(x, t) is an upper solution to (1-3), at λ = λ∗, which exists for all time,
provided that

∞
0
f(s)ds =∞. This follows immediately from θ(t)

θ(0)
f(s)ds = λ∗t, since

as denoted above, (8) implies that
∞
0
f(s)ds =∞. Recalling now that u∗(·, t) ∞ →∞

as t→ T ∗ ≤ ∞, we finally obtain u∗(·, t) ∞ →∞ as t→∞.
We now prove that u∗(x, t) diverges globally.
PROPOSITION 2.3. Let f(s) satisfy the hypotheses of Proposition 2.2 , then the

unbounded solution u∗(x, t) of (1-3) diverges globally, meaning that u∗(x, t) → ∞ as
t→∞ for every x ∈ (0, 1] and u∗x(0, t)→∞ as t→∞.
PROOF. Note that there holds (

1

0
f(w(x;µ))dx)2µ = λ(µ) < λ∗ for every µ > 0,

since λ∗ = sup{λ(µ) : µ > 0} and in addition there is no steady-state at λ = λ∗.
Therefore we can construct a lower solution z(x, t) to (1-3) at λ = λ∗ of the form
w(x;µ(t)), where µ(t) satisfies

µ̇(t) = inf
(0,1)

f(w)

wµ

(λ∗ − λ(µ))

1

0
f(w)dx

2 > 0, t > 0, (11)

see [5]. Equation (11) has a unique solution µ(t) which exists for all t > 0, [1].
Moreover, since problem (5-6) has no solution at λ∗, the unique solution µ(t) to (11) is
unbounded, hence µ(t)→∞ as t→∞. So due to Lemma 2.1, z(x, t) = w(x;µ(t))→∞
as t→∞ for every x ∈ (0, 1]. Finally we conclude that u∗(x, t)→∞ for any x ∈ (0, 1]
and u∗x(0, t) ≥ zx(0, t) = µ(t)f(0)→∞ as t→∞.



62 Nonlocal Hyperbolic Problem

3 Asymptotic form of divergence

In this section, using similar ideas as in the case of blow-up for a parabolic problem,
[3, 4], we obtain the asymptotic form of divergence. First, we construct a special upper
solution of (1-3) giving a useful upper estimate of the rate of divergence of u∗(x, t) (this
upper solution is global in time and can serve as an alternative way to prove Proposition
2.2). Therefore we seek a prospective upper solution V (x, t) of the form:

V (x, t) = w(y(x);µ(t)), 0 ≤ x ≤ ε, t > 0, (12)

V (x, t) =M(t) = max
0≤x≤ε

w(y(x);µ(t)), ε < x ≤ 1, t > 0, (13)

where 0 < y(x) = x/ε < 1 (ε is a constant in (0, 1)) and w(y(x);µ(t)) satisfies the
problem

wx =
µ(t)

ε
f(w), 0 < x < ε, w(0) = 0. (14)

It is obvious from the definition of V (x, t) that V is continuous at x = ε and V (0, t) = 0.
Due to Lemma 2.1 we have that wµ(x;µ) = wν(x; ν)/ε ≥ 0 for 0 ≤ x ≤ 1, where
ν = µ/ε. Hence, by choosing a sufficiently large µ(0), V (x, 0) = w(ψ(x);µ(0)) ≥ ψ(x)
for 0 ≤ x ≤ 1. Moreover

1

0

f(V )dx = (1− )f(M) +
ε

µ

ε

0

wx dx = (1− ε)f(M) +
εM

µ
. (15)

Also (7) implies that

µ(M)f(M) ≤M, (16)

and since limM→∞Mf(M) = c > 0, we get

f(M) ∼ c

M
and

M2

µ(M)
∼ 2c as M →∞. (17)

Finally (17) implies

µ(M)f(M) ∼ c

2
as M →∞. (18)

For 0 ≤ x ≤ ε,

G(V ) ≡ Vt + Vx − λ∗f(V )
1

0
f(V )dx

2

= wµµ̇(t) +
µ(t)f(w)

ε
− 2cf(w)

(1− ε)f(M) + ε
µM

2

∼ wµµ̇(t) +
µ(t)f(w)

ε
1− 1/ 1− ε

2
√
ε
+
√
ε

2

, M 1,
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due to (15), (17) and (18). We note that

1− ε

2
√
ε
+
√
ε =

ε+ 1

2
√
ε
> 1, for any 0 < ε < 1, (19)

thus G(V ) wµµ̇(t) > 0 for x ∈ [0, ], since wµ > 0 in (0, 1] and provided that µ̇(t) > 0
(see below). For ε < x ≤ 1 we obtain

G(V ) = Ṁ(t)− 2cf(M)

(1− ε)f(M) + ε
µM

2

∼ Ṁ(t)− µ(M)f(M)

ε 1−ε
2
√
ε
+
√
ε
2 Ṁ(t)− µ(M)f(M)

ε
, M 1,

using (17), (18) and (19). Now by choosing M(t) such that

Ṁ(t) =
µ(M)f(M)

ε
> 0, t > 0, (20)

we finally take G(V ) 0 for ε < x ≤ 1 and M 1. Equation (20) implies that M(t)
is increasing, so µ̇(t) = Ṁ(t)/dMdµ > 0. Also integrating (20) and using estimate (16),
we get

t

ε
=

M(t)

M(0)

ds

µ(s)f(s)
≥

M(t)

M(0)

ds

s
= lnM(t)− lnM(0). (21)

This relation implies that if M(t)→∞ then t→∞. Whence taking M(0) 1 we get
that V (x, t) is an upper solution to (1-3) at λ = λ∗, which exists for all time.
Now, from (21), we get that u∗(·, t) ∞ does not tend to infinity faster than

M(0)et/ε does as t → ∞ for any 0 < ε < 1, that is, N(t) M(0)et/ε as t → ∞,
where N(t) = u∗(·, t) ∞. Before giving a lower estimate of the rate of divergence of
u∗(x, t), we prove the following:
PROPOSITION 3.1. The divergence of u∗(x, t) is uniform on compact subsets of

(0, 1], meaning that limt→∞ |u∗(x1, t)− u∗(x2, t)| = 0, 0 < δ ≤ x1 < x2 ≤ 1, for any
positive δ.

PROOF. Using the variable y = x − t in place of x, equation (1), at λ = λ∗, can
be written as

dU∗/dt = g(t)f(U∗), (22)

where U∗(y, t) = u∗(x, t) and g(t) = λ∗/( 1−t
−t f(U∗)dy)2. Since (4) holds, (22) im-

plies dU∗/dt ≥ g(t)f(N) = dN/dt, where N(t) = maxy U
∗(y, t). Integrating the last

inequality we obtain U∗(y, t) − U∗(y, 0) ≥ N(t) − N(0), which implies that N(t) ≥
U∗(y, t) = u∗(x, t) N(t) as t →∞ or u∗(x, t) ∼ N(t) as t → ∞ for every x ∈ (0, 1],
since u∗(x, t) diverges globally. Thus |u∗(x1, t)− u∗(x2, t)| ≤ (N(t)− u∗(x2, t))→ 0 as
t→∞, for 0 < δ ≤ x1 < x2 ≤ 1. The proof is complete.
From relation (4) we have that N(t) satisfies dN/dt = λ∗f(N)/( 1

0
f(u∗)dx)2 ≥

λ∗f(N)/f2(0). Using (17) we take dN/dt λ∗c/Nf2(0) as t → ∞ or equivalently
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N2(t)/2−N2(t1)/2 λ∗c/f2(0)(t−t1) for t > t1 1. Finally we obtain N(t) λ∗
f(0)

√
t

as t→∞, since λ∗ = 2c.
Thus we have proved:

PROPOSITION 3.2. Let f satisfy the hypotheses of Proposition 2.2, then u∗(x, t)
grows at least as the square root of time t ( u∗(·, t) ∞ C

√
t, C = λ∗/f(0)) as t→∞

but no faster than exponentially ( u∗(·, t) ∞ M(0)et/ε, for any 0 < ε < 1) as t→∞.
It can be expected, due to Proposition 3.1, that for t 1, u∗ ∼ N i.e. u∗(x, t)

exhibits a flat divergence profile, except for a boundary layer whose thickness vanishes
as t→∞ (by the boundary layer, we mean the region near to x = 0 where the solution
u∗(x, t) follows a fast transition between the divergence regime and the assigned zero
boundary condition). Therefore in the main core region we neglect u∗x so

dN/dt ∼ g(t)f(N) as t→∞, where g(t) = λ∗

1

0
f(u∗)dx

2 .

Significant contributions to the integral
1

0
f(u∗)dx can come from the largest core

(region) which has width ∼ 1 and its contribution is ∼ f(N) ) and from the boundary
layer where f(u∗) is larger, since f is decreasing and u∗ < N ; f(u∗) is O(1) and
f(u∗) ≥ k > 0 wherever u∗ is O(1). If the boundary layer has width δ = δ(t) then

λ∗

g(t)
= O(δ(t)) +O(f(N(t))), t 1,

and either g(t) = O(δ−2(t)) or g(t) = O(f−2(N(t))), whichever is the larger for t 1.
Supposing that δ(t) f(N(t)) as t → ∞ then the core dominates and g(t) ∼

λ∗/f2(N(t)) for t→∞. Hence

dN/dt ∼ λ∗

f(N)
for t→∞,

and using (17) we finally obtain N(t) ∼ N(0)e2t as t → ∞, which contradicts the
fact that N(t) M(0)et/ε as t → ∞, for any 0 < ε < 1 (see Proposition 3.2). Also
assuming that δ(t) = O(f(N(t))) as t → ∞ we arrive at a contradiction as before.
There remains only one possibility: δ(t) f(N(t)) as t→∞.
Thus the boundary layer has width δ(t) = O(g(t)−1/2) f(N(t)), as t → ∞;

using now (17) and taking into account Proposition 3.2, we obtain

δ(t)
c

M(0)
e−t/ε as t→∞, for every 0 < ε < 1,

i.e. the width of the boundary layer decreases no faster than exponentially. In the
boundary layer, u∗ is O(1) and u∗t is negligible compared to u∗x (due to the continuity
of u∗t , u∗x we get |u∗t (x, t)| < , 0 < x < δ(t), t > 0, for every > 0, and u∗x(0, t)− <
u∗x(x, t)→∞, 0 < x < δ(t), as t→∞, since u∗x(0, t)→∞ as t→∞). There has to
be a balance between u∗x and g(t)f(u

∗), i.e.

u∗x ∼ g(t)f(u∗), for 0 < x < δ(t), as t→∞. (23)



N. I. Kavallaris and D. E. Tzanetis 65

So in the boundary layer u∗(x, t) behaves like w(x;µ(t)) as t → ∞ (this fact justifies
the form of upper solution V (x, t) constructed above).
From the above analysis and (23), we obtain

u∗x(x, t) ∼
f(u∗)

f2(0)δ2(t)
, for 0 < x < δ(t), as t→∞. (24)

Integrating the last relation over (0, x) and using (17) we obtain that

u∗(x, t) ∼
√
λ∗ x

f(0)δ(t)
for t→∞, (25)

as we leave the boundary x = 0. Leaving the boundary layer, relation (25) becomes
N(t) ∼ √λ∗/ f2(0)δ(t) as t→∞, and using Proposition 3.2, we get

δ(t)
1

λ∗
t−1 as t→∞. (26)

Estimate (26) implies that the size (width) of the boundary layer decreases faster
than t−1 as t → ∞, which is the analogous result to the one holding in the case of
blow-up for nonlocal diffusion equations, see [4, 6].

References

[1] N. I. Kavallaris and D. E. Tzanetis, Blow-up and stability of a nonlocal diffusion-
convection problem arising in Ohmic heating of foods, Diff. Integ. Eqns. 15(3)(2002),
271—288.

[2] N. I. Kavallaris and D.E. Tzanetis, Global existence and divergence of critical so-
lutions of some nonlocal parabolic problems in Ohmic heating process, preprint.

[3] A. A. Lacey, Thermal runaway in a non—local problem modelling Ohmic heating.
Part I: Model derivation and some special cases”, Euro. J. Appl. Math. 6(1995),
127—144.

[4] A. A. Lacey, Thermal runaway in a non—local problem modelling Ohmic heating.
Part II: General proof of blow—up and asymptotics of runaway, Euro. J. Appl. Math.
6(1995), 201—224.

[5] A. A. Lacey, D.E. Tzanetis & P.M. Vlamos, Behaviour of a nonlocal reactive con-
vective problem modelling Ohmic heating of foods, Quart. J. Mech. Appl. Math.
5(4)(1999), 623-644.

[6] P. Souplet, Uniform blow—up profiles and boundary behavior for diffusion equations
with nonlocal source, J. Diff. Eqns 153(1999), 374—406.


