Inequalities Involving Khatri-Rao Products of Positive Semi-definite Matrices *

Xian Zhang ${ }^{\dagger}$, Zhong-peng Yang ‡, Chong-guang Cao ${ }^{\S}$

Received 20 August 2001

Abstract

Several inequalities involving the Khatri-Rao products of two four-block positive definite real symmetric matrices are established by Liu in [1]. We extend these to two general positive semi-definite real symmetric block matrices and necessary and sufficient conditions under which these inequalities become equalities are presented.

Let $S(m)$ be the set of all real symmetric matrices of order m. Consider matrices $M \in S(m)$ and $N \in S(p)$ which are partitioned as follows

$$
M=\left(\begin{array}{lll}
M_{11} & \ldots & M_{1 t} \tag{1}\\
\ldots & \ldots & \ldots \\
M_{1 t}^{\prime} & \ldots & M_{t t}
\end{array}\right), N=\left(\begin{array}{lll}
N_{11} & \ldots & N_{1 t} \\
\ldots & \ldots & \ldots \\
N_{1 t}^{\prime} & \ldots & N_{t t}
\end{array}\right),
$$

where $M_{i i} \in S\left(m_{i}\right)$ and $N_{i i} \in S\left(p_{i}\right)$ for $i=1,2, \cdots, t$. Obviously,

$$
\sum_{i=1}^{t} m_{i}=m, \sum_{i=1}^{t} p_{i}=p
$$

We denote by

$$
M * N=\left(M_{i j} \otimes N_{i j}\right)_{i j}
$$

and

$$
M \odot N=\left(M_{i j} \odot N\right)_{i j}=\left(\left(M_{i j} \otimes N_{k l}\right)_{k l}\right)_{i j}
$$

the Khatri-Rao and Tracy-Singh products of M and N respectively, where \otimes represents the Kronecker product. Obviously,

$$
M \odot N \in S(m p), M * N \in S\left(\sum_{i=1}^{t} m_{i} p_{i}\right)
$$

[^0]When M and N are positive definite real symmetric matrices and $t=2$, the following inequalities are obtained by Liu in [1]:

$$
\begin{gather*}
(M * N)^{-1} \leq M^{-1} * N^{-1} \tag{2}\\
M^{-1} * N^{-1} \leq \frac{\left(\lambda_{1}+\lambda_{m p}\right)^{2}}{4 \lambda_{1} \lambda_{m p}}(M * N)^{-1} ; \tag{3}\\
M * N-\left(M^{-1} * N^{-1}\right)^{-1} \leq\left(\sqrt{\lambda_{1}}-\sqrt{\lambda_{m p}}\right)^{2} I \tag{4}\\
M^{2} * N^{2} \leq \frac{\left(\lambda_{1}+\lambda_{m p}\right)^{2}}{4 \lambda_{1} \lambda_{m p}}(M * N)^{2} ; \tag{5}\\
M^{2} * N^{2}-(M * N)^{2} \leq \frac{1}{4}\left(\lambda_{1}-\lambda_{m p}\right)^{2} I ; \tag{6}\\
\left(M^{2} * N^{2}\right)^{1 / 2} \leq \frac{\lambda_{1}+\lambda_{m p}}{2 \sqrt{\lambda_{1} \lambda_{m p}}(M * N)} \tag{7}\\
\left(M^{2} * N^{2}\right)^{1 / 2}-M * N \leq \frac{\left(\lambda_{1}-\lambda_{m p}\right)^{2}}{4\left(\lambda_{1}+\lambda_{m p}\right)} I \tag{8}
\end{gather*}
$$

where λ_{1} and $\lambda_{m p}$ are the largest and smallest eigenvalue of $M \odot N$ respectively, and $A \geq B$ (or $B \leq A$) means that $A-B$ is positive semi-definite. We remark that the inequality (6) is erroneously printed as $(M * N)^{2}-M^{2} * N^{2} \leq \frac{1}{4}\left(\lambda_{1}-\lambda_{m p}\right)^{2} I$ in [1, Theorem 8]). We remark further that conditions for equalities in (2)-(8) are not known.

The purpose of this paper is to extend these inequalities for general block matrices. We also find necessary and sufficient conditions for equalities to hold. Liu [1, p.269] also shows that the Khatri-Rao product can be viewed as a generalization of the Hadamard product. Therefore, our results can also be viewed as a generalization of those corresponding inequalities involving the Hadamard product, see e.g., [3, (1.4), (1.5), (2.14), (2.15), (2.19), (2.20)].

For a matrix $A \in S(m)$, we denote by $\lambda(A)$ and $\tau(A)$ the largest and smallest nonzero eigenvalue of A respectively. Let $R(A)$ be the column space of matrix A. We denote the $n \times n$ identity matrix by I_{n}, or by I when the order of matrix is clear. Let $S^{+}(m)$ and $S_{0}^{+}(m)$ be the set of all positive definite and semi-definite real symmetric matrices of order m respectively.

LEMMA 1. ([1, Theorem $1(\mathrm{a})(\mathrm{b})])$ If A and B are compatibly partitioned, then

$$
\begin{equation*}
(A \odot B)(C \odot D)=(A C) \odot(B D) \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
(A \odot B)^{+}=A^{+} \odot B^{+} \tag{10}
\end{equation*}
$$

where A^{+}is the Moore-Penrose inverse of A.
LEMMA 2. Let A and B be compatibly partitioned matrices, then $(A \odot B)^{\prime}=$ $A^{\prime} \odot B^{\prime}$.

Indeed,

$$
\begin{aligned}
(A \odot B)^{\prime} & =\left(\left(A_{i j} \odot B\right)_{i j}\right)^{\prime}=\left(\left(\left(A_{i j} \otimes B_{k l}\right)_{k l}\right)_{i j}\right)^{\prime} \\
& =\left(\left(\left(A_{i j} \otimes B_{k l}\right)_{k l}\right)^{\prime}\right)_{j i}=\left(\left(\left(A_{i j} \otimes B_{k l}\right)^{\prime}\right)_{l k}\right)_{j i} \\
& =\left(\left(A_{i j}^{\prime} \otimes B_{k l}^{\prime}\right)_{l k}\right)_{j i}=\left(A_{i j}^{\prime} \odot B^{\prime}\right)_{j i} \\
& =A^{\prime} \odot B^{\prime}
\end{aligned}
$$

LEMMA 3. Suppose $A \in S(m)$ and $B \in S(p)$. Then
i) $A \odot B \in S(m p), \lambda(A \odot B)=\lambda(A) \lambda(B), \tau(A \odot B)=\tau(A) \tau(B)$, and $(A \odot B)^{n}=$ $A^{n} \odot B^{n}$ for any positive integer number n;
ii) $A \odot B \in S_{0}^{+}(m p)$ if $A \in S_{0}^{+}(m)$ and $B \in S_{0}^{+}(p)$;
iii) $A \odot B \in S^{+}(m p)$ if $A \in S^{+}(m)$ and $B \in S^{+}(p)$.

PROOF. Let $A=U_{A}^{\prime} D_{A} U_{A}$ and $B=U_{B}^{\prime} D_{B} U_{B}$ be the spectral decompositions of A and B respectively. Then using (9) and Lemma 2,

$$
\begin{align*}
A \odot B & =\left(U_{A}^{\prime} D_{A} U_{A}\right) \odot\left(U_{B}^{\prime} D_{B} U_{B}\right) \\
& =\left(U_{A}^{\prime} \odot U_{B}^{\prime}\right)\left(D_{A} \odot D_{B}\right)\left(U_{A} \odot U_{B}\right) \\
& =\left(U_{A} \odot U_{B}\right)^{\prime}\left(D_{A} \odot D_{B}\right)\left(U_{A} \odot U_{B}\right) \tag{11}
\end{align*}
$$

and

$$
\begin{align*}
\left(U_{A} \odot U_{B}\right)^{\prime}\left(U_{A} \odot U_{B}\right) & =\left(U_{A}^{\prime} \odot U_{B}^{\prime}\right)\left(U_{A} \odot U_{B}\right) \\
& =\left(U_{A}^{\prime} U_{A}\right) \odot\left(U_{B}^{\prime} U_{B}\right) \tag{12}
\end{align*}
$$

Substituting $U_{A}^{\prime} U_{A}=I_{m}$ and $U_{B}^{\prime} U_{B}=I_{p}$ into (12), we see that

$$
\begin{equation*}
\left(U_{A} \odot U_{B}\right)^{\prime}\left(U_{A} \odot U_{B}\right)=I_{m p} \tag{13}
\end{equation*}
$$

Combining (13) and (11) completes the proof.
THEOREM 1. There exists a real matrix Z of order $m p \times \sum_{i=1}^{t} m_{i} p_{i}$ such that $Z^{\prime} Z=I$ and

$$
\begin{equation*}
A * B=Z^{\prime}(A \odot B) Z \tag{14}
\end{equation*}
$$

for any $A \in S(m)$ and $B \in S(p)$ which are partitioned as in (1).
PROOF. Let

$$
Z_{i}=\left(\begin{array}{ccccccc}
O_{i 1} & \ldots & Q_{i, i-1} & I_{m_{i} p_{i}} & O_{i, i+1} & \ldots & Q_{i t} \tag{15}
\end{array}\right)^{\prime}, i=1,2, \ldots, t
$$

where $O_{i k}$ is the zero matrix of order $m_{i} p_{i} \times m_{i} p_{k}$ for any $k \neq i$. Then $Z_{i}^{\prime} Z_{i}=I$ and

$$
Z_{i}^{\prime}\left(A_{i j} \odot B\right) Z_{i}=Z_{i}^{\prime}\left(A_{i j} \otimes B_{k l}\right)_{k l} Z_{j}=A_{i j} \otimes B_{i j}, i, j=1,2, \ldots, t
$$

Letting

$$
Z=\left(\begin{array}{ccc}
Z_{1} & & \tag{16}\\
& \ddots & \\
& & Z_{t}
\end{array}\right)
$$

the result then follows by a direct computation.
THEOREM 2. Suppose Z is defined as in Theorem 1, $A \in S_{0}^{+}(m p), W=\lambda(A)$, $w=\tau(A)$, and

$$
\begin{equation*}
R(Z) \subseteq R(A) . \tag{17}
\end{equation*}
$$

Then the following conclusions hold.
(i) $\left(Z^{\prime} A Z\right)^{+} \leq Z^{\prime} A^{+} Z$, and the equality holds if, and only if, $R(Z)=R(A Z)$.
(ii) $Z^{\prime} A^{+} Z \leq \frac{(W+w)^{2}}{4 W_{w} w}\left(Z^{\prime} A Z\right)^{+}$, and the equality holds if, and only if, $Z^{\prime} A Z=$ $\frac{W+w}{2} I$ and $Z^{\prime} A^{+} Z=\frac{W+w}{2 W w} I$.
(iii) $Z^{\prime} A Z-\left(Z^{\prime} A^{+} Z\right)^{+} \leq(\sqrt{W}-\sqrt{w})^{2} I$, and the equality holds if, and only if, $W=w$ or

$$
\begin{equation*}
Z^{\prime} A Z=(W+w-\sqrt{W w}) I, Z^{\prime} A^{+} Z=\frac{1}{\sqrt{W w}} I . \tag{18}
\end{equation*}
$$

(iv) $Z^{\prime} A^{2} Z \leq \frac{(W+w)^{2}}{4 W w}\left(Z^{\prime} A Z\right)^{2}$, and the equality holds if, and only if, $Z^{\prime} A Z=$ $\frac{2 W w}{W+w} I$ and $Z^{\prime} A^{2} Z=W w I$.
(v) $Z^{\prime} A^{2} Z-\left(Z^{\prime} A Z\right)^{2} \leq \frac{1}{4}(W-w)^{2} I$, and the equality holds if, and only if, $W=w$ or

$$
\begin{equation*}
Z^{\prime} A Z=\frac{W+w}{2} I, Z^{\prime} A^{2} Z=\frac{W^{2}+w^{2}}{2} I . \tag{19}
\end{equation*}
$$

(vi) $\left(Z^{\prime} A^{2} Z\right)^{1 / 2}-Z^{\prime} A Z \leq \frac{(W-w)^{2}}{4(W+w)} I$, and the equality holds if, and only if, $W=w$ or

$$
\begin{equation*}
Z^{\prime} A^{2} Z=\frac{(W+w)^{2}}{4} I, Z^{\prime} A Z=\frac{W^{2}+w^{2}+6 W w}{4(W+w)} I . \tag{20}
\end{equation*}
$$

PROOF. It follows from (15) and (16) that $Z^{+}=Z^{\prime}$ and $Z Z^{\prime} \leq I$. This, together with [2, (23), and Propositions 3.1, 3.2, 3.3 and 3.4], yields the conclusions (i)-(v). Now we prove (vi). Combining [2, (4)] and $Z^{\prime} Z=I$ yields

$$
\begin{aligned}
& \left(Z^{\prime} A^{2} Z\right)^{1 / 2}-Z^{\prime} A Z \\
\leq & \left(Z^{\prime} A Z\right)^{1 / 2}-\frac{1}{W+w} Z^{\prime} A^{2} Z-\frac{W w}{W+w} I \\
= & \frac{(W-w)^{2}}{4(W+w)} I-\left[\frac{1}{\sqrt{W+w}}\left(Z^{\prime} A^{2} Z\right)^{1 / 2}-\frac{\sqrt{W+w}}{2} I\right]^{2} \\
\leq & \frac{(W-w)^{2}}{4(W+w)} I,
\end{aligned}
$$

and the above inequalities become equalities if and only if $W=w$ or (20).
THEOREM 3. Suppose $M \in S_{0}^{+}(m)$ and $N \in S_{0}^{+}(p)$ are partitioned as in (1), Z is defined as in Theorem 1, $W=\lambda(M) \lambda(N), w=\tau(M) \tau(N)$, and

$$
\begin{equation*}
R(Z) \subseteq R(M \odot N) . \tag{21}
\end{equation*}
$$

Then the following conclusions hold.
(i) $(M * N)^{+} \leq M^{+} * N^{+}$, and the equality holds if, and only if, $R(Z)=R((M \odot$ N)Z).
(ii) $M^{+} * N^{+} \leq \frac{(W+w)^{2}}{4 W w}(M * N)^{+}$, and the equality holds if, and only if, $M * N=$ $\frac{W+w}{2} I$ and $M^{+} * N^{+}=\frac{W+w}{2 W w} I$.
(iii) $M * N-\left(M^{+} * N^{+}\right)^{+} \leq(\sqrt{W}-\sqrt{w})^{2} I$, and the equality holds if, and only if, $W=w$ or

$$
\begin{equation*}
M * N=(W+w-\sqrt{W w}) I, \quad M^{+} * N^{+}=\frac{1}{\sqrt{W w}} I \tag{22}
\end{equation*}
$$

(iv) $M^{2} * N^{2} \leq \frac{(W+w)}{4 W w}^{2}$, and the equality holds if, and only if, $M * N=\frac{2 W w}{W+w} I$ and $M^{2} * N^{2}=W w I$.
(v) $M^{2} * N^{2}-(M * N)^{2} \leq \frac{1}{4}(W-w)^{2} I$, and the equality holds if, and only if, $W=w$ or

$$
\begin{equation*}
M * N=\frac{W+w}{2} I, \quad M^{2} * N^{2}=\frac{W^{2}+w^{2}}{2} I \tag{23}
\end{equation*}
$$

(vi) $\left(M^{2} * N^{2}\right)^{1 / 2}-M * N \leq \frac{(W-w)^{2}}{4(W+w)} I$, and the equality holds if, and only if, $W=w$ or

$$
\begin{equation*}
M^{2} * N^{2}=\frac{(W+w)^{2}}{4} I, \quad M * N=\frac{W^{2}+w^{2}+6 W w}{4(W+w)} I . \tag{24}
\end{equation*}
$$

(vii) $\left(M^{2} * N^{2}\right)^{1 / 2} \leq \frac{W+w}{2 \sqrt{W w}}(M * N)$, and the equality holds if, and only if, $M * N=$ $\frac{W+w}{2} I$ and $M^{2} * N^{2}=W w I$.

PROOF. Noting i) and ii) of Lemma 3 and (10) and substituting A by $M \odot N$ in Theorem 2, we can obtain the conclusions (i)-(vi). Furthermore, the conclusion (vii) follows from (iv) and [2, Proposition 2.3].

REMARK 1. If $t=2, M \in S^{+}(m)$ and $N \in S^{+}(p)$, then M and N automatically satisfy the assumptions of Theorem 3 by applying iii) of Lemma 3, and hence Theorem 3 extends the inequalities (2)-(8).

REMARK 2. We have shown that the condition (21) is sufficient for the inequalities stated in Theorem 3. The following two examples will show that this is not a necessary condition. It is still an open problem to determine a sufficient and necessary condition under which these inequalities stated in Theorem 3 hold.

EXAMPLE 1. Consider matrices

$$
M=\left(\begin{array}{lll}
7 & 1 & 0 \tag{25}\\
1 & 2 & 4 \\
0 & 4 & 9
\end{array}\right), N=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right)
$$

It is easy to verify that $M, N \in S_{0}^{+}(3)$. According (15) and (16), we can obtain

$$
Z^{\prime}=\left(\begin{array}{ccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \tag{26}\\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Furthermore, we can easily show that matrices M, N and Z do not satisfy the condition (21) and the inequalities stated in Theorem 3. Indeed, $W=21.7204$ and $w=7.0747$. Furthermore,

$$
\begin{aligned}
& M^{+}=\left(\begin{array}{ccc}
0.4000 & -1.8000 & 0.8000 \\
-1.8000 & 12.6000 & -5.6000 \\
0.8000 & -5.6000 & 2.6000
\end{array}\right), N^{+}=\left(\begin{array}{ccc}
1.0000 & 0 & 0 \\
0 & 0.2500 & 0.2500 \\
0 & 0.2500 & 0.2500
\end{array}\right), \\
& M^{+} * N^{+}=\left(\begin{array}{ccc}
0.4000 & 0 & 0 \\
0 & 3.1500 & -1.4000 \\
0 & -1.4000 & 0.6500
\end{array}\right), \\
& (M * N)^{+}=\left(\begin{array}{ccc}
0.1429 & 0 & 0 \\
0 & 4.5000 & -2.0000 \\
0 & -2.0000 & 1.0000
\end{array}\right), \\
& M^{2}=\left(\begin{array}{ccc}
50 & 9 & 4 \\
9 & 21 & 44 \\
4 & 44 & 97
\end{array}\right), N^{2}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2 & 2 \\
0 & 2 & 2
\end{array}\right), \\
& M^{2} * N^{2}=\left(\begin{array}{ccc}
50 & 0 & 0 \\
0 & 42 & 88 \\
0 & 88 & 194
\end{array}\right),\left(M^{2} * N^{2}\right)^{1 / 2}=\left(\begin{array}{ccc}
7.0711 & 0 & 0 \\
0 & 3.7366 & 5.2951 \\
0 & 5.2951 & 12.8826
\end{array}\right), \\
& \left(M^{+} * N^{+}\right)^{+}=\left(\begin{array}{ccc}
2.5000 & 0 & 0 \\
0 & 7.4286 & 16.0000 \\
0 & 16.0000 & 36.0000
\end{array}\right), \\
& M^{+} * N^{+}-(M * N)^{+}=\left(\begin{array}{ccc}
0.2571 & 0 & 0 \\
0 & -1.3500 & 0.6000 \\
0 & 0.6000 & -0.3500
\end{array}\right) \nsupseteq O, \\
& \frac{(W+w)^{2}}{4 W w}(M * N)^{+}-M^{+} * N^{+}=\left(\begin{array}{ccc}
-0.2073 & 0 & 0 \\
0 & 2.9204 & -1.2979 \\
0 & -1.2979 & 0.6990
\end{array}\right) \nsupseteq O, \\
& (\sqrt{W}-\sqrt{w})^{2} I-M * N-\left(M^{+} * N^{+}\right)^{+}=\left(\begin{array}{ccc}
-0.4973 & 0 & 0 \\
0 & 9.4313 & 12.0000 \\
0 & 12.0000 & 31.0027
\end{array}\right) \nsupseteq O, \\
& \frac{(W+w)^{2}}{4 W w}(M * N)^{2}-M^{2} * N^{2}=\left(\begin{array}{ccc}
16.0994 & 0 & 0 \\
0 & -15.0207 & -28.6455 \\
0 & -28.6455 & -63.1502
\end{array}\right) \nsupseteq O, \\
& \frac{(W-w)^{2}}{4(W+w)} I-\left(M^{2} * N^{2}\right)^{1 / 2}-M * N=\left(\begin{array}{ccc}
1.7912 & 0 & 0 \\
0 & 0.1257 & -1.2951 \\
0 & -1.2951 & -2.0204
\end{array}\right) \nsucceq O, \\
& \frac{1}{4}(W-w)^{2} I-M^{2} * N^{2}-(M * N)^{2}=\left(\begin{array}{ccc}
52.6243 & 0 & 0 \\
0 & 31.6243 & -44.0000 \\
0 & -44.0000 & -43.3757
\end{array}\right) \nsupseteq O,
\end{aligned}
$$

and

$$
\frac{W+w}{2 \sqrt{W w}}(M * N)-\left(M^{2} * N^{2}\right)^{1 / 2}=\left(\begin{array}{ccc}
-3.0060 & 0 & 0 \\
0 & -2.5752 & -2.9722 \\
0 & -2.9722 & -7.6561
\end{array}\right) \nsupseteq O .
$$

EXAMPLE 2. Consider matrices

$$
M=\left(\begin{array}{lll}
3 & 0 & 5 \tag{27}\\
0 & 0 & 0 \\
5 & 0 & 9
\end{array}\right), N=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right)
$$

It is easy to verify that $M, N \in S_{0}^{+}(3)$. According to (15) and (16), we can see that the matrix Z possesses the form (26). Furthermore, we can easily show that matrices M, N and Z do not satisfy the condition (21), but they satisfy the inequalities stated in Theorem 3. Indeed, $W=23.6619$ and $w=0.1690$. Furthermore,

$$
M^{+}=\left(\begin{array}{ccc}
4.5000 & 0 & -2.5000 \\
0 & 0 & 0 \\
-2.5000 & 0 & 1.5000
\end{array}\right), \text { and } N^{+}=\left(\begin{array}{ccc}
1.0000 & 0 & 0 \\
0 & 0.2500 & 0.2500 \\
0 & 0.2500 & 0.2500
\end{array}\right)
$$

Then

$$
\begin{aligned}
& M^{+} * N^{+}=\left(\begin{array}{ccc}
4.5000 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0.3750
\end{array}\right),(M * N)^{+}=\left(\begin{array}{ccc}
0.3333 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0.1111
\end{array}\right), \\
& M^{2}=\left(\begin{array}{ccc}
34 & 0 & 60 \\
0 & 0 & 0 \\
60 & 0 & 106
\end{array}\right), N^{2}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2 & 2 \\
0 & 2 & 2
\end{array}\right), \\
& M^{2} * N^{2}=\left(\begin{array}{ccc}
34 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 212
\end{array}\right),\left(M^{2} * N^{2}\right)^{1 / 2}=\left(\begin{array}{ccc}
5.8310 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 14.5602
\end{array}\right), \\
& \left(M^{+} * N^{+}\right)^{+}=\left(\begin{array}{ccc}
0.2222 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 2.6667
\end{array}\right), \\
& M^{+} * N^{+}-(M * N)^{+}=\left(\begin{array}{ccc}
4.1667 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0.2639
\end{array}\right) \geq O, \\
& \frac{(W+w)^{2}}{4 W w}(M * N)^{+}-M^{+} * N^{+}=\left(\begin{array}{ccc}
7.3315 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 3.5688
\end{array}\right) \geq O, \\
& (\sqrt{W}-\sqrt{w})^{2} I-M * N-\left(M^{+} * N^{+}\right)^{+}=\left(\begin{array}{ccc}
17.0532 & 0 & 0 \\
0 & 19.8310 & 0 \\
0 & 0 & 13.4976
\end{array}\right)>O,
\end{aligned}
$$

$$
\begin{gathered}
\frac{(W+w)^{2}}{4 W w}(M * N)^{2}-M^{2} * N^{2}=10^{-3}\left(\begin{array}{ccc}
0.2855 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 2.6631
\end{array}\right) \geq O \\
\frac{(W-w)^{2}}{4(W+w)} I-\left(M^{2} * N^{2}\right)^{1 / 2}-M * N=\left(\begin{array}{ccc}
2.9589 & 0 & 0 \\
0 & 5.7899 & 0 \\
0 & 0 & 0.2297
\end{array}\right)>O \\
\frac{1}{4}(W-w)^{2} I-M^{2} * N^{2}-(M * N)^{2}=\left(\begin{array}{ccc}
112.9786 & 0 & 0 \\
0 & 137.9786 & 0 \\
0 & 0 & 6.9786
\end{array}\right)>O
\end{gathered}
$$

and

$$
\frac{W+w}{2 \sqrt{W w}}-\left(M^{2} * N^{2}\right)^{1 / 2}=\left(\begin{array}{ccc}
3.1057 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 12.2496
\end{array}\right) \geq O
$$

REMARK 3. Since Theorem 3 can be obtained by substituting A with $M \odot N$ in Theorem 2, the condition (17) is not necessary for the inequalities stated in Theorem 2 to hold by choosing $A=M \odot N$, where M and N are defined as in Examples 1 and 2 respectively. It is also an open problem to determine a sufficient and necessary condition under which these inequalities stated in Theorem 2 hold.

ACKNOWLEDGMENT. We wish to thank the referee for his helpful comments. The first and third authors are partially supported by the NSF of Heilongjiang (No. A01-07) and the NSF of Heilongjiang Education Committee (No. 15011014). The second author is partially supported by the NSF of Fujian Education Committee.

References

[1] S. Z. Liu, Matrix results on the Khatri-Rao and Tracy-Singh products, Lin. Alg. Appl., 289(1999), 266-277.
[2] S. Liu and W. Polasek, Equality conditions for matrix Kantorovich-Type inequalities, J. Math. Anal. Appl., 212(1997), 517-528.
[3] B. Mond and J. E. Pecaric, Inequalities for the Hadamard product of matrix, SIAM. J. Matrix Anal. Appl., 19(1)(1998), 66-70.

[^0]: *Mathematics Subject Classifications: 15A45, 15A69.
 ${ }^{\dagger}$ Department of Mathematics, Heilongjiang University, Harbin, Heilongjiang, 150080, P. R. China.
 ${ }^{\ddagger}$ Department of Mathematics, Putian College, Putian, Fujian, 351100, P. R. China.
 §Department of Mathematics, Heilongjiang University, Harbin, Heilongjiang 150080, P. R. China

