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Abstract

Solvability condition and common solution of the pair of linear matrix equa-
tions AX + XB = M and AXB = C are determined by making use of ranks
and generalized inverses of matrices. Some of their applications to generalized
inverses of matrices are also presented.

1 Introduction

We consider in this article common solutions of the pair of simultaneous matrix equa-
tions

AX +XB =M,
AXB = C,

(1)

and present some of their applications to generalized inverses of matrices. The first
equation in (1) is called the Sylvester equation in the literature and is widely studied,
see [3] and the references therein for its history and applications. The second equation
in (1) is also well known in the literature, see [1, 2, 9].
A direct motivation for us to consider the common solutions of the pair of ma-

trix equations in (1) arises from characterizing various commutativity for generalized
inverses of matrices, such as, AA− = A−A, AkA− = A−Ak, and ADA− = A−AD,
BAA− = A−AB and so on, as well as factorizations of matrix with the form M =
AA− − A−A or M = AkA− − A−Ak and so on. Note that generalized inverse (inner
inverse) A− is a solution to the matrix equation AXA = A. Hence the equalities
mentioned above can be regarded as special cases of (1).
Throughout, C denotes the field of complex numbers. R(A), r(A), A∗ and A−

as usual denote the range (column space), the rank, the conjugate transpose, and a
generalized inverse of matrix A, respectively. Moreover, we denote EA = I −AA− and
FA = I −A−A for any A−.
The following rank formulas are due to Marsaglia and Styan [6, Theorem 19].

LEMMA 1.1. Let A ∈ Cm×n, B∈ Cm×k and C ∈ Cl×n be given. Then
(a) r[A,B ] = r(A) + r(EAB) = r(B) + r(EBA).

(b) r
A
C

= r(A) + r(CFA) = r(C) + r(AFC).
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(c) r
A B
C 0

= r(B) + r(C) + r(EBAFC).

From Lemma 1.1(c), we obtain

r
A BFB1

EC1C 0
= r

 A B 0
C 0 C1
0 B1 0

− r(B1)− r(C1). (2)

Lemma 1.1 and (2) are quite useful in simplifying various rank equalities involving
generalized inverses of matrices.
The following result on the matrix equation AXB = C is also well known, see

[1, 2, 9].

LEMMA 1.2. The following five statements are equivalent:
(a) The matrix equation AXB = C is consistent.
(b) AA−C = C and CB−B = C.
(c) AA−CB−B = C.
(d) R(C) ⊆ R(A) and R(C∗) ⊆ R(B∗).
(e) r[A,C ] = r(A) and r

B
C

= r(B).

In case one of the five statements in Lemma 1.2 holds, the general solution of
AXB = C can be expressed in the form X = A−CB− + V − A−AV BB−, or X =
A−CB− + FAV1 + V2EB, where V, V1 and V2 are arbitrary matrices.

LEMMA 1.3. Let A ∈ Cm×p, B∈ Cq×n, C∈ Cm×r,D ∈ Cs×n and N ∈ Cm×n be
given. Then
(a) The matrix equation

AXB + CYD = N (3)

is solvable if and only if the following four rank equalities hold [8]

r[A,C,N ] = r[A,C ], r

 B
D
N

 = r B
D

, (4)

r
N A
D 0

= r(A) + r(D), r
N C
B 0

= r(B) + r(C). (5)

(b) In case (3) is solvable, the general solution of Eq.(3) can be expressed in the
form [11, 12]

X = X0 +X1X2 +X3 and Y = Y0 + Y1Y2 + Y3, (6)

where X0 and Y0 are two special solutions of Eq.(3), X1, X2, X3 and Y1, Y2, Y3 are
the general solutions of the following four homogeneous matrix equations

AX1 − CY1 = 0,
X2B + Y2D = 0,
AX3B = 0,
CY3D = 0,

(7)
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or explicitly

X = X0 + [ Ip, 0 ]FGUEH
Iq
0

+ FAV1 + V2EB , (8)

Y = Y0 + [ 0, Ir ]FGUEH
0
Is

+ FCW1 +W2ED, (9)

where X0 and Y0 are two special solutions of Eq.(3), G = [A,−C ], H =
B
D

, U, V1,

V2, W1 and W2 are arbitrary.
Some expressions of special solutions of (3) were given in [1] and [8]. But we only

need (8) and (9).

2 Main Results

Our first main result is as follows.

THEOREM 2.1. Let A ∈ Cm×m, B ∈ Cn×n and C, M ∈ Cm×n be given. Then
(a) The matrix equations

AX +XB =M, AXB = C (10)

have a common solution X if and only if A,B,C,M satisfy the following six conditions

R(C) ⊆ R(A), R(C∗) ⊆ R(B∗), r M A
B 0

= r(A) + r(B), (11)

AC + CB = AMB, R(C −AM ) ⊆ R(A2), R[(C −MB )∗] ⊆ R[(B2)∗]. (12)

(b) In case (11) and (12) hold, the general common solution of (10) can be expressed
in the form

X = X0 + [FA, 0 ]FGUEH
In
0

+ [ 0, Im ]FGUEH
0
EB

+ FASEB, (13)

where X0 is a special solution of Eq.(10), G = [FA,−A ], H =
B
EB

, U and S are

arbitrary.
(c) The equations in (10) have a unique common solution if and only if A and B

are nonsingular and AC + CB = AMB. In this case, the unique common solution is
X = A−1CB−1.

PROOF. Suppose first that (10) has a common solution. This implies that AX +
Y B = C and AXB = C are solvable respectively. Thus (11) follows directly from
Lemmas 1.2 and 1.3. Pre- and post-multiplying A and B of the both sides of AX +
XB =M , respectively, yield A2X = AM − C and XB2 =MB − C, which imply the
two range inclusions in (12). Consequently, pre- and post-multiplying A and B on the
both sides of AX +XB =M produces the first equality in (12).
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We next show that under (11) and (12), the two equations in (10) has a common
solution and their general common solution can be written as (13). By Lemma 1.2, the
general solution of AXB = C under (11) is

X = A−CB− + FAV1 + V2EB, (14)

where V1 and V2 are arbitrary. Substituting it into AX +XB =M yields

AV2EB + FAV1B =M − CB− −A−C. (15)

By Lemma 1.3, this equation is solvable if and only if it satisfies the following four rank
equalities

r[A,FA, N ] = r[A,FA ], r

 B
EB
N

 = r B
EB

, (16)

and

r
N A
B 0

= r(A) + r(B), r
N FA
EB 0

= r(FA) + r(EB), (17)

where N =M − CB− −A−C. Simplifying them by Lemma 1.1 and (2), we find that

r[A,FA, N ] = r
A Im M −A−C
0 A 0

− r(A) = r[A2, C −AM ] +m− r(A),

r[A,FA ] = r
A Im
0 A

− r(A) = r(A2) +m− r(A),

r

 B
EB
N

 = r
 B 0

In B
M − CB− 0

− r(B) = r B2

C −MB + n− r(B),

r
B
EB

= r
B 0
In B

− r(B) = r(B2) + n− r(B),

r
N A
B 0

= r
M − CB− −A−C A

B 0
= r

M A
B 0

,

r
N FA
EB 0

= r

 M − CB− −A−C Im 0
In 0 B
0 A 0

− r(A)− r(B)
= r

 0 Im 0
In 0 0
0 0 AMB −AC − CB

− r(A)− r(B)
= m+ n+ r(AMB −AC − CB)− r(A)− r(B),

and
r(FA) + r(EB) = m+ n− r(A)− r(B).
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Substituting them into (16) and (17) yields the results in (11) and (12). This fact
implies that under (11) and (12), the equation (15) is solvable. Solving for V1 and V2
in (15) by Lemma 1.3, we obtain their general solutions

V1 = V10 +A
−AS1 + S2EB

+[ Im, 0 ]( I − [FA,−A ]−[FA,−A ] )U I − B
EB

B
EB

−
In
0

,

V2 = V20 + FAT1 + T2BB
−

+[ 0, Im ]( I − [FA,−A ]−[FA,−A ] )U I − B
EB

B
EB

−
0
In

,

where V10 and V20 are two special solutions of (15), U, S1, S2, T1 and T2 are arbitrary.
Substituting them into (14) yields

X = A−CB− + FAV10 + V20EB + [FA, 0 ]FGUEH
In
0

+FAS2EB + [ 0, Im ]FGUEH
0
EB

+ FAT1EB,

which can also be written in the form of (13). The proof is complete.

Some direct consequences can be derived from the above theorem. Here are some
of them.

COROLLARY 2.2. Let A,M ∈ Cm×m be given. Then
(a) There is A− such that

M = AA− −A−A (18)

if and only if A and M satisfy the following four conditions

AMA = 0, R(A+AM) ⊆ R(A2),

R[(A−MA)∗] ⊆ R[(A2)∗], r M A
A 0

= 2r(A).

(b) Under r(A2) = r(A), there is A− such that Eq.(18) holds if and only if

AMA = 0 and r
M A
A 0

= 2r(A).

(c) There is A− such that

M = AA− +A−A (19)

if and only if A and M satisfy the following four conditions

2A2 = AMA, R(A−AM ) ⊆ R(A2),
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R[(A−MA )∗] ⊆ R[(A2)∗], r M A
A 0

= 2r(A).

(d) Under r(A2) = r(A), there is A− such that Eq.(19) holds if and only if

2A2 = AMA and r
M A
A 0

= 2r(A).

(e) There is A− such that AA− = A−A holds if and only if r(A2) = r(A) [13].
Indeed, applying Theorem 2.1 to the system AX −XA =M and AXA = A yields

the results in the corollary.

An extension of Theorem 2.1 is given below. Its proof is similar to that of Theorem
2.1 and is therefore omitted.

THEOREM 2.3. Let A ∈ Cm×k, B ∈ Cl×n, A1∈ Ck×k, B1∈ Cl×l, C ∈ Cm×n,M ∈
Ck×l and suppose that

R(A∗1) ⊆ R(A∗) and R(B1) ⊆ R(B). (20)

Then the following matrix equations

A1X +XB1 =M, AXB = C (21)

have a common solution X if and only if the following conditions are satisfied:

R(C) ⊆ R(A), R(C∗) ⊆ R(B∗), (22)

r
M A1
B1 0

= r(A1) + r(B1), AA1A
−C + CB−B1B = AMB, (23)

R(AM − CB−B1 ) ⊆ R(AA1), R[(MB −A1A−C )∗] ⊆ R[(B1B)∗]. (24)

COROLLARY 2.4. Let A, M ∈ Cm×m be given. Then there is A− such that

M = AkA− −A−Ak (25)

if and only if A and M satisfy the following four conditions

AMA = 0, R(Ak +AM ) ⊆ R(Ak+1), R[(Ak −MA)∗] ⊆ R[ (Ak+1)∗ ], (26)

r
M Ak

Ak 0
= 2r(Ak). (27)

In particular, there is A− such that AkA− = A−Ak holds if and only if r(Ak+1) = r(Ak)
[13].

PROOF. In fact, (25) is equivalent to AkX − XAk = M and AXA = A. Thus
(25)—(27) follow from (20)—(24).

COROLLARY 2.5. Let A ∈ Cm×m be given. Then there exists A− such that
ADA− = A−AD, where AD is the Drazin inverse of A.
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PROOF. It is obvious that ADA− = A−AD is equivalent to

ADX = XAD and AXA = A. (28)

Note that R(AD) ⊆ R(A) and R[(AD)∗] ⊆ R(A∗). Then applying Theorem 2.3 to
(28) yields the desired result.

COROLLARY 2.6. Let A, B ∈ Cm×m be given. Then there is A− such that

BAA− = A−AB (29)

if and only if

r(ABA) = r(AB) = r(BA). (30)

PROOF. The equality (29) is equivalent to the pair of matrix equations

BAX = XAB and AXA = A.

Thus (30) is derived from Theorem 2.3.

In particular when B is taken such that r(ABA) = r(A), there exists A− satisfying
(29). In this case, this generalized inverse is called the commutative generalized inverse
of A with respect to B and is denoted by A−B, which was examined in Khatri [5].
Note that r(AA∗A) = r(AA∗) = r(A∗A) = r(A). Thus any square matrix A has
a commutative generalized inverse A−A∗ . In fact, the Moore-Penrose inverse A

† is a
special case of the commutative generalized inverse A−A∗ .

Acknowledgments. The author would like to thank the referee for valuable sug-
gestions. The research of the author was supported in part by the Natural Sciences
and Engineering Research Council of Canada.

References

[1] J. K. Baksalary and R. Kalar, The matrix equation AXB + CYD = E, Linear
Algebra Appl., 30(1980), 141—147.

[2] A. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory and Applica-
tions, R. E. Krieger Publishing Company, New York, 1980.

[3] R. Bhatia and P. Rosenthal, How and why to solve the operator equation AX −
XB = Y , Bull London Math. Soc., 29(1997), 1—21.

[4] C. G. Khatri, A note on a commutative g-inverse of matrix, Sankhyā Ser. A,
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